
Conformance Checking of Access Control Policies Specified in XACML 

Vincent C. Hu1 Evan Martin2 JeeHyun Hwang2 Tao Xie2 

1 Computer Security Division, National Institute of Standards and Technology, USA 

2 Department of Computer Science, North Carolina State University, USA 

vincent.hu@nist.gov, eemartin@ncsu.edu, jhwang4@ncsu.edu, xie@csc.ncsu.edu 

Abstract 

Access control is one of the most fundamental and widely 

used security mechanisms. Access control mechanisms con

trol which principals such as users or processes have ac

cess to which resources in a system. To facilitate manag

ing and maintaining access control, access control policies 

are increasingly written in specification languages such as 

XACML. The specification of access control policies itself 

is often a challenging problem. Furthermore, XACML is in

tentionally designed to be generic: it provides the freedom 

in describing access control policies, which are well-known 

or invented ones. But the flexibility and expressiveness pro

vided by XACML come at the cost of complexity, verbosity, 

and lack of desirable-property enforcement. Often common 

properties for specific access control policies may not be 

satisfied when these policies are specified in XACML, caus

ing the discrepancy between what the policy authors intend 

to specify and what the actually specified XACML policies 

reflect. In this position paper, we propose an approach for 

conducting conformance checking of access control policies 

specified in XACML based on existing verification and test

ing tools for XACML policies. 

1. Introduction 

Access control is one of the most fundamental and 

widely used security mechanisms, especially in web ap

plications. It controls which principals such as users or 

processes have access to which resources in a system. To 

facilitate managing and maintaining access control, access 

control policies are increasingly written in specification lan

guages such as XACML [2] and Ponder [10]. Whenever 

a principal requests access to a resource, that request is 

passed to a software component called a Policy Decision 

Point (PDP). A PDP evaluates the request against the spec

ified access control policies, and permits or denies the re

quest accordingly. 

Assuring the correctness of policy specifications is be

coming an important and yet challenging task, especially 

as access control policies become more complex and are 

used to manage a large amount of sensitive information or

ganized into sophisticated structures. Identifying discrepan

cies between policy specifications and their intended func

tion is crucial because correct implementation and enforce

ment of policies by applications is based on the premise 

that the policy specifications are correct. As a result, policy 

specifications must undergo rigorous verification and vali

dation to ensure the policy specifications truly encapsulate 

the desires of the policy authors. 

For its independency of platform systems and flexibility 

in expression, XACML [2] is one of the popular mecha

nisms for specifying access control policies. XACML is 

designed with the basic enforcement mechanisms of access 

control in mind, but not constructed toward any particu

lar policy or model; it provides the freedom in describing 

access control policies, which are well-known or invented 

ones. The flexibility and expressiveness of XACML comes 

at the cost of complexity and verbosity; furthermore, there 

is no efficient feature in XACML that allows policy authors 

to check the conformance and integrity of the specified pol

icy (or its model) with respect to the semantic consistency 

of an access control policy [15]. To address the issue, we 

propose an approach for conducting conformance checking 

of access control policies specified in XACML, based on 

previous XACML policy verification and testing tools. 

The rest of the paper is organized as follows. Section 2 

presents background information of XACML. Section 3 

presents an XACML policy verification tool developed by 

other researchers and XACML policy testing tools devel

oped in our previous work. Section 4 describes the proposed 

approach of conformance checking based on previous veri

fication and testing tools. Section 5 describes related work, 

and Section 6 concludes. 

2. XACML 

The OASIS (Organization for the Advancement of Struc

tured Information Standards) standards XACML (eXtensi

taoxie
Highlight

mailto:xie@csc.ncsu.edu
mailto:jhwang4@ncsu.edu
mailto:eemartin@ncsu.edu
mailto:vincent.hu@nist.gov


ble Access Control Markup Language) [2] and SAML (Se

curity Assertion Markup Language) [3] are two of the im

portant authorization-related standards [26]. XACML is 

an XML-based general-purpose language used to describe 

policies, requests, and responses for access control policies. 

It provides a flexible and mechanism-independent represen

tation of access rules that vary in granularities, allowing 

the combination of different authoritative domains’ policies 

into one policy set for making access control decisions in a 

widely distributed system environment. 

The five basic elements of XACML policies are 

PolicySet, Policy, Rule, Target, and Condition. A 

policy set is simply a container that holds other policies or 

policy sets. A policy is expressed through a set of rules. 

With multiple policy sets, policies, and rules, XACML must 

have a way to reconcile conflicting rules. A collection of 

combining algorithms serves this function [2]. Each algo

rithm defines a different way to combine multiple decisions 

into a single decision. Both policy combining algorithms 

and rule combining algorithms are provided. Seven stan

dard combining algorithms are provided but user-defined 

combining algorithms are also allowed [4]. 

To aid in matching requests with the appropriate policies, 

XACML provides a target [2], which is basically a set of 

simplified conditions for the subject, resource, and action 

that must be met for a policy set, policy, or rule to apply 

to a given request. Once a policy or policy set is found to 

apply to a given request, its rules are evaluated to determine 

the response. 

XACML also provides attributes, attribute values, and 

functions. Attributes are named values of known types that 

describe the subject, resource, and action of a given access 

request [2]. A request is formed of attributes that will be 

compared to attributed values in a policy to make the ac

cess decisions. Attribute values from a request are resolved 

through two mechanisms: the AttributeDesignator 
and the AttributeSelector [2]. The former lets the pol

icy specify an attribute with a given name and type, whereas 

the latter allows a policy to look for attribute values through 

an XPath query. 

Figure 1 shows an example XACML policy, which is re

vised and simplified from a sample Fedora1 policy. This 

policy has one policy element which in turn contains two 

rules. The rule composition function is “first-applicable”, 

meaning the first applicable rule encountered during evalua

tion is returned as the decision. Lines 2−13 define the target 

of the policy, which indicates that this policy only applies to 

those access requests of an object “demo:5”. The target of 

Rule 1 (Lines 15 − 25) further narrows the scope of appli

cable requests to those asking to perform “Dissemination” 

action on object “demo:5”. Its condition (Lines 26 − 35) 

indicates that if the subject’s “loginId” is “testuser1”, “tes

1http://www.fedora.info 

1<Policy Id="demo" RuleCombAlgId="first-applicable">
 
2 <Target>
 
3 <Subjects> <AnySubjects/> </Subjects>
 
4 <Resources>
 
5 <Resource>
 
6 <ResourceMatch MatchId="equal">
 
7 <AttrValue>demo:5</AttrValue>
 
8 <ResourceAttrDesignator AttrId="objectid"/>
 
9 </ResourceMatch>
 

10 </Resource>
 
11 </Resources>
 
12 <Actions> <AnyAction/></Actions>
 
13 </Target>
 
14 <Rule RuleId="1" Effect="Deny">
 
15 <Target> <Subjects><AnySubject/></Subjects>
 
16 <Resources> <AnyResource/> </Resources>
 
17 <Actions>
 
18 <Action>
 
19 <ActionMatch MatchId="equal">
 
20 <AttrValue>Dissemination</AttrValue>
 
21 <ActionAttrDesignator AttrId="actionid"/>
 
22 </ActionMatch>
 
23 </Action>
 
24 </Actions>
 
25 </Target>
 
26 <Condition FunctionId="not">
 
27 <Apply FunctionId="at-least-one-member-of">
 
28 <SubjectAttrDesignator AttrId="loginid"/>
 
29 <Apply FunctionId="string-bag">
 
30 <AttrValue>testuser1</AttrValue>
 
31 <AttrValue>testuser2</AttrValue>
 
32 <AttrValue>fedoraAdmin</AttrValue>
 
33 </Apply>
 
34 </Apply>
 
35 </Condition>
 
36 </Rule>
 
37 <Rule RuleId="2" Effect="Permit"/>
 
38</Policy>
 

Figure 1. An example XACML policy 

tuser2”, or “fedoraAdmin”, then the request should be de

nied. Otherwise, according to Rule 2 (Line 37) and the rule 

composition function of the policy (Line 1), a request appli

cable to the policy should be permitted. 

3. Policy Verification and Testing 

Policy verification and testing are important techniques 

for high assurance of correct specification of access control 

policies. Our proposed conformance checking approach is 

based on an existing XACML policy verification tool (de

veloped by Fisler et al. [14]) and policy testing tools (de

veloped in our previous work [22–25]). Because the policy 

verification tool can handle only a subset of XACML fea

tures and may not handle well complex policies or proper

ties, our proposed approach also additionally exploits our 

policy testing tools to conduct conformance checking. 

3.1. Policy Verification 

Margrave [14] is a software tool suite written in PLT 

Scheme [13] for verifying properties against access control 

policies written in XACML. Margrave is implemented on 

top of the CUDD package [27]. CUDD provides an effi



cient implementation of multi-terminal binary decision di

agrams (MTBDDs). Margrave represents XACML policies 

as MTBDDs, which are a decision diagram that maps bit 

vectors over a set of variables to a finite set of results. Mar

grave allows the user to specify various forms of constraints 

as properties in the Scheme programming language. Mar

grave’s API can verify these properties and if there exist any 

counterexamples (being specific requests) that violate the 

specified properties, these counterexamples are produced. 

3.2. Policy Testing 

Our previous work has developed a set of testing tools for 

XACML policies, including a fault model and its supporting 

mutation testing tool [24], a structural coverage measure

ment tool [25], and several test generation tools [22, 23]. 

In policy testing, test inputs are access requests and test 

outputs are access responses. The execution of a test in

put occurs as a request is evaluated by the PDP against 

the access control policy under test. Policy authors can in

spect request-response pairs to check whether they are as 

expected. As with software verification, formal policy veri

fication and testing techniques are complementary means to 

achieve the same goal. 

3.2.1 A Fault Model and Mutation Testing 

A fault model is an engineering model of something that 

could go wrong in the construction or operation of a piece 

of equipment, structure, or software. In our case, we will 

model things that could go wrong when constructing an ac

cess control policy. With this fault model, we can guide 

the development of testing techniques and investigate these 

techniques’ effectiveness against the fault model. Any fault 

results in a semantic change in the policy but we broadly 

categorize faults as being semantic or syntactic as follows: 

Semantic Faults. Semantic faults are more elusive be

cause they involve incorrect use of the logical constructs 

of the policy specification language. For XACML policies, 

these logical constructs include policy or rule combining al

gorithms, policy evaluation order, rule evaluation order, and 

various functions found in the condition. Because these are 

logical errors in the construction of the policy, it is unlikely 

that static analysis can find such errors. We define and im

plement several mutation operators that emulate semantic 

faults [24]. 

Syntactic Faults. Syntactic faults are easier to make and 

consist of simple typos that result in a syntactically correct 

policy but a semantically faulty one. Indeed syntactic faults 

may result in syntactically incorrect policies but we assume 

that basic static analysis tools exist to check for such in

consistencies. For example, in XACML, an XML schema 

definition (XSD) can be used to check for obvious syntactic 

flaws. Syntactic faults that do not violate the XSD can occur 

due to typos in attribute values. We define and implement 

three mutation operators that emulate syntactic faults [24]. 

Mutation testing [11] has historically been applied to 

general-purpose programming languages in measuring the 

quality of tests or selecting tests. Based on the proposed 

fault model for access control policies, we have developed 

a mutation testing tool [24] that automatically seeds a policy 

under test with faults by applying these mutation operators, 

thereby producing numerous faulty policies. 

3.2.2 Structural Coverage Criteria 

Our previous work [25] proposes structural coverage crite

ria for XACML policies based on observing whether each 

individual policy element is involved when a request is eval

uated. If no requests are evaluated against a rule during test

ing, then potential errors in that rule cannot be discovered. 

Thus, it is important to generate requests so that a large por

tion of rules are involved in the evaluation of at least one of 

the requests. In XACML, we can see there are three major 

entities: policies, rules for each policy, and a condition for 

each rule. We define three policy coverage metrics for each 

of these entities [25]: 

•	 Policy coverage. A policy is covered by a request if 

the policy is applicable to the request and the policy 

contributes to the decision; in other words, all the con

ditions in the policy’s target are satisfied by the request 

and the PDP has yet to fully resolve the decision for the 

given request. Policy coverage is the number of cov

ered policies divided by the number of total policies. 

•	 Rule coverage. A rule for a policy is covered by a re

quest if the rule is also applicable to the request and 

the policy contributes to the decision; in other words, 

the policy is applicable to the request and all the condi

tions in the rule’s target are satisfied by the request and 

the PDP has yet to fully resolve the decision for the 

given request. Rule coverage is the number of covered 

rules divided by the number of total rules. 

•	 Condition coverage. The evaluation of the condition 

for a rule has two outcomes: true and false, which are 

called as the true condition and false condition, respec

tively. A true condition for a rule is covered by a re

quest if the rule is covered by the request and the con

dition is evaluated to be true. A false condition for a 

rule is covered by a request if the rule is covered by 

the request and the condition is evaluated to be false. 

Condition coverage is the number of covered true con

ditions and covered false conditions divided by twice 

of the number of total conditions. 

To automate the measurement of structural coverage, we 

developed a measurement tool [25] implemented by instru

menting Sun’s open source XACML implementation [4]. 



3.2.3 Test Generation 

Our previous work [22, 23] developed two test generation 

techniques, which have different levels of analysis cost and 

quality of generated tests. 

Test Generation based on Solving Single-Rule Con

straints. To generate tests for achieving high coverage 

based on structural coverage criteria, we developed a tech

nique that considers each rule in isolation and attempts 

to satisfy the constraints required for that rule to be ap

plied [22]. A request set is generated that satisfies all pos

sible combinations of truth values for each independent 

clause. Therefore, a predicate with n independent clauses 

has 2n possible assignments and so at most 2n requests are 

generated for each rule. 

Test Generation based on Change-Impact Analysis. 

We developed a test generation tool [23] that generates tests 

by iteratively manipulating inputs to Margrave [14], which 

can also conduct change-impact analysis. Based on the 

policies under test, we automatically synthesize two policy 

versions whose differences are the coverage targets for test 

generation. Then these two versions are fed to Margrave, 

which generates counterexamples to witness the behavioral 

differences of the two versions, thus covering the coverage 

targets. 

4. Policy Conformance Checking 

We propose to conduct conformance checking on 

XACML policies against binding of policies rules (Sec

tion 4.1) and some generic features of any access control 

mechanism (Section 4.2). We also propose an implementa

tion of conformance checking based on previous XACML 

policy verification and testing tools (Section 4.3). 

4.1. Rule Binding 

Rule-binding properties assure that the XACML imple

mentation of an access control policy does not authorize 

users’ access requests that are not permitted by the rules 

of the access control policy being implemented. We focus 

on conformance checking for rule bindings in multilevel ac

cess control [6], role-based access control [12], and Chinese 

wall [8]. We focus on these three types of access control 

policies not only because they are popular but also because 

they can be formally modeled; so we can verify our results 

(of inconsistency faults) formally against the model. In fu

ture work, we plan to include more types of policies that 

may be hard to described by a formal model, such as Dis

cretionary Access Control (DAC) [1] and other composed 

policies. But the following major three shall be significant 

and useful enough for most XACML access control imple

mentations. 

Multilevel Access Control. We check whether a policy 

specified in XACML enforces the Bell LaPadula confiden

tiality model and the Biba integration models [6]. There are 

two types of checking. First, we check binding of Bell La-

Padula confidentiality model to make sure that the XACML 

policy is confined to the following properties of the Bell La-

Padula model: 

•	 Check if security classes C(s) or C(o) for every sub

ject s and object o are checked for every access re

quest; 

•	 Check if the Simple Security Property is enforced: a 

subject s may have read access to an object o only if 

C(o) ≤ C(s); 

•	 Check if the * (star) Property is enforced: a subject 

s who has read access to an object o may have write 

access to an object p only if C(o) ≤ C(p). 

Second, we check binding of Biba integration model to 

make sure that the XACML policy is confined to the follow

ing properties of the Biba model: 

•	 Check if integrity classification scheme, i.e., I(s) and 

I(o) for every subject s and object o are checked for 

every request; 

•	 Check if the Simple Integrity Property is enforced: 

subject s can modify (have write access to) object o 
only if I(s) ≥ I(o); 

•	 Check if Integrity *-Property is enforced: if subject s 
has read access to object o with integrity level I(o), s 
can have write access to object p only if I(o) ≥ I(p). 

Role-Based Access Control (RBAC) [12]. The check

ing should check whether the following two core RBAC 

properties are enforced in an XACML policy for RBAC [5]. 

The first core property is role authorization property: a sub

ject can never have an active role that is not authorized for 

its user. The second property is object access authorization 

property: a subject s can perform an operation op on object 

o only if there exists a role r that is included in the subject’s 

active role set and there exists an permission that is assigned 

to r such that the permission authorizes the performance of 

op on o. 

Chinese Wall [8]. We check if the XACML policy en

forces the Conflict-of-Interest separation models of Chi

nese Wall policy [8]: if subject s has accessed to ob

ject o in group x, subject s will not be granted access to 

group y if objects in group x and group y are conflict-of

interest (COI). Thus, the checking should detect whether 

the XACML policy rules allow a subject to access objects 

in the COI groups. 

taoxie
Highlight

taoxie
Highlight



4.2. Access Control Features We propose to empirically investigate the relation

ship between conformance checking and structural cover-

While rule-binding properties are specific to an access 

control policy itself, access control features are common to 

most of all access control policies including formal (being 

described by a model) or improvised (rule-based with no 

formal model) ones. We focus on conformance checking for 

two generic checkable features of any access control mech

anism. 

Safety. Based on the constraints of access control rules 

(for example, user x is not allowed to perform y on object 

z), the checking should be able to check whether there is 

any leaking of privilege that the access (x perform y on z) 

is granted through the XACML specification. The checking 

is to detect whether any specified combinations of XACML 

rules grant an access (subject s perform operation p to ob

ject o), which is not allowed by the access control policy. 

Separation of Duties (SOD). An SOD policy makes 

sure that any subject s in user group A will not be granted 

to access objects in group X if s is also a member of group 

B. This checking checks whether there is a subject assign

ment in XACML that allows a subject s being a member 

of groups A and B to access object in group X , if the con

straint is defined. 

4.3. Proposed Implementation 

To implement conformance checking for XACML, we 

propose to build tools upon Margrave [14], an XACML pol

icy verification tool and our previous testing tools [22–25]. 

We propose to develop a tool for generating concrete 

checkable properties for a given XACML policy based on 

both information in the policy and generic properties (the 

rule bindings or features) described in Section 4, because 

these generic properties may not be directly checkable stat

ically or dynamically and need to be instantiated to concrete 

properties with elements in the given XACML policy. 

To conduct conformance checking statically, we pro

pose to synthesize generated concrete properties specified 

in Scheme [13] (in the format that can be recognized by 

Margrave [14]) and then invoke Margrave with the policy 

and these properties. Margrave will report property viola

tions if any. 

Because sometimes the XACML policy under checking 

may not be able to be handled by Margrave, we propose 

to conduct conformance checking dynamically through pol

icy testing. Given a property for conformance checking, we 

statically scan through the policy to identify likely locations 

that may be related to the property and consider these loca

tions as coverage targets. Given these coverage targets, our 

policy test generation tools [22, 23] can be used to generate 

requests to cover these locations. Then the request-response 

pairs can be checked against the property. 

age [25]. In particular, we plan to investigate whether a 

full-structural-coverage test suite can help detect all or most 

faults that are caused by property violations in our confor

mance checking. We also propose to empirically investigate 

the relationship between conformance checking and fault 

models [24]. In particular, we plan to investigate whether 

some specific types of faults (implemented in mutation op

erators) would be more likely to cause the violation of the 

properties described in Section 4 for conformance check

ing. 

5. Related Work 

Much work has been done in verification of access 

control policies. One important aspect of policy verifi

cation is to formally check general properties of access 

control policies, such as inconsistency and incomplete

ness [7, 18, 20, 21]. In the former case, an access request 

can be both accepted and denied according to the policy, 

while in the latter case the request is neither accepted nor 

denied. Although efficient algorithms have been proposed 

to perform such verification for specific systems [17, 19], 

this problem can be intractable or even undecidable when 

dealing with policies that involve complex constraints. 

Besides the verification of general properties, several 

tools have been developed to verify properties for XACML 

policies [2]. Hughes and Bultan translated XACML poli

cies to the Alloy language [16] and checked their properties 

using the Alloy Analyzer. Fisler et al. [14] developed a tool 

called Margrave that uses multi-terminal binary decision 

diagrams [9] to verify user-specified properties and per

form change-impact analysis. Zhang et al [29] developed a 

model-checking algorithm and tool support to evaluate ac

cess control policies written in RW languages, which can be 

converted to XACML [28]. Given an XACML policy and 

generic properties, our proposed approach conducts con

formance checking statically by automatically synthesizing 

concrete properties for static policy verification (based on 

Margrave [14]). In addition, our proposed approach also 

exploits testing tools to conduct conformance checking dy

namically. 

6. Conclusion 

Access control has been one of the most fundamental 

and widely used security mechanisms. To facilitate manag

ing and maintaining access control, access control policies 

are increasingly written in specification languages such as 

XACML. XACML is intentionally designed to be generic: 

it provides much freedom and flexibility in describing ac

cess control policies. XACML does not provide specific 

taoxie
Highlight



features to allow the policy authors to check the confor

mance and integrity of the specified policy (or its model) 

with respect to the semantic consistency of an access con

trol policy. To address the issue, we have proposed an 

approach for conducting conformance checking of access 

control policies specified in XACML, based on previous 

XACML policy verification and testing tools. In particu

lar, we propose to synthesize concrete properties from the 

policy under checking and desirable generic properties, and 

then feed the synthesized concrete properties to a policy ver

ification tool or policy testing tools. 

References 

[1] National Computer Security Center. A guide to understand

ing discretionary access control in trusted systems, Report 

NCSC-TG-003, Version 1, 30 September 1987. 
[2] OASIS eXtensible Access Control Markup Language 

(XACML). http://www.oasis-open.org/ 
committees/xacml/, 2005. 

[3] OASIS Security Assertion Markup Language (SAML). 

http://www.oasis-open.org/committees/ 
security/, 2005. 

[4] Sun’s XACML implementation.	 http://sunxacml. 
sourceforge.net/, 2005. 

[5] A. Anderson. XACML profile for role based access control 

(RBAC). OASIS Committee Draft 01, February 2004. 
[6] D. E. Bell and L. J. LaPadula. Secure computer systems: 

Mathematical foundations, 1973. MITRE Corporation. 
[7] P. Bonatti, S. Vimercati, and P. Samarati. A modular ap

proach to composing access control policies. In Proc. 

ACM Conference on Computer and Communication Secu

rity, Athens, Greece, November 2000. 
[8] D. F. C. Brewer and M. J. Nash. The chinese wall security 

policy. In Proc. IEEE Symposium on Security and Privacy, 

pages 206–214, 1989. 
[9] E. Clarke, M. Fujita, P. McGeer, J. Yang, and X. Zhao. 

Multi-terminal binary decision diagrams: An efficient data 

structure for matrix representation. In Proc. International 

Workshop on Logic Synthesis, 1993. 
[10] N. Damianou, N. Dulay, E. Lupu, and M. Sloman. The 

Ponder policy specification language. In Proc. International 

Workshop on Policies for Distributed Systems and Networks, 

pages 18–38, 2001. 
[11] R. A. DeMillo, R. J. Lipton, and F. G. Sayward. Hints on test 

data selection: Help for the practicing programmer. IEEE 

Computer, 11(4):34–41, April 1978. 
[12] D. Ferraiolo and R. Kuhn. Role based access control. In 

Proc. 15th NIST-NCSC National Computer Security Con

ference, pages 554–563, 1992. 
[13] R. B. Findler, J. Clements, M. F. Cormac Flanagan, S. Kr

ishnamurthi, P. Steckler, and M. Felleisen. DrScheme: A 

Progamming Environment for Scheme. Journal of Func

tional Programming, 12(2):159–182, March 2002. 
[14] K. Fisler, S. Krishnamurthi, L. A. Meyerovich, and M. C. 

Tschantz. Verification and change-impact analysis of 

access-control policies. In Proc. 27th International Confer

ence on Software Engineering, pages 196–205, 2005. 

[15] V. C. Hu, D. F. Ferraiolo, and D. R. Kuhn. Assessment of 

access control systems. Interagency Report 7316, Computer 

Security Division, Information Technology Laboratory, Na

tional Institute of Standards and Technology, Fort Collins, 

Colorado, September 2006. 

[16] D. Jackson, I. Shlyakhter, and M. Sridharan. A micromod

ularity mechanism. In Proc. 8th ESEC/FSE, pages 62–73, 

2001. 

[17] T. Jaeger, X. Zhang, and F. Cacheda. Policy management 

using access control spaces. ACM Transactions on Informa

tion and System Security, 6(3), 2003. 

[18] S. Jajodia, P. Samarati, and V. S. Subrahmanian. A logical 

language for expressing authorizations. In Proc. 1997 IEEE 

Symposium on Security and Privacy, pages 31–42, 1997. 

[19] S. Jajodia, P. Samarati, V. S. Subrahmanian, and E. Bertino. 

A unified framework for enforcing multiple access control 

policies. In Proc. ACM SIGMOD International Conference 

on Management of Data, pages 474–485, 1997. 

[20] M. Kudo and S. Hada. XML document security based 

on privisional authorization. In Proc. ACM Conference on 

Computer and Communication Security, Athens, Greece, 

November 2000. 

[21] E. C. Lupu and M. Sloman. Conflict in policy-based dis

tributed systems management. IEEE Transaction on Soft

ware Engineering, 25(6):852–869, 1999. 

[22] E. Martin and T. Xie. Automated test generation for ac

cess control policies. In Supplemental Proc. 17th IEEE In

ternational Conference on Software Reliability Engineering, 

November 2006. 

[23] E. Martin and T. Xie. Automated test generation for access 

control policies via change-impact analysis. In Proc. 3rd 

International Workshop on Software Engineering for Secure 

Systems (SESS 2007), May 2007. 

[24] E. Martin and T. Xie. A fault model and mutation testing of 

access control policies. In Proc. 11th International Confer

ence on World Wide Web, 2007. 

[25] E. Martin, T. Xie, and T. Yu. Defining and measuring pol

icy coverage in testing access control policies. In Proc. 8th 

International Conference on Information and Communica

tions Security, pages 139–158, December 2006. 

[26] M. Naedele. Standards for XML and web services security. 

Computer, 36(4):96–98, 2003. 

[27] F. Somenzi. CUDD: CU Decision Diagram Package Re

lease, 1998. 

[28] N. Zhang, M. Ryan, and D. P. Guelev. Synthesising ver

ified access control systems in XACML. In Proc. 2004 

ACM Workshop on Formal Methods in Security Engineer

ing, pages 56–65, 2004. 

[29] N. Zhang, M. Ryan, and D. P. Guelev. Evaluating access 

control policies through model checking. In Proc. 8th In

ternational Conference on Information Security, pages 446– 

460, September 2005. 

http:sourceforge.net
http://sunxacml
http://www.oasis-open.org/committees
http:http://www.oasis-open.org

