
c

May 27, 2011 11:33 WSPC/117-IJSEKE - SPI-J111 0218-1940
S021819401100513X

International Journal of Software Engineering
and Knowledge Engineering
Vol. 21, No. 1 (2011) 103–127
© World Scientific Publishing Company
DOI: 10.1142/S021819401100513X

MODEL CHECKING FOR VERIFICATION OF MANDATORY

ACCESS CONTROL MODELS AND PROPERTIES

VINCENT C. HU∗ and D. RICHARD KUHN†

National Institute of Standards and Technology

Gaithersburg, MD 20899-8930, USA

∗vhu@nist.gov

†kuhn@nist.gov

TAO XIE‡ and JEEHYUN HWANG§

Department of Computer Science
North Carolina State University
Raleigh, NC 27695-8206, USA

‡xie@csc.ncsu.edu
§jhwang4@csc.ncsu.edu

Received 30 May 2009

Revised 15 July 2009

Accepted 27 July 2009

Mandatory access control (MAC) mechanisms control which users or processes have
access to which resources in a system. MAC policies are increasingly specified to facili
tate managing and maintaining access control. However, the correct specification of the
policies is a very challenging problem. To formally and precisely capture the security
properties that MAC should adhere to, MAC models are usually written to bridge the
rather wide gap in abstraction between policies and mechanisms. In this paper, we pro
pose a general approach for property verification for MAC models. The approach defines
a standardized structure for MAC models, providing for both property verification and
automated generation of test cases. The approach expresses MAC models in the speci
fication language of a model checker and expresses generic access control properties in
the property language. Then the approach uses the model checker to verify the integrity,
coverage, and confinement of these properties for the MAC models and finally generates
test cases via combinatorial covering array for the system implementations of the models.

Keywords : Access control; policy; model; testing.

1. Introduction

Mandatory access control (MAC) [1] is concerned with determining the allowed
activities of legitimate users, mediating every attempt by a user to access a resource
in a system. A given information technology (IT) infrastructure can implement
MAC systems in many places and at different levels. Operating systems use MAC to
protect files and directories. Database management systems (DBMS) apply MAC to

103

http://dx.doi.org/10.1142/S021819401100513X
mailto:jhwang4@csc.ncsu.edu
mailto:xie@csc.ncsu.edu
mailto:kuhn@nist.gov
mailto:vhu@nist.gov

May 27, 2011 11:33 WSPC/117-IJSEKE - SPI-J111 0218-1940
S021819401100513X

104 V. C. Hu et al.

regulate access to tables and views. Most commercially available application systems
implement MAC, often independent of the operating systems and/or DBMSs on
which they are installed.

The ob jectives of a MAC system are often described in terms of protecting
system resources against inappropriate or undesired user access. From a business
perspective, these ob jectives could just as well be described in terms of optimal
sharing of information. After all, the main objective of IT is to make information
available to users and applications. A greater degree of sharing may get in the way
of resource protection; in reality, a well-managed and effective MAC system actually
facilitates sharing. A sufficiently fine-grained MAC mechanism can enable selective
sharing of information where in the absence of MAC, sharing may be considered
too risky altogether [2].

When planning a MAC system, three abstractions of controls should be consid
ered: MAC policies, models, and mechanisms. MAC policies are high-level require
ments that specify how access is managed and who, under what circumstances,
may access what information. While MAC policies can be application-specific and
thus taken into consideration by the application vendor, policies are just as likely
to pertain to user actions within the context of an organizational unit or across
organizational boundaries. For instance, policies may pertain to resource usage
within or across organizational units or may be based on need-to-know, compe
tence, authority, obligation, or conflict-of-interest factors. Such policies may span
multiple computing platforms and applications.

At a high level, MAC policies are enforced through a mechanism that translates a
user’s access request, often in terms of a structure that a system provides. There are
a wide variety of structures; for example, a simple table lookup can be performed to
grant or deny access. Although no well-accepted standard yet exists for determining
their policy support, some MAC mechanisms are direct implementations of formal
MAC policy concepts [2].

Rather than attempting to evaluate and analyze MAC systems exclusively at the
mechanism level, security models are usually written to describe security properties
of a MAC system. A model is a formal presentation of a security policy enforced by
the MAC system, and is useful for proving theoretical limitations of a system. MAC
models are of general interest to both users and vendors. They bridge the rather
wide gap in abstraction between policies and mechanisms. MAC mechanisms can
be designed to adhere to the properties of the model. Users see a MAC model
as an unambiguous and precise expression of requirements. Vendors and system
developers see MAC models as design and implementation requirements. On one
extreme, a MAC model may be rigid in its implementation of a single policy. On
the other extreme, a MAC model allows for the expression and enforcement of a
wide variety of policies and policy classes [2, 3].

It is common that a system’s privacy and security are compromised due
to the faulty MAC model and mechanism of MAC policies instead of the fail
ure of cryptographic primitives or protocols. Such faults can result in serious

May 27, 2011 11:33 WSPC/117-IJSEKE - SPI-J111 0218-1940
S021819401100513X

Model Checking for Verification of MAC Models and Properties 105

vulnerabilities, especially when different MAC models and rules are combined. This
problem becomes increasingly severe as systems become more and more complex,
and are deployed to manage a large amount of sensitive information and resources
that are organized into sophisticated structures. Identifying discrepancies between
policy, model, and implementation is crucial because correct implementation and
enforcement of policies by applications is based on the premise that the policy
specifications are correct, therefore the policy specification must undergo rigorous
verification and validation through systematic verification and testing to ensure
that they truly encapsulate the desired MAC properties from the policy authors.

To the best of our knowledge, no techniques exist for verifying whether the
properties of a MAC policy are correctly expressed in a model as well as whether
the policy is satisfied in the implementation. In practice, the same MAC policies
may express multiple different MAC models or express a single model in addi
tion to extra access control (AC) constraints outside of the model. Verifying the
conformance of MAC models and policies is a non-trivial and critical task. One
important aspect of such verification is to formally check the inconsistency and
incompleteness [4–7] of the model and properties because a MAC model and its
implementation do not necessarily explicitly expressed the policy, which can also
be implicitly embedded by mixing with direct access constraints or other MAC
models.

In our approach, users first specify MAC models in the specification language of
a model checker, and properties in temporal logic formula. To ensure the correct
ness of the MAC model against the properties, the system automatically verifies
these properties by exploiting the verification process of the model checker. In this
process, the confidence of the model’s correctness depends on the quality of the
specified properties. Next, the system assesses the quality of given properties based
on mutation analysis and checks the entities (i.e., rules) of the model are sufficiently
covered and confined by the properties. The assessment result help guide high qual
ity property specification by targeting uncovering or unconfined entities. Finally,
the system automatically generates test cases (both test inputs and expected out
puts) from the domain variables in the MAC model and specified properties using
a combinatorial testing technique [9]. The system feeds these test inputs into real
MAC implementation of the given model to verify whether the actual test outputs
are the same as the expected outputs.

The rest of this paper is organized as follows. Section 2 presents a formal model
of access control model checking. Section 3 describes three fundamental (static,
dynamic, and historical) MAC models and their properties, which are expressed
in finite state machine specification and in temporal logic formula, respectively.
Section 4 describes rule coverage and property confinement checking techniques.
Section 5 illustrates a combinatorial test suite generation technique. Section 6
describes our test scheme for model checking, property assessment, and testing.
Section 7 illustrates the case study to demonstrate our test scheme. Section 8 dis
cusses related work. Section 9 concludes the paper.

May 27, 2011 11:33 WSPC/117-IJSEKE - SPI-J111 0218-1940
S021819401100513X

106 V. C. Hu et al.

2. Access Control Model Checking

There are two levels of verification steps. First, the correct specification of a MAC
model needs to be verified. To achieve this goal, the scheme of our approach includes
a black-box model checking method that allows the users to specify AC properties
and then verifies the MAC model against these properties. Since the confidence
of the model’s correctness depends on the quality of the specified properties, our
scheme also includes a white-box property assessment method that applies muta
tion analysis [8] on entities in the model and properties to assess the sufficiency of
the covering and confinement of the properties for the model. Second, the correct
implementation of the policy needs to be tested. Our scheme includes a test gen
eration method that generates test cases (both test inputs and expected outputs)
from the AC variables in the model and specified properties using a combinatorial
testing technique [9]. The approach then runs these test cases on the MAC imple
mentation to verify whether the actual test outputs are the same as the expected
outputs. We next provide the formal definition of MAC model checking in terms of
AC attributes:

Let S, O, and A denote respectively the set of all the sub jects, objects, and
actions in a MAC system. Each sub ject, object, or action is associated with a set of
attributes that may be used for AC decisions. For example, a sub ject’s attributes
may include a user’s role, rank, and security clearance. An ob ject’s attributes may
include a file’s type, a document’s security class, and a printer’s location.

Definition 1. A MAC rule r is a statement: “if c then d ”, where constraint c is
a predicate expression on AC attributes (sub jects, ob jects, or actions) and system
states (global system events) for the permission decision d. An example rule is “if
(a user is a member of X group with security level 3 and today is Friday and the
user’s action is read and the object is file Y) then grant ”.

Definition 2. An AC property p is a proposition: “b → d ” where the result of
the access permission d depends on quantified predicate b on AC attributes and
system states. An example property is “for al l users whose security level is 2 and
the action is read and the object is file Y → deny ”.

An access request q is a tuple (s, o, a), where s ⊂ S, o ⊂ O and a ⊂ A. A request
(s, o, a) means that subject s requests to take action a on ob ject o. Note that each
of s, a, or o may have multiple attributes. A MAC model is a sequence of rules,
each of which is of the form (sCond, oCond, aCond, decision, gCond, st) in the logic
expression of c in Definition 1. sCond, oCond and aCond are constraints over the
attributes of a sub ject, ob ject, and action, respectively. gCond is a general constraint
that may potentially be over all the attributes of subjects, objects, actions, and other
properties of a system (e.g., the current time and the load of a system), and s is the
current state recorded from the previous access event of the MAC system. Given
a request (s, o, a), if sCond, oCond, aCond, gCond, and st are all evaluated to be
TRUE, then the request is either permitted or denied according to the decision d
as described in the rule of Definition 1. Thus, each rule’s applicability to a request

May 27, 2011 11:33 WSPC/117-IJSEKE - SPI-J111 0218-1940
S021819401100513X

Model Checking for Verification of MAC Models and Properties 107

is of the form: If (sCond ∧ oCond ∧ aCond ∧ gCond ∧ st)then (d). We can specify
more complex constraint structures in a rule. For example, we can specify rules that
can be applicable to multiple-attributes requests.

A deterministic finite state transducer of a MAC model corresponding to a Finite
State Machine (FSM) with a five-tuple M = (Σ, ST, s0, δ, F), where:

Σ = {sCond 1, . . . , sCond n, aCond 1, . . . , aCond n, oCond 1, . . . , oCond n,

gCond 1, . . . , gCond }n

is the input alphabet that represents the attribute constraints associated with sub
ject s, access a, object o, and global event g.

S = {st0, st2, . . . , stn,Grant ,Deny } is a finite, non-empty set of recorded MAC
system states and permissions. st0 is the initial state.

δ is the state-transition function, where δ: ST × Σ → ST
F = {Grant ,Deny } is the set of final states.
For static MAC models [10] such as Multi-Level AC (MLS) [11], Role-Based

AC (RBAC) [12], and Rule-Based AC policies (RuBAC), the FSM Mstatic does
not require intern states st to reach the permission state, thus F = ST =
{Grant ,Deny }, i.e., Mstatic is just a straightforward FSM model without state
transitions. For dynamic MAC models such as N-Person Control [13], and
Limited Number of Access policies, the input alphabets of FSM Mdynamic are
Σdynamic = {gCond 1, . . . , gCond }, where gCondi is the threshold indicator of the n

access limitation, such as the number of persons have to access at the same time
in a N-Person control policy, or the maximum number of access allowed for Lim
ited Number of Access policy. For historical MAC models such as Chinese Wall
[14] and Workflow policies [15], the input alphabets of the FSM Mhistorical are
Σhistorical = Σ − {gCond 1, . . . , gCond }, where sCondi, aCondi, and oCondi con-n

tribute to a historical recording that is used as determining factors for the next
permission decision. Note that it is possible for different types of MAC models to
combine into one model such that Mcombine = {Mstatic ∪ Mdynamic ∪ Mhistorical}2 .

An AC property p in Definition 2 as expressed by the proposition p: ST ×Σ2 →
ST of FSM, which can be collectively translated in terms of logical formula such
that p = (si ∗ sCond 1 ∗ · · ·∗ sCond n ∗aCond 1 ∗ · · ·∗aCond n ∗oCond 1 ∗ · · ·∗oCond n ∗
gCond 1 ∗ · · · ∗ gCond) → d, where p ∈ P is a set of properties, and ∗ is a Boolean n

operator in terms of logical formulas of temporal logic such as computational tree
logic (CTL) [16, 17] and linear-time temporal logic (LTL) [18]. The purpose of model
checking is to verify the set ST in M in which p is true according to an exhaustive
state space search. In addition, by verifying the set of states in which the negation
of p is true, we can obtain the set of counterexamples to make the assertion that
p is true. The satisfaction of a MAC model M to the AC properties P by model
checking is composed of two requirements:

(1) Safety, where M satisfies P in description of safety. That is, there is no violation
of rules to the logic specified in P , and it is assured that M will eventually be in a
desired state after it takes actions in compliance with a user access request. Thus,

May 27, 2011 11:33 WSPC/117-IJSEKE - SPI-J111 0218-1940
S021819401100513X

108 V. C. Hu et al.

Axiom 1. AC safety verification is to verify Macp satisfies Pacp of MAC
policy acp.

(2) Liveness, where M will not have unexpected complexities. That is, there is
neither a deadlock in which the system waits forever for system events, nor a livelock
in which the model repeatedly executes the same operations forever. Thus,

Axiom 2. Liveness check on M calculates the complexity to prove that the model
is practical, i.e., liveness of Macp is that Pacp will be satisfied within finite states
(a permission decision of AC request will be eventually made) for policy acp.

Figure 1 shows the relations between M and P in a model checking framework.
The AC rules define the system behaviors that function as the transition relation

δ in M . Then when the AC property is represented by temporal logic formula p,
we can represent the assertion that model M satisfies p by M | = Ab → AXd
from Definition 2 using temporal logic quantifier A to represent “always”, and logic
quantifier X to represent “is true next state”. The purpose of safety verification
(Axiom 1) and liveness verification (Axiom 2) using model checking is to determine
whether these assertions are true, and to identify a state in which the assertions
are not true as a counterexample for the assertions. Since the behavior of the MAC
system can be represented by FSM M , and the properties that M must satisfy
can be represented by temporal logic formulas, we can define the correctness of
policies more precisely as that the model can be led from every possible state that
is reachable from initial states to the defined final state while complying with the
properties [19].

3. Generic Access Control Properties

This section demonstrates the three fundamental (static, dynamic, and historical)
MAC models and properties from the separation of duty and safety point of view
[10, 20]. We also illustrate how a model and its properties can be specified in a
model checking environment.

3.1. Static models

Static policies regulate the access permission by static system states or condi
tions such as rules, attributes, and system environments (times and locations for
access). Popular MAC models with these types of properties include RBAC, MLS,

Policy:
(rules,
constraints)

Access control model: M

= (Σ , ST, s0, δ, F)
AC properties:

P ={p1…pn}
Verify the
safety and
liveness of P

Fig. 1. Mandatory Access Control model and property.

May 27, 2011 11:33 WSPC/117-IJSEKE - SPI-J111 0218-1940
S021819401100513X

Model Checking for Verification of MAC Models and Properties 109

and RuBAC. These types of models can be specified by asynchronous or direct
specification expressions of an FSM. The transition relation of authorization states
is directly specified as a propositional formula in terms of the current and next
values of the state variables. Any current state/next state pair is in the transition
relation if and only if it satisfies the formula, as demonstrated in the following direct
specification of an FSM:

{
VARIABLES

access state : boolean; /* 1 as grant, 0 as deny*/

.

INITIAL

access state := 0;

TRANS /* transit to next access state */

next (access state) :=

((constraint 1 & constraint 2 & constraint n) |

(constraint a & constraint b & constraint m));

}

where the system state of access authorization is initialized as the deny state and
moved to the grant state for any access request that complies with the constraints
of the rule corresponding with each constraint predicate (i.e., constraint 1. . . .&
constraint n) in a rule, and stay in the deny state otherwise. The properties of the
static constraints can be verified using the properties expressed in the following
temporal logic formulae:

AG (constraint 1 & constraint 2 & constraint n) → AX (access state = 1)

AG (constraint a & constraint b & constraint m) → AX (access state = 1)

AG ! ((constraint 1 & constraint n) | (constraint a & constraint m) |. . .) →

AX (access state = 0)

which simply means that all access requests that comply with specified constraints
for the rules should be granted, and all non-compliant ones should be denied. Spec
ifications of the form “AG (b) → AX (d)” (Definition 2) indicate essentially that for
all paths (the “A” in “AG”) for all states globally (the “G”), if b holds then (“→”)
for all paths, in the next state (the “X” in “AX ”) d will hold.

3.2. Dynamic models

Dynamic policies regulate the access permission by dynamic system states or con
ditions such as specified events or system counters or N-person AC policy. A MAC
model with these types of properties specifies that accesses are permitted only by
a certain subject to a certain ob ject with certain limitations (e.g., ob ject x can be
accessed only no more than i times simultaneously by user group y). For exam
ple, if a user’s role is a cashier, he or she cannot be an accountant at the same
time when handling a customer’s checks. This type of model can be specified with

May 27, 2011 11:33 WSPC/117-IJSEKE - SPI-J111 0218-1940
S021819401100513X

110 V. C. Hu et al.

asynchronous or direct specification expressions of an FSM, which uses a vari
able semaphore to express the dynamic properties of the authorization decision
process. Another example of dynamic constraint states is enforcing a limited num
ber of concurrent accesses to an object. The authorization process for a user thus
has four states: idle, entering, critical, and exiting. A user is normally in the idle state.
The user is moved to the entering state when the user wants to access the critical
ob ject. If the limited number of access times is not reached, the user is moved to
the critical state, and the number of the current access is increased by 1. When the
user finishes accessing the critical ob ject, the user is moved to the exiting state, and
the number of the current access is decreased by 1. Then the user is moved from
the exiting state to the idle state. The authorization process can be modeled as the
following asynchronous FSM specification:

{
VARIABLES

count, access limit : INTEGER;

request 1 : process request (count);

request 2 : process request (count);

.

request n: process request (count);

/∗max number of user requests allowed by the system∗/

access limit := k; /*max number of concurrent access∗/

count := 0; act {rd, wrt}; object {obj};

process request (access limit) {

VARIABLES

permission : {start, grant, deny};

state : {idle, entering, critical, exiting};

INITIAL STATE (permission) := start;

INITIAL STATE (state) := idle;

NEXT STATE (state) := CASE {

state == idle : {idle, entering};

state == entering & ! (count > access limit): critical;

state == critical : {critical, exiting};

state == exiting : idle;

OTHERWISE: state};

NEXT STATE (count) := CASE {

state == entering : count +1;

state == exiting : count −1;

OTHERWISE: DO NOTHING };

NEXT STATE (permission) := CASE {
(state == entering) & (act == rd) & (object == obj): grant;
OTHERWISE: deny;
}

}
}

May 27, 2011 11:33 WSPC/117-IJSEKE - SPI-J111 0218-1940
S021819401100513X

Model Checking for Verification of MAC Models and Properties 111

The state variables of the preceding example are used as the asynchronous states
for the concurrent access of the limited number of access requests. The specification
of the dynamic constraints is verified through the following properties expressed in
temporal logic formula:

AG (state == entering) & (act == rd) & (object == obj) → AX (access =
grant)

AG (state == idle | state == critical | state == exiting) → AX (access = deny)

where temporal logic formula AG (b) → AX (d) (Definition 2) indicates that “if
condition p is true at time t, condition d is true at all times later than t.

3.3. Historical models

Historical policies regulate the access permission by historical access states or
recorded and predefined series of events. The representative MAC policies for this
type of AC model are Chinese Wall and Workflow AC policies. This type of model
can be best described by synchronous or direct specification expressions of an
FSM. For example, the following synchronous FSM specification specifies a Chi
nese Wall AC model where there are two Conflict of Interest groups COI1, COI2 of
ob jects:

{
VARIABLES

access {grant, deny};

act {rd, wrt};

o state {none, COI1, COI2};
u state {1, 2, 3};

INITIAL STATE(u state) := 1;

INITIAL STATE(o state) := none;

NEXT STATE(state) := CASE {

u state == 1 & act == rd & o state == COI1 : 2;

u state == 1 & act == rd & o state == COI2 : 3;

u state == 2 & act == rd & o state == COI1 : 2;

u state == 2 & act == rd & o state == COI2 : 2;

u state == 3 & act == rd & o state == COI1 : 3;

u state == 3 & act == rd & o state == COI2 : 3;

OTHERWISE: 1; };

NEXT STATE(access) := CASE {

u state == 2 & act == rd & o state == COI1: grant;

u state == 3 & act == rd & o state == COI2: grant;

OTHERWISE: deny; };

NEXT STATE (act) := act;

NEXT STATE (o state) := object;

}

May 27, 2011 11:33 WSPC/117-IJSEKE - SPI-J111 0218-1940
S021819401100513X

112 V. C. Hu et al.

The properties of the dynamic constraints can be verified by verifying the following
temporal logic formula:

AG ((u state == 2 & act == rd & o state == COI1) | (u state == 3 & act == rd &
o state == COI2)) → AX (access = grant)

AG ! ((u state == 2 & act == rd & o state == COI1) | (u
 state == 3 & act == rd
& o state == COI2)) → AX (access = deny)

where temporal logic AG (b) → AX (d) indicates that the access event d is invocated
by historical events in b.

4. Coverage and Confinement Checking

Although the integrity of logic in MAC model can be checked by the safety and
liveness verification (Section 2), the MAC models are still not fault-proof because
the temporal logic in the properties might not be thorough in covering all possible
values of all rules or all conditions in rules. For example, an extra permit rule may be
added to a list of rules specified for a MAC model, and the constraint of this rule may
not be included in any of the properties; therefore, the unauthorized access allowed
by this extra rule cannot be exposed by only the safety and liveness verification, thus
leading to a fault due to insufficient properties (i.e., coverage fault). Further, even
if the properties cover all the rules in the model, it is possible that the properties
do not completely confine to intended properties: the complement of a specified
predicate does not guarantee results to the complement of the permission of a
property, thus risking exceptional permissions despite the constraints enforced by
the property. The rules in the model, properties, and confined properties may each
describe its own space of permission conditions, and may not be congruent in one
space as the initial relation illustrated examples in Fig. 2. The safety and liveness
check can assure only the logic integrity of some rules against some properties. The
complete satisfaction of a model to its properties requires fixing of coverage and
confinement faults if any spotted by additional Coverage and Confinement Check
(CCC), the second line of defense against such semantic faults.

CCC requires mutant versions of the model [21], and extra modified properties
for additional model checking. As illustrated in Fig. 2, the goal of CCC is to ensure
that the rules in the model are completely covered by the properties, and to confirm
that no exceptional access permissions are granted unless intentionally allowed. The
first step of CCC is to discover the rules, which are seeped through the specification
of the properties by applying model checking on mutated versions of rules. The sec
ond step is to detect unexpected access permission that might not be the intention
of the policy author by applying model checking on modified properties extracted
from the original properties. The preceding steps are described in Secs. 4.1 and 4.2
after the following formal definitions.

Axiom 3. A MAC rule r is covered by an AC property p when the access decision d
of p depends on r of the MAC model, verified through safety and liveness checking

′

′

May 27, 2011 11:33 WSPC/117-IJSEKE - SPI-J111 0218-1940
S021819401100513X

Model Checking for Verification of MAC Models and Properties 113

or

Specified
properties

Confined
properties

Specified
properties

Model

Confined
properties

Confined
properties /

Model /

properties

specified
properties

Confined

Model

specified
Model/

properties

Coverage fault
fixing

Confinement
fault fixing

Initial relation

All rules and all
properties verified

All rules and properties
are verified and confined

Some rules and
some properties

verified

Fig. 2. Model, confined properties, and specified properties.

without counterexamples of r against p. Function CM (. . . ri. . . pi...) = TRUE |
FALSE decides if rule ri in the model M is covered by property pi, where ri is a
member of rule set R, and pi is a member of property set P . For example, the rule:
“users with security level 3 can read file Y ” is covered by the property: “For al l
users with security greater then 2 can read file Y ”.

Definition 3. The negation of a MAC rule r, ∼ r = “if c then ¬d” from
Definition 1. For example, the negation of the example rule in Definition 1 is “if
(a user is a member of X group with security level 3 and today is Friday and the
user’s action is read and the object is file Y) then deny ”.

Definition 4. The complement of an AC property p = b → d, p = ¬b → ¬d,
is the complement expression of p, i.e., the negation of b causes the negation of d.
For example, p = (x ∧ y ∧ z) → grant , p = ¬(x ∧ y ∧ z) → deny. For example,
the complement of the example property in Definition 2 is “for al l users whose
security level is not 2 or the action is not read or the object is not file Y → grant ”.

4.1. Rule coverage checking

The key notion of rule coverage checking is to synthesize a version of the given
model in such a way that the permission of its rules is mutated such that ruleris
changed to ∼ r. If property set P is satisfied by both mutated and original models
of M through model checking, then some of the rules and their mutants would never
apply to P ; in other words, P does not cover all the rules in model M . Formally:

Theorem 1. If (CM (r, p) ∧ CM (∼ r, p)) then “r is not applied to properties p”.

′

May 27, 2011 11:33 WSPC/117-IJSEKE - SPI-J111 0218-1940
S021819401100513X

114 V. C. Hu et al.

Proof. CM (r, p) = TRUE says that p depends on rule r to reach the access decision
(Axiom 1). CM (∼ r, p) = TRUE says that p depends on rule ∼ r to reach the access
decision d, since r = “if c then d” and ∼ r = “if c then ¬d”(Definitions 1 and 3),
which leads to CM (r, ∼ r, p) = TRUE, i.e., p depends on both r and ∼ r for d.
The only condition for this result to hold is when r is a “don’t care” variable in
the Boolean predicate of p; in other words, r is not covered by p.

As an example in Fig. 3, the safety and liveness checking verify that p conforms
to the model without counterexamples; however, by applying the CCC by mutating
the rule u == j : grant to u == j : deny for the coverage checking, the result shows
that the property satisfies the mutated rules as well (without counterexamples),
indicating that the variable u in the rule r was never applied to the property p.

This result shows that the rule u == j : grant is not verified with the property
AG (q == i) → access = grant. One way for addressing this insufficiency is adding a
new property that describes proper control of u. Note that it is necessary to check
every r in M against the set of all properties P to achieve thorough verification.

4.2. Property confinement checking

Property confinement checking ensures that there is no exceptional permission
allowed in addition to the specified properties; this checking requires a confined
property p (Definition 4) modified from the original property p to be added for
the next run of model checking. Confinement check should discover the discrepancy
of the specified properties and the properties the MAC policy author intend. The
rationale is that if model M does not satisfy p′, then there are exceptional access
permissions that leak through p, formally:

Theorem 2. If (CM (r, p) ∧ CM (r, p′)) then there is no exceptional permission
allowed from p in model M against rule r.

NEXT_STATE(q):= CASE {
x :i
....

}

NEXT_STATE(access):= CASE {
u == j :grant
g == I : grant

OTHERWISE: deny

......
}

NEXT_STATE(access):= CASE {
u == j :deny
g == I : deny
OTHERWISE: grant

}

Mutant

.......
AG (q == i) → access = grant

c

d

r

−d

b d

~r

p

Fig. 3. Example of uncovered rules in a MAC model.

May 27, 2011 11:33 WSPC/117-IJSEKE - SPI-J111 0218-1940
S021819401100513X

Model Checking for Verification of MAC Models and Properties 115

.......
AG (u == i) → access = grant

NEXT_STATE(u):= CASE {
 x==s :i
x==t :j

NEXT_STATE(access):= CASE {
u==k :deny
......

Otherwise grant
}

¬AG (u == i) → access = denyAddition

r d

b d
−b −dp p’

Fig. 4. Unconfined rule in a property.

Proof. CM (r, p) says that p is covered by model M with rule r, and CM (r, p′)
says that p′ is covered by rule r (Axiom 3), since CM (r, p) ∧ CM (r, p′) equaling to
CM (r, p, p′) implies that r is covered by both p and p′, such that p: r → d and
p′: ¬r → ¬d, which means any rule that is a negation of r will cause permission
d changes to ¬d.

Figure 4 shows a transition to an unspecified state for a certain range of data
values that allow exceptional permission not covered by a specified property because
the value of access when u value is different than i (such as u = j) also grants access
permission by the rule otherwise : grant. This fault can be caught by a counterex
ample AG (u == j) → access = grant when checking the model M against the
additional confinement property ¬ AG (u == i) → access = deny derived from
original property AG (u == i) → access = grant. The additional model check
ing for confinement verification informs the MAC policy authors which property
is not confined so that the MAC policy author can add new rules to enforce the
safety of the model. As in this case, changing the rule otherwise : grant to oth

erwise : deny and adding all granted rules in the state will correct the problem.

Note that it is possible the MAC policy author intentionally allowed the excep
tion for a specified property, and it is necessary to check every p against the set of
rules R = {r1, . . . , rn} to achieve thorough verification.

5. Test Suite Generation

As testing must always be conducted once a policy is implemented to assure cor
rect implementation, automated generation of test cases can reduce total costs,
thus making formal specification easier to integrate into the development process in
addition to supporting property verification. Model checking is ideal for this inte
gration because it can solve the oracle problem for testing (determining expected

May 27, 2011 11:33 WSPC/117-IJSEKE - SPI-J111 0218-1940
S021819401100513X

116 V. C. Hu et al.

results for a particular set of test input data). A case study of this technique
for software is given by [22]. Even with highly automated tools, real-world devel
opment budgets rarely allow the development and exploration of formal models,
because the cost must be balanced against the cost of releasing code with faults
that would not be caught in testing. But testing typically consumes 50% or more
of a development budget. Generating test cases from formal specifications makes it
cost-effective to allocate a portion of the testing budget to produce a formal spec
ification, which can then be used to confirm desired properties and generate test
cases.

Combinatorial testing is a methodology that tests all t-way [23] combinations of
input parameter values. For n variables with v values, t-way combinations, combina
torial testing requires a number of tests proportional to vt log n, which is enormous
to be practical if t is a large enough number; however, the most common form is
pairwise testing, in which all pairs of input values are covered in at least one test.
Higher strength versions of this method cover 3-way, 4-way, or more interactions
at least once. The advantage of combinatorial testing for verifying MAC policies
is that AC often relies on a small number of discrete values for most parameters.
For example, an MLS policy (i.e., standard military classification policy) may have
levels unclassified, confidential, secret, top secret, plus a small number of categories,
all applied to a collection of resources such as files and programs. While real-world
MAC is likely to have far too many variables for exhaustive testing, it will probably
be possible to test, for example, all 5-way combinations of variable values. Thus
a failure that results from the interaction of five or fewer variables is likely to be
caught. The number of tests required to provide 5-way coverage may be large, but
if complete tests are fully automated, then this form of testing is practical even for
large systems.

The first step in combinatorial testing of the policy is to find a set of tests that
will cover all t-way combinations of parameter values for the desired combinatorial
interaction strength t. This collection of tests is known as a covering array. The
covering array specifies test data, where each row of the array can be regarded as
a set of parameter values for an individual test. Collectively, the rows of the array
cover all t-way combinations of parameter values. An example is given in Fig. 5,
which shows a 3-way covering array for 10 variables with two values each. The
interesting property of this array is that any three columns contain all eight possible
values for three binary variables. For example, taking columns F, G, and H, we can
see that all eight possible 3-way combinations (000,001,010,011,100,101,110,111)
occur somewhere in the rows of the three columns. In fact, this is true for any three
columns. Collectively, therefore, this set of tests will exercise all 3-way combinations
of input values in only 13 tests, as compared with 1024 for exhaustive coverage.
Similar arrays can be generated to cover up to all 6-way combinations. A non
commercial research tool called Automated Combinatorial Testing Suite (ACTS)
[24] developed by NIST and the University of Texas at Arlington makes this possible
with much greater efficiency than previous tools. For example, a commercial tool

May 27, 2011 11:33 WSPC/117-IJSEKE - SPI-J111 0218-1940
S021819401100513X

Model Checking for Verification of MAC Models and Properties 117

A B C D E F G H I J
1 0 0 0 0 0 0 0 0 0 0
2 1 1 1 1 1 1 1 1 1 1
3 1 1 1 0 1 0 0 0 0 1
4 1 0 1 1 0 1 0 1 0 0
5 1 0 0 0 1 1 1 0 0 0
6 0 1 1 0 0 1 0 0 1 0
7 0 0 1 0 1 0 1 1 1 0
8 1 1 0 1 0 0 1 0 1 0
9 0 0 0 1 1 1 0 0 1 1
10 0 0 1 1 0 0 1 0 0 1
11 0 1 0 1 1 0 0 1 0 0
12 1 0 0 0 0 0 0 1 1 1
13 0 1 0 0 0 1 1 1 0 1

Fig. 5. 3-way covering array for 10 parameters with 2 values each.

required 5400 seconds to produce a less optimal test set than ACTS generated in
4.2 seconds.

To produce test cases that guarantee combinatorial coverage to an interaction
level t, we produce a t-way covering array [22] for input parameters used in the
policy. Informally, a covering array can be viewed as a table of input data where
each column is an input parameter and values in each column are parameter values,
so that each row represents a test. All possible t-way combinations of parameter
values are guaranteed to be covered at least once. If t = 2, this procedure results in
the familiar “pairwise” testing, but using new algorithms, we are able to produce
covering arrays up to strength t = 6.

Two specification claims in forms of properties are generated for each covering
array row, one for result grant and one for result deny. Values vij are taken from
row i, column j of the covering array, for all rows.

AG (p1 = v11& ... & pn = v1n) → AX !(access state = grant)
AG (p1 = v21& ... & pn = v2n) → AX !(access state = grant)
.
AG (p1 = vn1& ... & pn = vnn) → AX !(access state = grant)
AG (p1 = v11& ... & pn = v1n) → AX !(access state = deny)
AG (p1 = v21& ... & pn = v2n) → AX !(access state = deny)
.
AG (p1 = vn1& ... & pn = vnn) → AX !(access state = deny)

For a covering array with n rows, a total of 2n specification claims will thus be
produced, one grant and one deny for each row of the covering array. In the claims,
possible results grant or deny are negated. For each claim, if this set of values cannot
in fact lead to the particular result, the model checker indicates that this is true.
If the claim is false, the model checker indicates so and provides a counterexample

May 27, 2011 11:33 WSPC/117-IJSEKE - SPI-J111 0218-1940
S021819401100513X

118 V. C. Hu et al.

with a trace of parameter input values and states that will prove it to be false.
The model checker thus filters the claims that we have produced so that a total
of n test inputs are generated. In effect, each one is a test case, i.e., a set of input
parameter values and expected result. It is then simple to map these values into
test cases in the syntax needed for the system under test. When interaction testing
is done today, t is nearly always 2 (i.e., pairwise testing) because higher strength
interactions require exponentially more test cases. Thus, higher strength interaction
testing requires fully automated generation of test input data and expected results,
which is made possible through model checking.

This technique makes it possible to produce two complementary types of test
cases. In addition to combinatorial test cases, fault-based testing can be automated.
By inserting particular faults in the specification, then generating counterexamples
using the model checker, we can produce test cases that will detect these faults or
faults that are subsumed by them.

6. Test Scheme

A generic test scheme for MAC models and properties verification can be con
structed. The scheme starts by expressing MAC models in the specification lan
guage of a model checker, and the AC properties in temporal logic formula. Then
the system verifies these properties by exploiting the verification process of the
model checker. Next, another run of model checking with mutated rules and modi
fied properties guarantees that the rules are covered and confined by the properties.
Finally, test cases consisting of input data and expected results are created by apply
ing the covering array generated from the combinatorial array generation function
to model checking with the sufficient properties. One goal of the techniques in this
approach is to reduce overall software assurance costs by integrating verification
with test generation.

The scheme in Fig. 6 contains four ma jor functions implementing the previously
described mechanisms. The function Model Checking checks the MAC model against
the specified AC properties, including three such checks. The first is phase safety
and liveness verification, which ensures that the specified properties are satisfied by
the model. The second is phase verification, which rectifies the differences between
the MAC rules and properties in terms of coverage and confinement through the
Coverage and Confinement Mutation function. When the results report uncovered
entities, the users further modify/add new properties or rules to amend the discrep
ancies. The last check, phase of model checking takes the covering array generated
by the Covering Array generator and integrates the array variables into generic deny
and grant properties for detecting counterexamples against properties resulted from
the second phase. The counterexamples are then fed into the Test Case generator
to produce the test cases (both test inputs and their expected outputs). These test
cases running on the MAC implementation can comprehensively cover the behavior
and verify whether the actual test outputs are the same as the expected outputs.

May 27, 2011 11:33 WSPC/117-IJSEKE - SPI-J111 0218-1940
S021819401100513X

Model Checking for Verification of MAC Models and Properties 119

Access control policy
implementation

Covering
Array

Covering array

Generator

Access control
model

Model
Checking

Counterexamples

Test Case Test casesCoverage and Access control
GeneratorConfinement properties

Mutation

Fig. 6. Scheme for MAC model/AC properties testing.

7. Case Study

We developed a tool called Access Control Policy Testing System (ACPTS). The
tool helps a user specify policy models and their properties. ACPTS integrates
NuSMV [25] for symbolic model checking and ACTS for generating combinatorial
tests. From ACTS, the covering array specifies test data, where each row of the array
can be regarded as a set of parameter values for an individual test. Collectively, the
rows of the covering array cover all t-way combinations of parameter values for
incorporating into Symbolic Model Verifier (SMV) property specifications that can
be processed by the NuSMV model checker.

In this study, we used a simple grading RBAC access control policy model com
posed by ACPTS. We also describe its property set for verification. The policy
model and its property set are converted into NuSMV model and verified whether
its property set is satisfied. We then perform covering array generation for combi
natorial tests, mutant rule verification for detecting for detecting insufficient rule
coverage by a specified property set, and mutant property verification to detect
the discrepancy of the specified properties and the properties that the MAC policy
author intend.

7.1. Model specification in ACPTS

A policy author can edit (i.e., add, delete, and modify) RBAC, Multi-Level security,
and Workflow policy models [26] and their properties using the tool. The top-left
window in Fig. 7 shows specified policy models as a tree structure. The top-right
window provides a working area for the policy author to edit a selected model. In
Fig. 7, the policy author specifies an RBAC policy with a set of roles (i.e., Faculty
and Student), user-role relations (i.e., Jane is Faculty and Jim is Student), and
roles’ permissions (e.g., Faculty can write grades and Student cannot write grades).

May 27, 2011 11:33 WSPC/117-IJSEKE - SPI-J111 0218-1940
S021819401100513X

120 V. C. Hu et al.

Fig. 7. An example RBAC policy model using ACPTS.

Property
TextProperty Editor

Fig. 8. An example property specified in ACPTS.

As shown in Fig. 8, the property describes the conditions for permitting a Faculty
to write grades. Note that the policy author does not need to specify some of
NuSMV-specific constraint symbols (i.e., AG and AX). However, such constraint
symbols are added by ACPTS when a property is converted to the NuSMV format
shown in Fig. 9.

May 27, 2011 11:33 WSPC/117-IJSEKE - SPI-J111 0218-1940
S021819401100513X

Model Checking for Verification of MAC Models and Properties 121

MAC State
Descriptions

MAC State
Transitions

MAC
Properties

Fig. 9. A NuSMV input describing an example RBAC model and its property.

For model and property verification, NuSMV takes the description of finite state
systems of the MAC model and specified properties as input; it then verifies finite
state systems against their properties. NuSMV produces verification reports on
whether the given properties are satisfied; when a property is violated, a counterex
ample will be generated accordingly. Figure 9 shows a NuSMV input describing the
example RBAC model.

7.2. Covering array generation

For covering array generation, ACTS takes the description of variables as input;
it then generates t-way covering arrays for given variables. The ACPTS generates
2-way and 3-way covering array for combinatorial tests, and compare their size and
rule coverage.

Figure 10 shows the generated 2-way and 3-way covering arrays for the given sub
jects (e.g., Faculty, and Student), resources (e.g., grades and records), and actions
(e.g., write and view), and, 4 and 8 rows are generated, respectively. As an MAC
policy model is often composed of three attributes (sub ject, action, ob ject), a 3-way
covering array can be considered as exhaustively includes all possible combinations
of values in each attribute. We can reduce the number of rows in a covering array

May 27, 2011 11:33 WSPC/117-IJSEKE - SPI-J111 0218-1940
S021819401100513X

122 V. C. Hu et al.

Fig. 10. 2-way (left) and 3-way (right) covering array of given subjects, resources, and actions by
ACTS.

by considering 2-way combinations of these attributes for detecting a fault related
to 2-way interactions.

7.3. Mutant rules

We perform mutant rule verification to detect insufficient rule coverage by a specified
property set. When ACPTS detects any missing rule coverage, a policy author can
augment the existing properties with new properties to achieve high rule coverage.

In order to check whether a given property set in Fig. 9 is satisfied, we mutate
the first and second rules one at a time to produce two mutant rules as shown
in Fig. 11 where r1 and r2 represent mutant rules of the first and second rules,
respectively by negating their decisions (Definition 3) in Fig. 9. As a verification
result, the property set is not satisfied and a counterexample is reported as follows.

-> State: 1.1 <
decision = NA
role subject = Faculty
action = write
resource = grades
. . .
-> State: 1.2 <
decision = Deny

This counterexample indicates that the property set can cover at least one of
the two mutated rules. The counterexample illustrates that the property (Faculty
is permitted to write grades) is violated because a request that a Faculty is denied
to write grades.

r1: role subject = Faculty & resource = grades & action = write : Deny;
r2: role subject = Student & resource = grades & action = write : Permit;

Fig. 11. Mutant rules.

May 27, 2011 11:33 WSPC/117-IJSEKE - SPI-J111 0218-1940
S021819401100513X

Model Checking for Verification of MAC Models and Properties 123

To determine which rule is not covered by the property set, we mutate a rule
(one at a time) in the original policy. When only the first rule is mutated, the
counterexample is generated in the process of verification. This counterexample
indicates that the first rule is covered by the property set. However, when the
second rule is mutated, no counterexample is generated. This verification result
indicates that the second rule is not covered by the property set. Therefore, the
existing property set achieves insufficient rule coverage not covering the second rule
coverage. We manually generate and augment the following property derived from
the second rule.

SPEC AG ((role subject = Student) & (resource = grades) & (action = write) ->
AF decision = Deny)

With the addition of this property, the new property set is sufficient in achieving
full rule coverage and NuSMV reports counterexamples in the verification of all the
mutants.

7.4. Mutant property

We conduct property confinement checking to detect security problems caused by
allowing exceptional permission. We generate and add a property’s mutant property
to the NuSMV model for the next run of model checking. Figure 12 shows a mutant
property derived from the property set described in Fig. 9.

The model in Fig. 9 is verified against the mutated property, and a counterex
ample is reported as follows.

-> State: 1.1 <
decision = NA
role subject = Student
action = view
resource = records

This counterexample illustrates that the mutated property is violated because
NuSMV found that non-applicable decision (denoted as “NA”) is returned for a
request that a Student view records. This checking detects the discrepancy of the
specified properties by the counterexample, which is derived from otherwise : decision
(which is specified as “1 : decision; ” in Fig. 9). Therefore, we change otherwise :
decision to otherwise : Deny (which is specified as “1 : Deny; ” in Fig. 9) to remove
such discrepancy. Our confinement checking technique helps detect such discrepancy

SPEC AG (! (role subject = Facutly) & (resource = grades) & (action = write)
-> AF decision = Deny)

Fig. 12. Mutant property.

May 27, 2011 11:33 WSPC/117-IJSEKE - SPI-J111 0218-1940
S021819401100513X

124 V. C. Hu et al.

and the policy author can increase their confidence for policy correctness by fixing
the discrepancy or confirming the discrepancy to be intended.

8. Related Work

There exist several verification techniques for applying model checking on MAC poli
cies but few general verification techniques for applying model checking on MAC
models and generating test cases as our proposed approach. Zhang et al. [27] present
a model-checking algorithm that evaluates if a MAC policy can satisfy a user’s access
request as well as prevent intruders from reaching their malicious goals. Instead of
generic model language, policies of the MAC system and goals of agents must be
described in the AC description and specification language introduced as RW in
their earlier work. The language does not provide the flexibility for the specification
of dynamic or historical types of MAC model nor for the descriptions of the general
properties of access constraints. Kikuchi et al. [19] proposed the policy verifica
tion and validation framework based on model checking that exhaustively verifies
a policy’s validity by considering the relations between system characteristics and
policies. Their approach defines the validity of policies and the information needed
to verify them from the viewpoint of model checking as well as constructs the policy
verification framework based on the definition. Besides rule-based system policies,
there is no demonstration that shows the proposed framework is proper for generic
MAC policies. Schaad et al. [28] presented a model-checking approach to analyze
the delegation and revocation functionalities of workflow-based enterprise resource
management (ERP) systems. Their approach is done in the context of a real-world
banking workflow requiring static and dynamic separation of duty properties. The
approach derived information about the workflow from Business Process Execu
tion Language (BPEL) specifications and ERP business ob ject repositories. This
was captured in an SMV specification together with a definition of possible delega
tion and revocation scenarios. Their focus was on how to capture the workflow in
an SMV model amended by an LTL-based specification of the Separation of Duty
properties without much consideration of generic MAC models.

Commercial policy manager tools such as IBM security policy manager [36]
and Cisco policy manager [37] do not generate policy models for property verifica
tion, property assessment, and test suite generation. The tools include PDP (Policy
Decision Point) and security protocol support. Some of the tools have limited ver
ification feature. For example, IBM security policy manager includes limited SOD
(Separation of Duty) check on given policies.

Table 1 summarizes model specification, property verification, property assess
ment, test suite generation feature information for each of related approaches. Each
row of the table corresponds to a related model checking or policy manager approach
and each of columns corresponds to its features. More specifically, the second column
in the table includes description of demonstrated policy models in the corresponding
approach.

May 27, 2011 11:33 WSPC/117-IJSEKE - SPI-J111 0218-1940
S021819401100513X

Model Checking for Verification of MAC Models and Properties 125

Table 1. Comparison of features on related model chcking and policy manager approaches.

Test
Model Property Property suite

Product specification verification assessment generation

ACPTS Static, dynamic, Yes Yes Yes
and historic
policy model

Model Checking tool Static policy model Yes No No
(Zhang et al.)

Model Checking tool Static policy model Yes No No
(Kikuchi et al.)

Model Checking tool Historic policy Yes No No
(Schaad et al.) model

IBM Security Policy No Yes (Separation No No
Manager V7.0 of Duty)

Cisco Policy Manager No No No No

Different from these existing approaches, our proposed approach is targeted
at MAC models and their generic properties, and is more general and applicable
in a larger scope of models and properties. In addition to property verification,
our approach provides efficient test generation, which generates test cases that
guarantee combinatorial coverage for the input parameters used in the policy, thus
a thorough verification of MAC implementation.

9. Conclusion

To verify properties for MAC models, we propose a new general approach that
expresses MAC models in the specification language of a model checker and
generic AC properties in its property language as temporal logic formula. Then
the approach exploits the verification process of the model checker to verify the
specified models against the specified properties. Our approach is able to sup
port the verification of three common types of generic AC properties: static,
dynamic, and historical constraints. In addition, the approach also supports auto
mated generation of test cases to check the conformance of the models and their
implementations.

In future work, we plan to develop a tool for assisting the users in specifying
MAC models and properties in a more user friendly way. We also plan to investi
gate and expand the scope of models and properties supported by our approach.
Through our research, we will gain understanding about testing and verifying MAC
policies in policy development, which should lead to better policy quality and higher
security assurance in general. Our research results related to fundamentally advanc
ing knowledge and understanding will be disseminated in software engineering and
security conferences, journals, and books in various forms (e.g., papers, tutorials,
and book chapters). The groundwork for the proposed work has been widely pub
lished [29–35], and we will continue to widely disseminate the results produced by
the proposed work.

May 27, 2011 11:33 WSPC/117-IJSEKE - SPI-J111 0218-1940
S021819401100513X

126 V. C. Hu et al.

The work of conformance verification of generic MAC properties brings benefits
to society in two aspects. First, it should lead the practices for testing and verifying
MAC policies in improving policy quality and security in general. Second, innova
tions in new testing and verification algorithms and tools tend to propagate quickly
across application or task domains where MAC policies are used.

References

1.	 C. P. Pfleeger, Security in Computing, 2nd edn. (Prentice Hall PTR, 1997).
2.	 D. Ferraiolo, D. Kuhn and R. Chandramouli, Role-Based Access Control, Artech

House, Computer Security Series, 2003.
3.	 V. Hu, D. Frincke and D. Ferraiolo, The policy machine for security policy manage

ment, in Proc. ICCS Conference, San Francisco, May 2001.
4.	 P. Bonatti, S. Vimercati and P. Samarati, A modular approach to composing access

control policies, in Proc. ACM Conference on Computer and Communication Security,
Athens, Greece, November 2000.

5.	 S. Jajodia, P. Samarati and V. S. Subrahmanian, A logical language for express
ing authorizations, in Proc. 1997 IEEE Symposium on Security and Privacy (1997),
pp. 31–42.

6.	 M. Kudo and S. Hada, XML document security based on provisional authorization, in
Proc. ACM Conference on Computer and Communication Security, Athens, Greece,
November 2000.

7.	 E. C. Lupu and M. Sloman, Conflict in policy-based distributed systems management,
IEEE Trans Software Engineering 25(6) (1999) 852–869.

8.	 E. Martin, T. Xie and V. C. Hu, Assessing quality of policy properties in verification
of access control policies, North Carolina State University Department of Computer
Science Technical report TR-2007-25, September 16, 2007.

9.	 D. R. Kuhn, R. Kacker and Y. Lei, 22 CROSSTALK, The Journal of Defense Software
Engineering, June 2008.

10.	 V. C. Hu, R. D. Kuhn and T. Xie, Property Verification for Generic Access Con
trol Models, in Proc. 2008 IEEE/IFIP International Symposium on Trust, Security
and Privacy for Pervasive Application (TSP2008), Shanghai, China, December 17–20,
2008.

11.	 D. E. Bell and L. J. LaPadula, Secure Computer Systems: Mathematical Foundations
(MITRE Corporation, 1973).

12.	 D. Ferraiolo and R. Kuhn, Role based access control, in Proc. 15th NIST-NCSC
National Computer Security Conference, 1992, pp. 554–563.

13.	 National Computer Security Center, Integrity in Automated information System,
Technical Report 79-91, Library No. S237,254, September 1991.

14.	 D. F. C. Brewer and M. J. Nash, The Chinese wall security policy, in Proc. IEEE
Symposium on Security and Privacy (1989), pp. 206–214.

15.	 Workflow Management Coalition, Workflow Management Coalition Terminology
& Glossary, documentation number WFMC-TC-1011, February 1999. http://www.
wfmc.org/.

16.	 M. Ben-Ari, Z. Manna and A. Pnueli, The temporal logic of branching time, Acta
Informatica 20 (1983).

17.	 E. M. Clarke, E. A. Emerson and A. P. Sistla, Automatic verification of finite-state
concurrent systems using temporal-logic specifications, ACM Trans. Programming
Languages and Systems 8(2) (1986).

http:wfmc.org
http://www

May 27, 2011 11:33 WSPC/117-IJSEKE - SPI-J111 0218-1940
S021819401100513X

Model Checking for Verification of MAC Models and Properties 127

18.	 A. Pnueli, A temporal logic for concurrent programs, Theoretical Computer Science
13 (1980).

19.	 S. Kikuchi, S. Tsuchiya, M. Adachi and T. Katsuyama, Policy verification and valida
tion framework based on model checking approach, in Proc. International Conference
on Autonomic Computing (2007), pp. 1–9.

20.	 T. Jaeger and E. T. Jonathon, Practical safety in flexible access control model, ACM
Transitions on Information and System Security 4(2) (2001) 158–190.

21.	 E. Martin and T. Xie, A fault model and mutation testing of access control policies,
in Proc. 16th International Conference on World Wide Web, Banff, Alberta, Canada
(2007), pp. 667–676.

22.	 D. R. Kuhn and V. Okun, Pseudo-exhaustive testing for software, in Proc. 30th
NASA/IEEE Software Engineering Workshop (2006) April 25–27.

23.	 Y. Lei et al., Efficient test generation for multi-way combinatorial testing, Software
Testing, Verification, and Reliability, Wiley InterScience, October 2007.

24.	 http://csrc/nist/gov/acts.
25.	 NuSMV: NuSMV 2.2 Tutorial, a new symbolic model checker, http://nusmv.

irst.itc.it/.
26.	 R. Sandhu, V. Bhamidipati and Q. Munawer, The ARBAC97 model for role-based

administration of roles, ACM Transactions on Information and Systems Security
2(1) (1999) 105–135.

27.	 N. Zhang, M. D. Ryan and D. Guelev, Evaluating access control policies through
model checking, in Proc. Information Security Conference (2005), pp. 446–460.

28.	 A. Schaad, V. Lotz and K. Sohr, A model-checking approach to analysing organi
sational controls in a loan origination process, in Proc. ACM Symposium on Access
Control Models and Technologies (2006), pp. 139–149.

29.	 V. C. Hu, E. Martin, J. Hwang and T. Xie, Conformance checking of access control
policies specified in XACML, in Proc. 1st IEEE International Workshop on Security
in Software Engineering (IWSSE 2007), Beijing, China (July 2007), pp. 275–280.

30.	 E. Martin and T. Xie, A fault model and mutation testing of access control poli
cies, in Proc. 11th International Conference on World Wide Web (WWW 2007),
Security, Privacy, Reliability, and Ethics Track, Banff, Alberta, Canada (May 2007),
pp. 667–676.

31.	 E. Martin and T. Xie, Automated test generation for access control policies via change-
impact analysis, in Proc. 3rd International Workshop on Software Engineering for
Secure Systems (SESS 2007), Minneapolis, MN (May 2007), pp. 5–11.

32.	 E. Martin, T. Xie and T. Yu, Defining and measuring policy coverage in testing access
control policies, in Proc. 8th International Conference on Information and Commu
nications Security (ICICS 2006), Raleigh, NC (December 2006) pp. 139–158.

33.	 E. Martin and T. Xie, Automated test generation for access control policies, in Supple
mental Proc. 17th IEEE International Conference on Software Reliability Engineer
ing (ISSRE 2006), Fast Abstracts, Raleigh, NC (November 2006).

34.	 E. Martin and T. Xie, Inferring access-control policy properties via machine learning,
in Proc. 7th IEEE Workshop on Policies for Distributed Systems and Networks (POL
ICY 2006), London, Ontario Canada (June 2006), pp. 235–238.

35.	 E. Martin, T. Xie and V. C. Hu, Assessing quality of policy properties in verification
of access control policies, North Carolina State University Department of Computer
Science Technical report TR-2007-25 (September 16), 2007.

36.	 IBM Policy Manager V7.0: http://www.redbooks.ibm.com/redpapers/pdfs/redp4512.
pdf.

37.	 Cisco Policy Manager: http://www.cisco.com/en/US/products/ps9530/index.html.

http://www.cisco.com/en/US/products/ps9530/index.html
http://www.redbooks.ibm.com/redpapers/pdfs/redp4512
http:irst.itc.it
http://nusmv
http://csrc/nist/gov/acts

	1 Introduction
	2 Access Control Model Checking
	3 Generic Access Control Properties
	3.1 Static models
	3.2 Dynamic models
	3.3 Historical models

	4 Coverage and Confinement Checking
	4.1 Rule coverage checking
	4.2 Property confinement checking

	5 Test Suite Generation
	6 Test Scheme
	7 Case Study
	7.1 Model specification in ACPTS
	7.2 Covering array generation
	7.3 Mutant rules
	7.4 Mutant property

	8 Related Work
	9 Conclusion

