

INFORMATION TECHNOLOGY LABORATORY

DNSSEC Developments and Updates

Scott Rose scott.rose@nist.gov ISPAB 11/4/2010

What is DNSSEC?

- DNS Security Extensions (DNSSEC)
 - Provides source authentication and integrity protection for DNS data in responses
 - Uses digital signatures over DNS Resource Records
 - Public keys also stored in DNS
 - Authentication chains link response data to installed trust anchor.
 - similar to X.509 certificate chains, but totally contained in the DNS
- NIST has been involved in DNSSEC development and deployment since 2000
 - Sticks: helped provide input on DNSSEC policy in the USG
 - Carrots: Produce guides, tools and testbeds to aid admins in deployment.

History: Deployment Drivers (Sticks)

- Office of Management and Budget (OMB) issues Memo (M-08-23), August 2008
 - Issued order to sign the .gov TLD by Dec. 08 (actually signed Jan. 09)
 - All 2nd level, external facing zones signed by Dec. 09
- Federal Information Security Management Act (FISMA)
 - Security audit for all US Federal IT systems
 - Audit controls covering DNSSEC included in Dec.
 2007 (expanded in latest revision in 2009-10)

Deployment Phases

- USG DNSSEC Incremental Deployment Plan– Not a chicken and egg problem...
 - Phase1: 2005-2010 Technology Development/Guidance.
 - Phase2: 2010-2012 Deploy Signed DNS Infrastructure
 - Phase3: 2012-2014 Deploy Validating Resolver Infrastructure.
 - Phase4: 2014-> Exploit Trusted Naming Infrastructure.
- Phase 1 complete
 - Development of DNSSEC Specification in the IETF (2005)
 - Development of FISMA controls (2010) (Stick)
 - Development of NIST SP 800-81(r1) and the Secure Naming Infrastructure Pilot Testbed created (Carrots)

Current State of Deployment

- We are now in Phase 2
 - _.gov domain signed (2009-2010)
 - OMB Deadline passed, Latest DNSSEC FISMA controls now applicable
 - Roughly 705 out of 1400+ Federal delegations signed
 - Validation only required for HIGH impact systems in this FISMA revision
- Seen deployment in several TLD's
 - .edu, .org, .biz, multiple country codes (including .us).
 - .net/com announced deployment plans for 2011

More DNSSEC Aware Products

- Multiple server implementations
 - Both authoritative and validating recursive servers
 - Open source (e.g. BIND) and Proprietary (e.g. Windows Server 2008)
- Special Purpose appliances
 - DNSSEC Signers and signer/server appliances.
 - Load balancers that use DNS (e.g. F5 Networks)
- DNSSEC offered as a service
 - DNS hosting services
 - Content Distribution Networks

Deployment at the Root

- July 15th DNS Root zone signed
 - Joint effort between NTIA/NIST, ICANN and VeriSign

Root Zone DNSSEC Deployment

- USG keeps a largely "hands-off" approach
 - only approves change requests to the root & does not play a role in key generation or signing.

• Technical details:

- Signed using RSA/SHA-256 with 2048 bit keys
 - ZSK changes every 3-6 months, KSK every 5 years.
- Trust anchor generated using HSM's, access requires several people (Trusted Community Representatives): not ICANN/USG/VeriSign staff.
 - Regular key generation/signing ceremonies at ICANN secure data centers in LA and Virginia
 - Crypto modules FIPS 140-2 level 4 certified, data centers comparable to HIGH Impact FISMA system.

rustworthy Networking Program

DNSSEC Deployment on the Client Side

- ISP's and universities turning on validation now.
 - Comcast testbed moved to production servers.
- Windows 7 has DNSSEC as a managed policy setting
 - No validation on client side, but client requests DNSSEC and checks for validation done by upstream recursive servers
- DNSSEC appearing in applications
 - open source patches for Firefox, Thunderbird, IM clients, SSH clients.

USG DNSSEC Experiences

- Lessons Learned
 - Planning for DNSSEC provides opportunity to revisit DNS structure.
 - Many agency level DNS operators were forced to discover and revisit their DNS architectures.
 - Many "new" DNSSEC management processes improve existing DNS operations.
 - DNSSEC requires regular maintenance (e.g. resigning)
 - DNSSEC inspires careful consideration of authentication, notification, and monitoring process to maintain signed zones.

Lessons Learned

- Administrator education should be a major priority during deployment.
 - Admin error the cause of most problems
 - Give administrators time to plan and clear policy guidance about what they need to do.
 - Know who to contact when mistakes occur
 - Establish a help desk/support network to resolve issues.
- For large domains: establish a procedure for your delegations to upload key material to the parent zone

Lessons Learned

- DNSSEC centric crypto policy is important (DNSSEC is not a PKI)
 - US Federal key policy aimed at PKI certificates (i.e. large, long lived keys), not DNSSEC.
 - causes large response sizes and problems in some routers/firewalls
- Look at your other network components for hidden dangers
 - Old routers/switches or firewalls may drop large DNSSEC responses
 - 1500 bytes a reasonable MTU setting
 - Firewall rules may need changed (UDP & TCP port 53)

Next Steps in .gov

- Finish Phase 2
 - Continue to use policy to drive signing by 2012.
 - Crypto-migration to ECC by 2015
- How to transition to Phase 3?
 - Requiring resolvers capable of validation is easy part.
 - The transition to actually requiring validation requires care
 - Need additional guidance on trust anchor use/management
 - Validation support in OS/browsers/applications need to mature.
- What to expect from Phase 4?
 - Using the DNS as a trusted infrastructure:
 - ID Management (store credentials or certificates) e.g. DKI
 - SSL & IPSec support for web traffic (key distribution)

INFORMATION TECHNOLOGY LABORATORY

Deployment Links

- DNSSEC Blog (DHS program):
 - http://www.dnssec-deployment.org/
- NIST Secure Naming Infrastructure Pilot (SNIP) – http://www.dnsops.gov/
- Root Zone DNSSEC deployment
 - http://www.root-dnssec.org/

DNS Related Controls in FISMA

- SC-8 Transmission Integrity (DNS zone replication)
- SC-20 Secure Name/Address Resolution Service (Authoritative Source)
 - DNSSEC signing of <u>all</u> zone data (all Impact Levels)
- SC-21 Secure Name/Address Revolution Service (Recursive or Caching Resolver)
 - Recursive servers (Primary and Secondary) must be able to validate DNSSEC signed responses (HIGH Impact only).
- SC-22 Architecture and Provisioning for Name/Address Resolution Service

