
Real-Time Access Control Rule Fault Detection

Using a Simulated Logic Circuit

Vincent C. Hu

National Institute of Standards and Technology

Gaithersburg, MD, USA

vhu@nist.gov

Karen Scarfone

Scarfone Cybersecurity

Clifton, VA, USA

karen@scarfonecybersecurity.com

Abstract—Access control (AC) policies can be implemented

based on different AC models, which are fundamentally

composed by semantically independent AC rules in expressions

of privilege assignments described by attributes of

subjects/attributes, actions, objects/attributes, and environment

variables of the protected systems. Incorrect implementations of

AC policies result in faults that not only leak but also disable

access of information, and faults in AC policies are difficult to

detect without support of verification or automatic fault

detection mechanisms. This research proposes an automatic

method through the construction of a simulated logic circuit that

simulates AC rules in AC policies or models. The simulated logic

circuit allows real-time detection of policy faults including

conflicts of privilege assignments, leaks of information, and

conflicts of interest assignments. Such detection is traditionally

done by tools that perform verification or testing after all the

rules of the policy/model are completed, and it provides no

information about the source of verification errors. The real-time

fault detecting capability proposed by this research allows a rule

fault to be detected and fixed immediately before the next rule is

added to the policy/model, thus requiring no later verification

and saving a significant amount of fault fixing time.

Keywords—Access Control; Authorization; Model Verification;

Testing; Verification

I. INTRODUCTION

Systems (e.g., operating systems and database management
systems) often adopt access control (AC) to control which
principals (such as users or processes) have access to which
resources based on AC policies. AC policies can be
implemented based on AC models or by semantically
independent AC rules in expressions of privilege assignments.
The implementations fundamentally consist of a set of rules or
privilege hierarchies described by AC variables, i.e. subjects
(or their attributes), actions, objects (or their attributes), and
environment conditions of the protected systems. A rule
assigns permission: grant/denial of specific actions on objects
or object attributes to authorized subjects or subject attributes
under environment variables.

Specifying correct behaviors of AC policies is a
challenging task, especially when an AC policy includes a
large number of rules. Identifying discrepancies between AC
policies and their intended functionalities is crucial because
correct policy behaviors are based on the premise that the
policies are correctly specified. Incorrect AC policies result in

faults that not only leak but also disable access to information,
and faults are especially difficult to detect without support of
formal embedded models such as Multi-Level Security (MLS)
and Chinese Wall [1].

Most research on AC model or policy verification
techniques is focused on one particular model, and almost all
of the research is in applied methods, which require the
completed AC policies as the input for verification or test
processes to generate fault reports. Even though correct
verification is achieved and counterexamples may be generated
along with found faults, those methods provide no information
about the source of rule faults that might allow conflicts in
privilege assignment, leakage of privileges, or conflict of
interest permissions. The difficulty in finding the source of
fault is increased especially when the AC rules are intricately
covering duplicated variables to a degree of complexity. The
complexity is due to the fact that a fault might not be caused by
one particular rule; for example, rule x grants subject/attribute s
access to object/attribute o, and rule y denies the group
subject/attribute g, which s is a member of, access to object o.
Such conflict can only be resolved by removing either rule x or
y, or the g membership of s from the policy. But removing x or
y affects other rules that depend on them (e.g., a member of
subject group g k is granted access to object o), and removing
s’s membership in g will disable g’s legitimate access to other
objects/attributes through the membership. Thus, it requires
manually analyzing each and every rule in the policy in order
to find the correct solution for the fault.

To address the issue, we propose the AC Rule Logic
Circuit Simulation (ACRLCS) technique, which enables the
AC authors to detect a fault when the fault-causing AC rule is
added to the policy, so the fixing can be implemented in real
time (on the spot) before adding other rules that further
complicate the detecting effort. In other words, instead of
checking by retracing the interrelations between rules after the
policy is completed, the policy author needs only check the
new added rule against previous “correct” ones. In ACRLCS,
AC rules are represented in a simulated logic circuit (SLC)
(pronounced CELL-see). By simulation, we mean ACRLCS is
not necessarily implementable by a physical electronic circuit;
however, the concept can be implemented and computed
through simulated software.

ACRLCS is composed of SLCs representing AC rules
specified in Boolean expressions. A SLC should be able to

preserve the assignments of AC variables and privilege
hierarchies (through inheritance) and evaluate access
permission (e.g., grant or deny) from the implemented rule.
With this principle, our proposed technique includes two main
processes:

• Construct a SLC based on AC variables specified by
Boolean expressions, or relation hierarchies specified by
relations in an AC rule. In the SLC, each AC variable is
represented by an input switch, and the rule logic operator and
hierarchy relation are simulated by logic gates.

• Develop an efficient algorithm to detect rule faults in
the policy by triggering input switches representing AC rule
variables under verification in the currently constructed SLC.
Rule faults are generated as positive signal outputs from the
SLC, indicating conflicts in privilege assignments caused by a
new added rule.

The rest of this paper is organized as follows. Section II
discusses related work. Section III describes the AC rule fault
detecting algorithm and scheme. Section IV illustrates
applications of ACRLCS. Section V discusses real-time
performance of the ACRLCS. Section VI concludes the paper.

II. RELATED WORK

Several verification techniques exist for applying model

checking to AC policies. [2] presented a general AC model

verification tool ACPT, which applied symbolic model

checker NuSMV [3] for verifying security properties against

standard AC models/rules and their combinations. [4]

presented a model checking algorithm that evaluates if a

policy can satisfy a user’s access request as well as prevent

intruders from reaching their malicious goals. [5] proposed the

policy verification and validation framework based on model

checking that exhaustively verifies a policy’s validity by

considering the relations between system characteristics and

policies. Their approach defines the validity of policies and

the information needed to verify them from the viewpoint of

model checking as well as constructs the policy verification

framework based on the definition. [6] presented a model

checking approach to analyze the delegation and revocation

functionalities of workflow-based enterprise resource

management systems. The approach derived information

about the workflow captured in a symbolic model verification

specification together with a definition of possible delegation

and revocation scenarios. [7] presented an abstraction-

refinement technique for automatically finding errors in

Administrative Role-Based Access Control security policies

implemented on top of a bounded model checker.

In addition, a few techniques for automated verification of

generic policies have been proposed in [8 - 14]. Some use

verification tools as a backend. For instance, the declarative

language Alloy [15] supported first order logic and relational

calculus, and [3] used temporal logic properties with finite

state models as well as the SPIN model checker [16]. There

are cases where AC policies are defined as ordering relations,

which can be further translated into Boolean satisfiability

problems, and applied to SAT solvers [17]. The SAT solver is

a program that takes formulas in conjunctive normal form

(CNF) and returns assignments, or says none exists. These

techniques serve as foundations for the verification of system

specifications; a specification of a system can be defined as

“what the system is supposed to do” [14, 18].

In summary, the above mentioned techniques applied to

AC policies/models require all the rules or access constraints to
be completely specified. Therefore, inevitably fixing faulty
rules has to take every rule in the policy into consideration,
because such after-the-effect change of any rule might
implicitly impact other related rules (sharing subject/attributes,
actions, object/attributes, especially privilege inheritance
assignments). And it is too intricate to be thoroughly traced
because, for example, in the specification of AC rules, some
AC mechanisms allow later statements to overwrite previous
ones without recognizing existing conflict of privilege
assignments. Such difficulty can only be avoided by fixing the
fault when it appears before additional rules are created. To the
best of our knowledge, there is no relevant work for such real-
time AC policy fault detection as proposed in ACRLCS.

III. AC RULE FAULT DETECTING SCHEME

As many terms used in this paper are not well standardized,
we use their definitions from a NIST Special Publication and
an Interagency Report [19, 20] that are recommended for US
government and adopted by some of industry and academia.
An exception is that we treat the terms subject and attribute as
the same variable denoted by “subject/attribute”, because they
do not make a difference in the ACRLCS scheme, and they can
be separately treated without loss of generality. This merge
also applies to object and object attributes, thus, we use
object/attribute as well.

ACRLCS interlaces the two main tasks as described in the
following subsections A and B until all the rules in the policy
are completed.

A. SLC Representation for AC Rules

Intuitively, AC rules can be expressed by Boolean
expressions that operate on AC rule variables, including
privilege inheritance relations that denote the inheritances of
access privilege (i.e., actions to object/attributes pairs) from
one subject/attribute to another subject/attribute. Privilege
inheritance is an efficient way for specifying privilege
hierarchies [21] such as role hierarchies in Role Based Access
Control (RBAC) policies. The following principles need to be
followed when specifying AC rules in a SLC:

 Each SLC gate is a logic operation connecting AC
variables enforced by the rules in a Boolean expression.

 An AC rule in a SLC must generate a permission output
except for privilege inheritance assignments, which are
specified by connecting inherited subject/attributes and
beneficiary subject/attributes by an OR gate.

 A positive value (i.e., 1) from the permission output by
triggering the input variables of the SLC represents a
“grant” permission of the rule enforcing the triggered
input variables.

 A negative value (i.e., 0) from a permission output by
triggering the input variables of the SLC represents a
“deny” permission of the rule enforcing the triggered
input variables. Or, there is no rule associated with
these variables.

For example, the SLC in Figure 1 shows these simple AC

rules: subject/attribute s1 is granted to perform action a on

object/attribute o1 and o2, and subject/attribute s2 is granted

to perform action a on object/attribute o1. The Boolean

equivalences of the three rules are:

s1  a  o2 = p1

s1  a  o1 = p2

s2  a  o1 = p3

Fig. 1. AC rule examples

Trigger a, s1, s2, o1, and o2 of the SLC will generate positive
permission outputs on p1, p2, and p3 of the three AC rules.
And trigger s2, a, and o2 will not activate a positive result from

any of the three permission outputs, because there is no s2  a

 o2 rule.

Privilege inheritance relations are assigned between

subjects/attributes. Usually, inheritance assignments are in

compliance with the business functions of the application [21].

To implement inheritance, the inherited subject/attribute needs

to create (if no rule is associated to it) or insert an OR gate

directly connecting to the subject/attribute input; then the

beneficial subject/attribute either directly (if it is not being

inherited by other subjects/attributes) or from the output of its

shared OR gate (for its beneficiaries) connects to the OR gate

that was created (or inserted) by the inherited subject/attribute.

Figure 2 illustrates the SLC’s implementation of inheritance

assignments where subject/attribute s3 inherits privileges (a2,

o2) and (a1, o1) from subject/attribute s2 and s1, and

subject/attribute s2 inherits privilege (a1, o1) from

subject/attribute s1. s4 does not inherit any privilege.

Formally:

s1  a1  o1 = p1

s2  a2  o2 = p2

s3  s2

s3  s1

s2  s1

The symbol “” denotes the inheritance assignment that sx

inherits () sy’s privilege. Figure 7 is another example of
privilege inheritance SLC.

Fig. 2. Privilege inheritance example

Some rules may enforce more than one subject/attribute

in the specification such that the included subjects/attributes

need to be either presented at the same time or excluded from

each other in order to grant/deny an action to

objects/attributes. This type of rule is usually applied to fine

grained, n-person control, conflict of interest (COI), or

separation of duty (SoD) security properties. Figure 3

illustrates SLC implementations of two such rules where

permission p1 grants action a to object o if both

subject/attribute s1 and s2 are accessing it at the same time.

Permission p2 grants a1 access to object/attribute o1 to x1 or

x2, if they access exclusively (not at the same time) from each

other.

Fig. 3. AC rules involving more than one subject/attribute

Other types of AC rules enforce the OR relation, such as

the rule “s1 OR s2 can perform a to o” can be simply

implemented either by two single rules: (s1, a, o) and (s2, a, o)

or by replacing the AND gate connecting s1 and s2 with an

OR gate in Figure 3.

Upon finishing specifying a rule in a SLC, the newly added

circuit should be checked against the previous SLC for the
detection of inconsistency of permission, i.e. faults of AC
rules. Subsection B below describes the processes.

B. Rule Conflict Detection

To detect faults, ACRLCS requires two separate SLCs; one
is Grant SLC (GSLC) and the other Deny SLC (DSLC).
GSLC contains a SLC that implements all rules with grant
permissions. DSLC contains a SLC that implements all rules
with deny permissions. In other words, if an AC rule grants
subject/attributes to perform actions on object/attributes, the
SLC will be implemented in GSLC. And if an AC rule denies
subject/attributes to perform actions on object/attributes, the
SLC will be implemented in DSLC. The same actions also
apply to inheritance relations (i.e., grant inheritances in GSLC,
and deny inheritances in DSLC). The separation of the two
SLCs allows comparing the permission output for a newly
added SLC rule by trigging the subjects/attributes, actions, and
objects/attributes enforced in the rule from both SLCs, to check
if the new SLC rule already exists in the opposite SLC.

To implement the comparison, GSLC or DSLC, summary
AND gates collect all the permissions output from the SLCs,
which will then be compared through another AND gate to
generate comparison (fault finding) results. As illustrated in
Figure 4, if both the GSLC and DSLC contain the same rule in
any of p1 …. pn and p11…pnn, the fault finding AND gate will
output a positive signal, which means both grant and deny
permissions are presented, i.e. a conflict fault was detected.

Fig. 4. Conflict resolution scheme of GSLC and DSLC

Environment conditions of rules are implemented by
adding “environment” variable inputs for every SLC that the
variables have influence on, as shown in Figure 5 where
environment e affects permission p1…pn.

Fig. 5. Environment condition e affects permission p1…pn

The fault detecting process is described by the following
algorithm:

If permission_of (AC_rule) = ‘grant’ /* identify the permission
type of the AC_rule by the function permission_of

 add_grant_SLC (AC_rule)

else If permission_of (AC_rule) = ‘deny’

 add_deny_SLC (AC_rule)

end

add_grant_SLC (AC_rule)

 add_SLC (GSLC, AC_rule) /* As described in Section III A

 if trigger_SLC (GSLC, subject_retrieve (AC_rule),
action_retrieve (AC_rule), object_retrieve (AC_rule)) ==
trigger_SLC (DSLC, subject_retrieve (AC_rule),
action_retrieve (AC_rule), object_retrieve (AC_rule))

 remove_SLC (AC_rule, GSLC)

end

add_deny_SLC (AC_rule) /* add to DSLC means add a deny
rule

 add_SLC (DSLC, AC_rule) /* As described in Section III A

 if trigger_SLC (DSLC, subject_retrieve (AC_rule),
action_retrieve (AC_rule), object_retrieve (AC_rule)) ==
trigger_SLC (GSLC, subject_retrieve (AC_rule),
action_retrieve (AC_rule), object_retrieve (AC_rule))

 remove_SLC (AC_rule, DSLC)

end

Function permission_of() identifies whether the added rule is

for grant or deny permission. Function add_SLC() applied the

scheme as described in Section III A to build a SLC circuit

according to the entered AC_rule. The trigger_SLC() function

activates the GSLC and DSLC variables retrieved from the

AC_rule. Subjects/attributes are retrieved by the

subject_retrieve() function, actions are retrieved by the

action_retrieve() function, and objects/attributes are retrieved

by the object_retrieve() function. Note that for their triviality

and implementation dependency, steps of each function are not

included in the paper.

Creating privilege inheritance assignments is not as

straightforward as the above algorithms, because each new

added inheritance assignment might invoke additional grant or

deny permissions to the existing ones. For example, in a

GSLC the two rules have been implemented:

(s1  s2)  a  o = p1GSLC (rule 1)

s3  s2 (rule 2)

In a DSLC a rule has been implemented:

s3  a  o = p1DSLC (rule 3)

rule 3 has no fault, because although s3 inherits s2’s privilege,

s3 alone cannot perform o on a enforced by rule 1 that

requires both s1 and s2 subject/attribute to be presented for the

privilege. Now a new rule

s3  s1 (rule 4)

is entered in the GSLC, and the addition causes fault, because

it allows s3 to operate a on o through rule 2 and rule 1, and

conflicts with rule 3 in the DSLC. Thus, additional steps to

verify the correctness for added new inheritance assignment

are described below:

If permission_of (inheritance_assignment) = ‘grant’ /*
identify the permission type of the inheritance_assignment by
the function permission_of

 add_grant_inheritance (inheritance_assignment)

else If permission_of (inheritance_assignment) = ‘deny’

add_deny_inheritance (inheritance_assignment)

end

add_grant_inheritance (inheritance_assignment)

add_inheritance (GSLC, inheritance_assignment) /* As
described in Section III A

s = inheritance_subject_retrieve
(inheritance_assignment)

for all action a in GSLC

for all object/attribute o in GSLC

if trigger_SLC (GSLC, s, a, o) = trigger_SLC
(DSLC, s, a, o)

remove_ inheritance (GSLC,
inheritance_assignment)

end

add_deny_inheritance (inheritance_assignment)

add_inheritance (DSLC, inheritance_assignment) /* As
described in Section III A

s = inheritance_subject_retrieve
(inheritance_assignment)

for all action a in DSLC

 for all object/attribute o in DSLC

 if trigger_SLC (DSLC, s, a, o) = trigger_SLC
(GSLC, s, a, o)

 remove_ inheritance (DSLC,
inheritance_assignment)

end

Function permission_of() is overloaded for identifing

whether the added inheritance assignment is for grant or deny

permission. Like the add_SLC() function, the

add_inheritance() function adds SLC in GSLC and DSLC.

The inheritance_subject_retrieve() function retrieves the

inherited subject/attribute of the inheritance_assignment (e.g.,

s3 of rule 2 and rule 4 above). The remove_inheritance()

function removes the just-added inheritance_assignment SLC.

As shown in the algorithm, detecting inheritance faults needs

to trigger all actions and objects/attributes, because when one

subject/attribute inherits another subject/attribute’s privilege,

the beneficiary might also acquire privileges through

inheritance from the inherited subject/attribute. Such

interconnected privilege transferring can only be detected

through triggering all the permissions related to the

beneficiary subject/attribute.

Other Boolean operators for AC rules can also be used to

express rule logics, for example, enforcing XOR logic of rule

5

(s1  s2)  a  o = p (rule 5)

as illustrated in Figure 6.

Fig. 6. SLC XOR example

Note that after rule 5 is added to a GSLC, adding inheritance

assignments s3  s1 and s3  s2 will not cause fault as it did

in rule 4, because the inheritance assignments do not violate

rule 3 assuming it has been implemented in the DSLC.

For conciseness, in the above algorithms, we did not

include a redundancy check for the case that the SLC rule has

already been added in the SLC. The action for such case is

simply to do nothing.

IV. APPLICATION

In addition to random rule assignments, ACRLCS can be
applied to standard AC models such as Role Based Access

Control (RBAC) [22] and Multi Level Security (MLS) [19] as
illustrated in Figure 7 and Figure 8 respectively:

Fig. 7. ACRLCS implementation of a simple RBAC example

Figure 7 implements a simple RBAC policy model that role
r1 has privilege (a1, o1), role r2 has privilege (a1, o1) and (a2,
o2), and role r3 has privilege (a1, o1), (a2, o2), and (a3, o3).
The RBAC model is equivalent to the following Boolean
expressions:

r3  a3  o3= p3

(r2  a2  o2)  (r3  a2  o2) = p2

(r1  a1  o1)  (r2  a1  o1)  (r3  a1  o1) = p1

Fig. 8. ACRLCS implementation of a simple MLS example

Figure 8 implements a simple Bell-Lapadula [23] read
property of MLS policy model, under which Top_Secret rank
users can read objects in Top_Secret, Secret, and Confidential
ranks; Secret rank users can read objects in Secret and
Confidential ranks; and Confidential rank users can only read
objects in the Confidential rank. The MLS model is equivalent
to the following Boolean expressions:

Tu  read  To = Tp

(Tu  read  So)  (Su  read  So) = Sp

(Tu  read  Co)  (Su  read  Co)  (Cu  read  Co)

= Cp

A standard AC model is implemented in a GSLC by

representing the model in rules (e.g., aforementioned RBAC
and MLS), and applications of the ACRLCS model can be
adding specific constraints outside the enforcement of the
model, i.e. exceptional deny access permissions in DSLC.
Thus, this provides flexibility in policy specification and
checking for the model.

Besides AC models, security property faults in AC
policies can be implemented for verification by specifying the
property constraints in DSLCs. An example of security
property faults [14] follows:

 Cyclic inheritance (especially in RBAC) allows one
subject/attribute to inherit privilege from another
subject/attribute and vice versa in a chain of inheritance
loop without rendering any access privilege. This fault
property can be detected by triggering all
subjects/attributes in the GSLC, and checking if any
permission output is produced.

 Privilege escalation allows subjects/attributes to access
prohibited objects/attributes through inheritance of
other subjects/attributes with higher privilege. This fault
property can be prevented by implementing restricted
privileges that are prohibited to be escalated in DSLC.

 Separation of Duty faults allows Conflict-of-Interest
(COI) subject/attributes to have the same privileges
(actions + object/attributes). This property can be
prevented by implementing XOR SLC between the COI
subjects/attributes under restriction in the GSLC. So,
the fault can be detected by triggering the same
privilege and the different COI subject/attributes in
question in both the GSLC and the DSLC.

 As a general logic circuit, memory and state components
such as registers and flip-flops are used for maintaining states
and sequence of logic operations. ACRLCS can include logic
components for specifications of Historical (or stated) based
AC models, such as Chinese Wall, Work Flow, or N-person
control models [1]. These models can be verified by adding
state variables in a GSLC such that the state variables should
trigger subjects/attributes, actions, and objects/attributes from
the state, and then be compared to the subjects/attributes,
actions, and objects/attributes activated from other states in the
DSLC to detect conflicts of states in the model. Due to the
limited space for depicting the complexity and details as well
as not to deviate from the core scope, discussion of the fault
detection techniques for these dynamic models will not be
covered in this paper, and hopefully will be presented in the
future.

As logical circuits are more flexible than integrating
circuits through control logic, ACRLCS can be applied to
multi-domain or networked AC environments. A simple
application is for the grant or deny overwrite algorithms for
AC policies for multi-domain AC applications such that the
higher prioritized policy can overwrite the lower’s permission.

Other applications include support layers of prioritized policy
structure through layered AND operations as shown in Figure
9, where a verification for an access request (s, a, o) is
instantiated in the GSLC, which contains two domains, GSLC1
and GSLC2. GSLC1 of domain 1 has higher priority than
GSLC2 of domain 2 in deciding permissions. Note that
networked or hierarchical permission structures as described
above can only be used for detection of specific access
assignments in DSLC. To detect fault in networked or priority
setting requires construction of DSLC with the image of GSLC
but with reverse priority logics.

Fig. 9. Example of multiple AC domain using multiple GSLCs

V. REAL TIME PERFORMANCE

The main objective of this research is to illustrate a real-
time mechanism for AC policy fault detection that is different
from the other (as mentioned in section II) theorem-proof
techniques. The difference can be demonstrated by analyzing
computing complexities. To the best of our knowledge, there is
no real-time detection technique similar to the one we
proposed. Most theorem-proof verification techniques are
either black box, which consume the whole AC policy for the
input of verification process without analyzing individual rules
in the policy, or white box, which analyze AC rules by
inserting assertions in the policy under verification [2]. Both
methods requires the AC policy or model (including inserted
assertion statements) under verification to be completed before
executing the verification process, such that the finished box
will be translated into a formal model for testing against
specified security properties. Doing so, all possible states or
propositions formed by rules are examined by the logic
algorithm applied. For example, the Symbolic Model Verifier
NuSMV is used by many policy verification techniques [24,
10] applying Linear Temporal Logic (LTL) and Computation
Tree Logic (CTL) for verifying specified properties against AC
rules or models, and generating counterexamples if a fault
found. After finding faults, fault fixing is a human process that
requires manually going through rules in the faulty policy.

The black/white box methods apply a formal proof
technique to compute all possible sequences defined by the
states or paths of rules in the AC policy. The worst-case
complexity for them is in the order of |S| × |A| × |O| × |I| × |E|
where S is the set of subjects/attributes, A is the set of actions,
O is the set of objects/attributes, I is the set of attribute pairs,

and E is the set of environment variables. Thus, |I| =
2

||SC (inheritance can be assigned between every

subject/attribute pair in the worst case scenario). The ACRLCS
method for each added rule that triggers that rule circuit takes
constant time for computing, but checking inheritance
assignment validations in the worst case takes |I| × 2) (2 is for
both GSLC and DSLC). Thus, in total O(|I| × 2 × r) computing
complexity is required, where r is the number of rules in the
policy.

For black/white box formal methods, the time required for
fixing policy after a fault is found is O(|S| × |A| × |O| × |I| × |E|
× r) steps assuming in the worst case a fault was found in every
rule, and each rule enforces all the variables, due to the fact
that each found fault requires checking all rules in the policy to
determine which rule is not intended for the policy. ACRLCS
under the same assumption (i.e., fault found in each rule) needs
O(|I| × r × 2) computing steps. Table 1 summarizes the
complexity.

TABLE I. COMPLEXITY SUMMARY

Complexities
Methods

Black/White box formal method ACRLCS

Rule building r r × 2a

Verification or

fault detection
O(|S| × |A| × |O| × |I| × |E|) O(|I| × r × 2)

Fault fixing O(|S| × |A| × |O| × |I| × |E| × r) O(|I| × r × 2)

a. For both GSLC and DSLC

As shown in Table I, the worst-case complexity is not

“significantly” different for both complexities, for they all are

in the exponential orders, which conforms with [25]’s theory

that safety analysis is intractable. It is observed that the major

cost of complexity is the number of inheritance relations |I|,

which contributes the exponential orders. However,

empirically, |I|, |A|, and |E| are usually small compared to |S|

and |O| in real-world AC policies. So, for most of the AC

policies, the number |S| × |O| is critical in calculating

efficiency for real-world AC applications, and |S| × |O| is

usually a large number for most AC environments. One

important fact is that the O(|S| × |A| × |O| × |I| × |E| × r) of fault

fixing can only be performed manually by inspecting the

faulty policy, as stated in Section II; rule conflicts need human

judgment to resolve. Thus when comparing with most

theorem-proof verification methods, ACRLCS has the

advantage for saving fault fixing time by O(|S| × |O|), which

is a significant amount if done manually.

VI. CONCLUSION

In this paper, we presented the ACRLCS technique for

detecting AC rule faults in real time, performing fault

detection every time a rule is added into the policy. We

demonstrated simulated logic circuits, which are versatile in

specifying AC rules formed by Boolean logic expressions

operated on variables of AC rules. The variables include

subjects/attributes, actions, objects/attributes, environment

conditions as well as privilege inheritance relations between

subject/attributes. We then explained the algorithm for AC

rule fault detection by comparing grant (GSLC) and deny

(DSLC) parts of ACRLCS. We showed that in addition to

random AC permission rules, ACRLCS is capable of

composing standard mandatory AC models such as RBAC and

MLS as well as some fundamental security properties. Further,

extended applications for multi-domain AC implemented by

multiple AC policies are briefly introduced.

Like other formal AC policy verification techniques,

theoretically ACRLCS is no exception and requires intractable

(exponential) time complexity for the worst case scenario.

However, in real world applications, the critical factor of the

intractability—the number of hierarchies of privilege

inheritance is limited, thus, compared to other model

verification or theorem-proof methods, ACRLCS is O(|S| ×

|O|) more efficient for fixing policy faults, and the number is

significant as most of the fault fixing is done manually.

Some rule construction of SLC such as applying XOR

logic, Historical (State) Based AC models, as well as

inheritance of objects/attributes was not covered in this paper

due to the limited space in covering the details and not to

deviate from the main scope of the topic. Exploring these

extended features shall be topics for our future research.

We acknowledge Logic Circuit [26] for using their tool for

the Figures in this paper.

REFERENCES

[1] V. Hu, D. Ferraiolo, and R. Kuhn, “Assessment of Access Control

Systems”, NIST Interagency Report 7376, Gaithersburg, MD, USA,
2006.

[2] V. Hu, R. Kuhn, T. Xie, and J. Hwang, “Model Checking for
Verification of Mandatory Access Control Models and Properties”, Int'l
Journal of Software Engineering and Knowledge Engineering (IJSEKE)
Vol. 21 No. 1., pages 103-127, 2011.

[3] NuSMV. http://nusmv.irst.itc.it/.

[4] N. Zhang, M. D. Ryan, and D. Guelev, “Evaluating Access Control
Policies Through Model Checking”, in Proc. Information Security
Conference, pages 446–460, 2005.

[5] S. Kikuchi, S. Tsuchiya, M. Adachi, and T. Katsuyama, “Policy
Verification and Validation Framework Based on Model Checking
Approach”, in Proc. International Conference on Autonomic
Computing, pages 1–9, 2007.

[6] A. Schaad, V. Lotz, and K. Sohr, “A model-checking approach to
analysing organisational controls in a loan origination process”, in Proc
ACM Symposium on Access Control Models and Technologies, pages
139–149, 2006.

[7] K. Jayaraman, V. Ganesh, M. Rinard, and S. Chapin, “Automatic error
finding in access-control policies”, in CCS '11 Proceedings of the 18th
ACM conference on Computer and communications security, pages
163-174, 2011.

[8] F. Hansen and V. Oleshchuk, “Conformance checking of RBAC policy
and its implementation:, in R. Deng, F. Bao, H. Pang, and J. Zhou,
editors, Information Security Practice and Experience, volume 3439 of
Lecture Notes in Computer Science, pages 144-155, Springer Berlin,
Heidelberg, 2005.

[9] K. Jayaraman, V. Ganesh, M. Tripunitara, M. Rinard, and S. Chapin,
“Automatic error Finding in access-control policies”, in Proceedings of
the 18th ACM conference on Computer and communications security,
CCS '11, pages 163-174, New York, NY, USA, 2011.

[10] V. C. Hu, D. R. Kuhn, and T. Xie, “Property verification for generic
access control models”, in Proceedings of the 2008 IEEE/IFIP
International Conference on Embedded and Ubiquitous Computing -
Volume 02, EUC '08, pages 243-250, Washington, DC, USA, 2008.

[11] K. Fisler, S. Krishnamurthi, L. A. Meyerovich, and M. C. Tschantz,
“Verification and change-impact analysis of access-control policies”, in
Proceedings of the 27th international conference on Software
engineering, ACM ICSE '05, pages 196-205, New York, NY, USA,
2005.

[12] H. Hu and G. Ahn, “Enabling verification and conformance testing for
access control model”, in Proceedings of the 13th ACM symposium on
Access control models and technologies, SACMAT '08, pages 195-204,
New York, NY, USA, 2008.

[13] S. Jha, N. Li, M. Tripunitara, Q. Wang, and W. Winsborough, “Towards
formal verification of role-based access control policies”, IEEE
Transactions on Dependable and Secure Computing, volume 5, pages
242-255, 2008.

[14] A. Gouglidis, I. Mavridis, and V. Hu, “Verification of Secure Inter-
operation Properties in Multi-domain RBAC”, IEEE Trustworthy
Computing Workshop, Gaithersburg, MD, USA, 2013.

[15] Alloy, “A language and tool for relational models”,
http://alloy.mit.edu/alloy/.

[16] SPIN, “The SPIN model checker”, http://spinroot.com/spin/.

[17] G. Hughes and T. Bultan, “Automated verification of access control
policies using a SAT solver”, Int. J. Softw. Tools Technol. Transf.,
10(6), pages 503-520, Oct. 2008.

[18] L. Lamport, “Specifying Systems: The TLA+ Language and Tools for
Hardware and Software Engineers”, Addison-Wesley Professional, 1st
edition, 2002.

[19] V. Hu et al, “Attribute Based Access Control Definition and
Consideration”, NIST Special Publication 800-162, Gaithersburg, MD,
USA, 2013.

[20] V. Hu and K. Scarfone, “Guidelines for Access Control System
Evaluation Metrics”, NIST Interagency Report 7874, Gaithersburg, MD,
USA, 2012.

[21] V. Hu, D. Ferraiolo, and S. Gavrila, “Attribute Relations Specifications
and Constraints Using Attribute Based Mechanism of Policy Machine”,
International Journal of Information Assurance and Security (JIAS)
Volume 6, Issue 2, 2011.

[22] R. Sandhu and P. Samarati, “Access Control: Principles and Practice”,
IEEE Communications, Volume 32, Number 9, September 1994.

[23] D. Bell and La Padula, “Secure computer systems: unified exposition
and MULTICS”, Report ESD-TR-75-306, The MITRE Corporation,
Bedford, MA, USA, March 1976.

[24] E. Martin and T. Xie, “A fault model and mutation testing of access
control policies”, in WWW '07: Proc. of the 16th ACM Intl. conference
on World Wide Web, 2007.

[25] M. A. Harrison, W. L. Ruzzo, and J. D. Ullman, “On protection in
operating systems”, in SOSP '75: Proc. of the Fifth ACM symposium on
Operating systems principles, 1975.

[26] http://www.logiccircuit.org/.

http://nusmv.irst.itc.it/
http://alloy.mit.edu/alloy/
http://spinroot.com/spin/
http://www.logiccircuit.org/

