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Abstract—Access control (AC) policies can be implemented 

based on different AC models, which are fundamentally 

composed by semantically independent AC rules in expressions 

of privilege assignments described by attributes of 

subjects/attributes, actions, objects/attributes, and environment 

variables of the protected systems. Incorrect implementations of 

AC policies result in faults that not only leak but also disable 

access of information, and faults in AC policies are difficult to 

detect without support of verification or automatic fault 

detection mechanisms. This research proposes an automatic 

method through the construction of a simulated logic circuit that 

simulates AC rules in AC policies or models. The simulated logic 

circuit allows real-time detection of policy faults including 

conflicts of privilege assignments, leaks of information, and 

conflicts of interest assignments. Such detection is traditionally 

done by tools that perform verification or testing after all the 

rules of the policy/model are completed, and it provides no 

information about the source of verification errors. The real-time 

fault detecting capability proposed by this research allows a rule 

fault to be detected and fixed immediately before the next rule is 

added to the policy/model, thus requiring no later verification 

and saving a significant amount of fault fixing time.  

Keywords—Access Control; Authorization; Model Verification; 

Testing; Verification 

I. INTRODUCTION  

Systems (e.g., operating systems and database management 
systems) often adopt access control (AC) to control which 
principals (such as users or processes) have access to which 
resources based on AC policies. AC policies can be 
implemented based on AC models or by semantically 
independent AC rules in expressions of privilege assignments. 
The implementations fundamentally consist of a set of rules or 
privilege hierarchies described by AC variables, i.e. subjects 
(or their attributes), actions, objects (or their attributes), and 
environment conditions of the protected systems. A rule 
assigns permission: grant/denial of specific actions on objects 
or object attributes to authorized subjects or subject attributes 
under environment variables.  

Specifying correct behaviors of AC policies is a 
challenging task, especially when an AC policy includes a 
large number of rules. Identifying discrepancies between AC 
policies and their intended functionalities is crucial because 
correct policy behaviors are based on the premise that the 
policies are correctly specified. Incorrect AC policies result in 

faults that not only leak but also disable access to information, 
and faults are especially difficult to detect without support of 
formal embedded models such as Multi-Level Security (MLS) 
and Chinese Wall [1].  

Most research on AC model or policy verification 
techniques is focused on one particular model, and almost all 
of the research is in applied methods, which require the 
completed AC policies as the input for verification or test 
processes to generate fault reports. Even though correct 
verification is achieved and counterexamples may be generated 
along with found faults, those methods provide no information 
about the source of rule faults that might allow conflicts in 
privilege assignment, leakage of privileges, or conflict of 
interest permissions. The difficulty in finding the source of 
fault is increased especially when the AC rules are intricately 
covering duplicated variables to a degree of complexity. The 
complexity is due to the fact that a fault might not be caused by 
one particular rule; for example, rule x grants subject/attribute s 
access to object/attribute o, and rule y denies the group 
subject/attribute g, which s is a member of, access to object o. 
Such conflict can only be resolved by removing either rule x or 
y, or the g membership of s from the policy. But removing x or 
y affects other rules that depend on them (e.g., a member of 
subject group g k is granted access to object o), and removing 
s’s membership in g will disable g’s legitimate access to other 
objects/attributes through the membership. Thus, it requires 
manually analyzing each and every rule in the policy in order 
to find the correct solution for the fault. 

To address the issue, we propose the AC Rule Logic 
Circuit Simulation (ACRLCS) technique, which enables the 
AC authors to detect a fault when the fault-causing AC rule is 
added to the policy, so the fixing can be implemented in real 
time (on the spot) before adding other rules that further 
complicate the detecting effort. In other words, instead of 
checking by retracing the interrelations between rules after the 
policy is completed, the policy author needs only check the 
new added rule against previous “correct” ones. In ACRLCS, 
AC rules are represented in a simulated logic circuit (SLC) 
(pronounced CELL-see). By simulation, we mean ACRLCS is 
not necessarily implementable by a physical electronic circuit; 
however, the concept can be implemented and computed 
through simulated software.   

ACRLCS is composed of SLCs representing AC rules 
specified in Boolean expressions. A SLC should be able to 



preserve the assignments of AC variables and privilege 
hierarchies (through inheritance) and evaluate access 
permission (e.g., grant or deny) from the implemented rule. 
With this principle, our proposed technique includes two main 
processes: 

• Construct a SLC based on AC variables specified by 
Boolean expressions, or relation hierarchies specified by 
relations in an AC rule. In the SLC, each AC variable is 
represented by an input switch, and the rule logic operator and 
hierarchy relation are simulated by logic gates. 

• Develop an efficient algorithm to detect rule faults in 
the policy by triggering input switches representing AC rule 
variables under verification in the currently constructed SLC. 
Rule faults are generated as positive signal outputs from the 
SLC, indicating conflicts in privilege assignments caused by a 
new added rule. 

The rest of this paper is organized as follows. Section II 
discusses related work. Section III describes the AC rule fault 
detecting algorithm and scheme. Section IV illustrates 
applications of ACRLCS. Section V discusses real-time 
performance of the ACRLCS. Section VI concludes the paper. 

II. RELATED WORK 

Several verification techniques exist for applying model 

checking to AC policies. [2] presented a general AC model 

verification tool ACPT, which applied symbolic model 

checker NuSMV [3] for verifying security properties against 

standard AC models/rules and their combinations. [4] 

presented a model checking algorithm that evaluates if a 

policy can satisfy a user’s access request as well as prevent 

intruders from reaching their malicious goals. [5] proposed the 

policy verification and validation framework based on model 

checking that exhaustively verifies a policy’s validity by 

considering the relations between system characteristics and 

policies. Their approach defines the validity of policies and 

the information needed to verify them from the viewpoint of 

model checking as well as constructs the policy verification 

framework based on the definition. [6] presented a model 

checking approach to analyze the delegation and revocation 

functionalities of workflow-based enterprise resource 

management systems. The approach derived information 

about the workflow captured in a symbolic model verification 

specification together with a definition of possible delegation 

and revocation scenarios. [7] presented an abstraction-

refinement technique for automatically finding errors in 

Administrative Role-Based Access Control security policies 

implemented on top of a bounded model checker.  

In addition, a few techniques for automated verification of 

generic policies have been proposed in [8 - 14]. Some use 

verification tools as a backend. For instance, the declarative 

language Alloy [15] supported first order logic and relational 

calculus, and [3] used temporal logic properties with finite 

state models as well as the SPIN model checker [16]. There 

are cases where AC policies are defined as ordering relations, 

which can be further translated into Boolean satisfiability 

problems, and applied to SAT solvers [17]. The SAT solver is 

a program that takes formulas in conjunctive normal form 

(CNF) and returns assignments, or says none exists. These 

techniques serve as foundations for the verification of system 

specifications; a specification of a system can be defined as 

“what the system is supposed to do” [14, 18]. 

 
In summary, the above mentioned techniques applied to 

AC policies/models require all the rules or access constraints to 
be completely specified. Therefore, inevitably fixing faulty 
rules has to take every rule in the policy into consideration, 
because such after-the-effect change of any rule might 
implicitly impact other related rules (sharing subject/attributes, 
actions, object/attributes, especially privilege inheritance 
assignments). And it is too intricate to be thoroughly traced 
because, for example, in the specification of AC rules, some 
AC mechanisms allow later statements to overwrite previous 
ones without recognizing existing conflict of privilege 
assignments. Such difficulty can only be avoided by fixing the 
fault when it appears before additional rules are created. To the 
best of our knowledge, there is no relevant work for such real-
time AC policy fault detection as proposed in ACRLCS. 

III. AC RULE FAULT DETECTING SCHEME 

As many terms used in this paper are not well standardized, 
we use their definitions from a NIST Special Publication and 
an Interagency Report [19, 20] that are recommended for US 
government and adopted by some of industry and academia. 
An exception is that we treat the terms subject and attribute as 
the same variable denoted by “subject/attribute”, because they 
do not make a difference in the ACRLCS scheme, and they can 
be separately treated without loss of generality. This merge 
also applies to object and object attributes, thus, we use 
object/attribute as well. 

ACRLCS interlaces the two main tasks as described in the 
following subsections A and B until all the rules in the policy 
are completed.  

A. SLC Representation for AC Rules 

Intuitively, AC rules can be expressed by Boolean 
expressions that operate on AC rule variables, including 
privilege inheritance relations that denote the inheritances of 
access privilege (i.e., actions to object/attributes pairs) from 
one subject/attribute to another subject/attribute. Privilege 
inheritance is an efficient way for specifying privilege 
hierarchies [21] such as role hierarchies in Role Based Access 
Control (RBAC) policies. The following principles need to be 
followed when specifying AC rules in a SLC: 

 Each SLC gate is a logic operation connecting AC 
variables enforced by the rules in a Boolean expression. 

 An AC rule in a SLC must generate a permission output 
except for privilege inheritance assignments, which are 
specified by connecting inherited subject/attributes and 
beneficiary subject/attributes by an OR gate. 

 A positive value (i.e., 1) from the permission output by 
triggering the input variables of the SLC represents a 
“grant” permission of the rule enforcing the triggered 
input variables.  



 A negative value (i.e., 0) from a permission output by 
triggering the input variables of the SLC represents a 
“deny” permission of the rule enforcing the triggered 
input variables. Or, there is no rule associated with 
these variables. 

For example, the SLC in Figure 1 shows these simple AC 

rules: subject/attribute s1 is granted to perform action a on 

object/attribute o1 and o2, and subject/attribute s2 is granted 

to perform action a on object/attribute o1. The Boolean 

equivalences of the three rules are: 

s1  a  o2 = p1 

s1  a  o1 = p2 

s2  a  o1 = p3 

 

Fig. 1.  AC rule examples 

Trigger a, s1, s2, o1, and o2 of the SLC will generate positive 
permission outputs on p1, p2, and p3 of the three AC rules. 
And trigger s2, a, and o2 will not activate a positive result from 

any of the three permission outputs, because there is no s2  a 

 o2 rule. 

Privilege inheritance relations are assigned between 

subjects/attributes. Usually, inheritance assignments are in 

compliance with the business functions of the application [21]. 

To implement inheritance, the inherited subject/attribute needs 

to create (if no rule is associated to it) or insert an OR gate 

directly connecting to the subject/attribute input; then the 

beneficial subject/attribute either directly (if it is not being 

inherited by other subjects/attributes) or from the output of its 

shared OR gate (for its beneficiaries) connects to the OR gate 

that was created (or inserted) by the inherited subject/attribute. 

Figure 2 illustrates the SLC’s implementation of inheritance 

assignments where subject/attribute s3 inherits privileges (a2, 

o2) and (a1, o1) from subject/attribute s2 and s1, and 

subject/attribute s2 inherits privilege (a1, o1) from 

subject/attribute s1. s4 does not inherit any privilege. 

Formally: 

s1  a1  o1 = p1 

s2  a2  o2 = p2 

s3  s2 

s3  s1 

s2  s1 

 

The symbol “” denotes the inheritance assignment that sx 

inherits () sy’s privilege. Figure 7 is another example of 
privilege inheritance SLC. 

 

Fig. 2. Privilege inheritance example 

Some rules may enforce more than one subject/attribute 

in the specification such that the included subjects/attributes 

need to be either presented at the same time or excluded from 

each other in order to grant/deny an action to 

objects/attributes. This type of rule is usually applied to fine 

grained, n-person control, conflict of interest (COI), or 

separation of duty (SoD) security properties. Figure 3 

illustrates SLC implementations of two such rules where 

permission p1 grants action a to object o if both 

subject/attribute s1 and s2 are accessing it at the same time. 

Permission p2 grants a1 access to object/attribute o1 to x1 or 

x2, if they access exclusively (not at the same time) from each 

other.  

 

Fig. 3. AC rules involving more than one subject/attribute 



Other types of AC rules enforce the OR relation, such as 

the rule “s1 OR s2 can perform a to o” can be simply 

implemented either by two single rules: (s1, a, o) and (s2, a, o) 

or by replacing the AND gate connecting s1 and s2 with an 

OR gate in Figure 3. 

 
Upon finishing specifying a rule in a SLC, the newly added 

circuit should be checked against the previous SLC for the 
detection of inconsistency of permission, i.e. faults of AC 
rules. Subsection B below describes the processes. 

B. Rule Conflict Detection 

To detect faults, ACRLCS requires two separate SLCs; one 
is Grant SLC (GSLC) and the other Deny SLC (DSLC).  
GSLC contains a SLC that implements all rules with grant 
permissions. DSLC contains a SLC that implements all rules 
with deny permissions. In other words, if an AC rule grants 
subject/attributes to perform actions on object/attributes, the 
SLC will be implemented in GSLC. And if an AC rule denies 
subject/attributes to perform actions on object/attributes, the 
SLC will be implemented in DSLC. The same actions also 
apply to inheritance relations (i.e., grant inheritances in GSLC, 
and deny inheritances in DSLC). The separation of the two 
SLCs allows comparing the permission output for a newly 
added SLC rule by trigging the subjects/attributes, actions, and 
objects/attributes enforced in the rule from both SLCs, to check 
if the new SLC rule already exists in the opposite SLC.  

To implement the comparison, GSLC or DSLC, summary 
AND gates collect all the permissions output from the SLCs, 
which will then be compared through another AND gate to 
generate comparison (fault finding) results. As illustrated in 
Figure 4, if both the GSLC and DSLC contain the same rule in 
any of p1 …. pn and p11…pnn, the fault finding AND gate will 
output a positive signal, which means both grant and deny 
permissions are presented, i.e. a conflict fault was detected.  

 

Fig. 4. Conflict resolution scheme of GSLC and DSLC 

Environment conditions of rules are implemented by 
adding “environment” variable inputs for every SLC that the 
variables have influence on, as shown in Figure 5 where 
environment e affects permission p1…pn.  

 

Fig. 5. Environment condition e affects permission p1…pn 

The fault detecting process is described by the following 
algorithm:  

If  permission_of (AC_rule) = ‘grant’ /* identify the permission 
type of the AC_rule by the function permission_of 

 add_grant_SLC (AC_rule) 

else If permission_of (AC_rule) = ‘deny’ 

 add_deny_SLC (AC_rule) 

end 

add_grant_SLC (AC_rule) 

 add_SLC (GSLC, AC_rule) /* As described in Section III A 

 if trigger_SLC (GSLC, subject_retrieve (AC_rule), 
action_retrieve (AC_rule), object_retrieve (AC_rule)) == 
trigger_SLC (DSLC, subject_retrieve (AC_rule), 
action_retrieve (AC_rule), object_retrieve (AC_rule)) 

  remove_SLC (AC_rule, GSLC) 

end 

add_deny_SLC (AC_rule) /* add to DSLC means add a deny 
rule 

 add_SLC (DSLC, AC_rule) /* As described in Section III A 

 if trigger_SLC (DSLC, subject_retrieve (AC_rule), 
action_retrieve (AC_rule), object_retrieve (AC_rule)) == 
trigger_SLC (GSLC, subject_retrieve (AC_rule), 
action_retrieve (AC_rule), object_retrieve (AC_rule)) 

  remove_SLC (AC_rule, DSLC) 

end 

Function permission_of() identifies whether the added rule is 

for grant or deny permission. Function add_SLC() applied the 

scheme as described in Section III A to build a SLC circuit 

according to the entered AC_rule. The trigger_SLC() function 

activates the GSLC and DSLC variables retrieved from the 

AC_rule. Subjects/attributes are retrieved by the 



subject_retrieve() function, actions are retrieved by the 

action_retrieve() function, and objects/attributes are retrieved 

by the object_retrieve() function. Note that for their triviality 

and implementation dependency, steps of each function are not 

included in the paper.  

 

Creating privilege inheritance assignments is not as 

straightforward as the above algorithms, because each new 

added inheritance assignment might invoke additional grant or 

deny permissions to the existing ones. For example, in a 

GSLC the two rules have been implemented: 

(s1  s2)  a  o = p1GSLC          (rule 1) 

s3  s2    (rule 2) 

In a DSLC a rule has been implemented: 

s3  a  o = p1DSLC  (rule 3) 

rule 3 has no fault, because although s3 inherits s2’s privilege, 

s3 alone cannot perform o on a enforced by rule 1 that 

requires both s1 and s2 subject/attribute to be presented for the 

privilege. Now a new rule 

s3  s1    (rule 4) 

is entered in the GSLC, and the addition causes fault, because 

it allows s3 to operate a on o through rule 2 and rule 1, and 

conflicts with rule 3 in the DSLC. Thus, additional steps to 

verify the correctness for added new inheritance assignment 

are described below:  

 

If  permission_of (inheritance_assignment) = ‘grant’ /* 
identify the permission type of the inheritance_assignment by 
the function permission_of 

 add_grant_inheritance (inheritance_assignment) 

else If permission_of (inheritance_assignment) = ‘deny’ 

add_deny_inheritance (inheritance_assignment) 
 

end 
 
add_grant_inheritance (inheritance_assignment) 

add_inheritance (GSLC, inheritance_assignment) /* As 
described in Section III A 

s = inheritance_subject_retrieve 
(inheritance_assignment) 

for all action a in GSLC 

for all object/attribute o in GSLC 

if trigger_SLC (GSLC, s, a, o) = trigger_SLC 
(DSLC, s, a, o) 

remove_ inheritance (GSLC, 
inheritance_assignment) 

end 

add_deny_inheritance (inheritance_assignment) 

add_inheritance (DSLC, inheritance_assignment) /* As 
described in Section III A 

s = inheritance_subject_retrieve 
(inheritance_assignment) 

for all action a in DSLC 

  for all object/attribute o in DSLC 

 if trigger_SLC (DSLC, s, a, o) = trigger_SLC 
(GSLC, s, a, o) 

 remove_ inheritance (DSLC, 
inheritance_assignment) 

end 

Function permission_of() is overloaded for identifing 

whether the added inheritance assignment is for grant or deny 

permission. Like the add_SLC() function, the 

add_inheritance() function adds SLC in GSLC and DSLC. 

The inheritance_subject_retrieve() function retrieves the 

inherited subject/attribute of the inheritance_assignment (e.g., 

s3 of rule 2 and rule 4 above). The remove_inheritance() 

function removes the just-added inheritance_assignment SLC. 

As shown in the algorithm, detecting inheritance faults needs 

to trigger all actions and objects/attributes, because when one 

subject/attribute inherits another subject/attribute’s privilege, 

the beneficiary might also acquire privileges through 

inheritance from the inherited subject/attribute. Such 

interconnected privilege transferring can only be detected 

through triggering all the permissions related to the 

beneficiary subject/attribute. 

 

Other Boolean operators for AC rules can also be used to 

express rule logics, for example, enforcing XOR logic of rule 

5  

(s1  s2)  a  o = p   (rule 5) 

as illustrated in Figure 6. 

 
Fig. 6. SLC XOR example 

Note that after rule 5 is added to a GSLC, adding inheritance 

assignments s3  s1 and s3  s2 will not cause fault as it did 

in rule 4, because the inheritance assignments do not violate 

rule 3 assuming it has been implemented in the DSLC.  

 

For conciseness, in the above algorithms, we did not 

include a redundancy check for the case that the SLC rule has 

already been added in the SLC. The action for such case is 

simply to do nothing. 

IV. APPLICATION 

In addition to random rule assignments, ACRLCS can be 
applied to standard AC models such as Role Based Access 



Control (RBAC) [22] and Multi Level Security (MLS) [19] as 
illustrated in Figure 7 and Figure 8 respectively:  

 

Fig. 7. ACRLCS implementation of a simple RBAC example 

Figure 7 implements a simple RBAC policy model that role 
r1 has privilege (a1, o1), role r2 has privilege (a1, o1) and (a2, 
o2), and role r3 has privilege (a1, o1), (a2, o2), and (a3, o3). 
The RBAC model is equivalent to the following Boolean 
expressions: 

r3  a3  o3= p3 

(r2  a2  o2)   (r3  a2  o2) = p2 

(r1  a1  o1)   (r2  a1  o1)  (r3  a1  o1) = p1 

 

 

Fig. 8. ACRLCS implementation of a simple MLS example 

Figure 8 implements a simple Bell-Lapadula [23] read 
property of MLS policy model, under which Top_Secret rank 
users can read objects in Top_Secret, Secret, and Confidential 
ranks; Secret rank users can read objects in Secret and 
Confidential ranks; and Confidential rank users can only read 
objects in the Confidential rank. The MLS model is equivalent 
to the following Boolean expressions:  

Tu  read  To = Tp 

(Tu  read  So)  (Su  read  So) = Sp 

(Tu  read  Co)  (Su  read  Co)  (Cu  read  Co) 

= Cp 

 
A standard AC model is implemented in a GSLC by 

representing the model in rules (e.g., aforementioned RBAC 
and MLS), and applications of the ACRLCS model can be 
adding specific constraints outside the enforcement of the 
model, i.e. exceptional deny access permissions in DSLC. 
Thus, this provides flexibility in policy specification and 
checking for the model. 

Besides AC models, security property faults in AC 
policies can be implemented for verification by specifying the 
property constraints in DSLCs. An example of security 
property faults [14] follows:  

 Cyclic inheritance (especially in RBAC) allows one 
subject/attribute to inherit privilege from another 
subject/attribute and vice versa in a chain of inheritance 
loop without rendering any access privilege. This fault 
property can be detected by triggering all 
subjects/attributes in the GSLC, and checking if any 
permission output is produced.  

 Privilege escalation allows subjects/attributes to access 
prohibited objects/attributes through inheritance of 
other subjects/attributes with higher privilege. This fault 
property can be prevented by implementing restricted 
privileges that are prohibited to be escalated in DSLC. 

 Separation of Duty faults allows Conflict-of-Interest 
(COI) subject/attributes to have the same privileges 
(actions + object/attributes). This property can be 
prevented by implementing XOR SLC between the COI 
subjects/attributes under restriction in the GSLC. So, 
the fault can be detected by triggering the same 
privilege and the different COI subject/attributes in 
question in both the GSLC and the DSLC. 

 As a general logic circuit, memory and state components 
such as registers and flip-flops are used for maintaining states 
and sequence of logic operations. ACRLCS can include logic 
components for specifications of Historical (or stated) based 
AC models, such as Chinese Wall, Work Flow, or N-person 
control models [1]. These models can be verified by adding 
state variables in a GSLC such that the state variables should 
trigger subjects/attributes, actions, and objects/attributes from 
the state, and then be compared to the subjects/attributes, 
actions, and objects/attributes activated from other states in the 
DSLC to detect conflicts of states in the model. Due to the 
limited space for depicting the complexity and details as well 
as not to deviate from the core scope, discussion of the fault 
detection techniques for these dynamic models will not be 
covered in this paper, and hopefully will be presented in the 
future. 

As logical circuits are more flexible than integrating 
circuits through control logic, ACRLCS can be applied to 
multi-domain or networked AC environments. A simple 
application is for the grant or deny overwrite algorithms for 
AC policies for multi-domain AC applications such that the 
higher prioritized policy can overwrite the lower’s permission. 



Other applications include support layers of prioritized policy 
structure through layered AND operations as shown in Figure 
9, where a verification for an access request (s, a, o) is 
instantiated in the GSLC, which contains two domains, GSLC1 
and GSLC2. GSLC1 of domain 1 has higher priority than 
GSLC2 of domain 2 in deciding permissions. Note that 
networked or hierarchical permission structures as described 
above can only be used for detection of specific access 
assignments in DSLC. To detect fault in networked or priority 
setting requires construction of DSLC with the image of GSLC 
but with reverse priority logics. 

 

Fig. 9. Example of multiple AC domain using multiple GSLCs 

V. REAL TIME PERFORMANCE 

The main objective of this research is to illustrate a real-
time mechanism for AC policy fault detection that is different 
from the other (as mentioned in section II) theorem-proof 
techniques. The difference can be demonstrated by analyzing 
computing complexities. To the best of our knowledge, there is 
no real-time detection technique similar to the one we 
proposed. Most theorem-proof verification techniques are 
either black box, which consume the whole AC policy for the 
input of verification process without analyzing individual rules 
in the policy, or white box, which analyze AC rules by 
inserting assertions in the policy under verification [2]. Both 
methods requires the AC policy or model (including inserted 
assertion statements) under verification to be completed before 
executing the verification process, such that the finished box 
will be translated into a formal model for testing against 
specified security properties. Doing so, all possible states or 
propositions formed by rules are examined by the logic 
algorithm applied. For example, the Symbolic Model Verifier 
NuSMV is used by many policy verification techniques [24, 
10] applying Linear Temporal Logic (LTL) and Computation 
Tree Logic (CTL) for verifying specified properties against AC 
rules or models, and generating counterexamples if a fault 
found. After finding faults, fault fixing is a human process that 
requires manually going through rules in the faulty policy.  

The black/white box methods apply a formal proof 
technique to compute all possible sequences defined by the 
states or paths of rules in the AC policy. The worst-case 
complexity for them is in the order of |S| × |A| × |O| × |I| × |E| 
where S is the set of subjects/attributes, A is the set of actions, 
O is the set of objects/attributes, I is the set of attribute pairs, 

and E is the set of environment variables. Thus, |I| = 
2

||SC (inheritance can be assigned between every 

subject/attribute pair in the worst case scenario). The ACRLCS 
method for each added rule that triggers that rule circuit takes 
constant time for computing, but checking inheritance 
assignment validations in the worst case takes |I| × 2) (2 is for 
both GSLC and DSLC). Thus, in total O(|I| × 2 × r) computing 
complexity is required, where r is the number of rules in the 
policy.  

For black/white box formal methods, the time required for 
fixing policy after a fault is found is O(|S| × |A| × |O| × |I| × |E| 
× r) steps assuming in the worst case a fault was found in every 
rule, and each rule enforces all the variables, due to the fact 
that each found fault requires checking all rules in the policy to 
determine which rule is not intended for the policy. ACRLCS 
under the same assumption (i.e., fault found in each rule) needs 
O(|I| × r × 2) computing steps. Table 1 summarizes the 
complexity. 

TABLE I.  COMPLEXITY SUMMARY  

Complexities 
Methods 

Black/White box formal method ACRLCS 

Rule building r r × 2a 

Verification or 

fault detection 
O(|S| × |A| × |O| × |I| × |E|) O(|I| × r × 2) 

Fault fixing O(|S| × |A| × |O| × |I| × |E| × r) O(|I| × r × 2) 

a. For both GSLC and DSLC 

 

As shown in Table I, the worst-case complexity is not 

“significantly” different for both complexities, for they all are 

in the exponential orders, which conforms with [25]’s theory 

that safety analysis is intractable. It is observed that the major 

cost of complexity is the number of inheritance relations |I|, 

which contributes the exponential orders. However, 

empirically, |I|, |A|, and |E| are usually small compared to |S| 

and |O| in real-world AC policies. So, for most of the AC 

policies, the number |S| × |O| is critical in calculating 

efficiency for real-world AC applications, and |S| × |O| is 

usually a large number for most AC environments. One 

important fact is that the O(|S| × |A| × |O| × |I| × |E| × r) of fault 

fixing can only be performed manually by inspecting the 

faulty policy, as stated in Section II; rule conflicts need human 

judgment to resolve. Thus when comparing with most 

theorem-proof verification methods, ACRLCS has the 

advantage for saving fault fixing time by O(|S| × |O|), which 

is a significant amount if done manually.   
 

VI. CONCLUSION 

In this paper, we presented the ACRLCS technique for 

detecting AC rule faults in real time, performing fault 

detection every time a rule is added into the policy. We 

demonstrated simulated logic circuits, which are versatile in 

specifying AC rules formed by Boolean logic expressions 

operated on variables of AC rules. The variables include 



subjects/attributes, actions, objects/attributes, environment 

conditions as well as privilege inheritance relations between 

subject/attributes. We then explained the algorithm for AC 

rule fault detection by comparing grant (GSLC) and deny 

(DSLC) parts of ACRLCS. We showed that in addition to 

random AC permission rules, ACRLCS is capable of 

composing standard mandatory AC models such as RBAC and 

MLS as well as some fundamental security properties. Further, 

extended applications for multi-domain AC implemented by 

multiple AC policies are briefly introduced.  

 

Like other formal AC policy verification techniques, 

theoretically ACRLCS is no exception and requires intractable 

(exponential) time complexity for the worst case scenario. 

However, in real world applications, the critical factor of the 

intractability—the number of hierarchies of privilege 

inheritance is limited, thus, compared to other model 

verification or theorem-proof methods, ACRLCS is O(|S| × 

|O|) more efficient for fixing policy faults, and the number is 

significant as most of the fault fixing is done manually.  

 

Some rule construction of SLC such as applying XOR 

logic, Historical (State) Based AC models, as well as 

inheritance of objects/attributes was not covered in this paper 

due to the limited space in covering the details and not to 

deviate from the main scope of the topic. Exploring these 

extended features shall be topics for our future research. 

 

We acknowledge Logic Circuit [26] for using their tool for 

the Figures in this paper. 
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