
c

May 27, 2011 11:33 WSPC/117-IJSEKE - SPI-J111 0218-1940
S021819401100513X

International Journal of Software Engineering 
and Knowledge Engineering 
Vol. 21, No. 1 (2011) 103–127 
© World Scientific Publishing Company 
DOI: 10.1142/S021819401100513X 

MODEL CHECKING FOR VERIFICATION OF MANDATORY
 
ACCESS CONTROL MODELS AND PROPERTIES
 

VINCENT C. HU∗ and D. RICHARD KUHN† 

National Institute of Standards and Technology
 
Gaithersburg, MD 20899-8930, USA
 

∗vhu@nist.gov
 
†kuhn@nist.gov
 

TAO XIE‡ and JEEHYUN HWANG§ 

Department of Computer Science 
North Carolina State University 
Raleigh, NC 27695-8206, USA 

‡xie@csc.ncsu.edu 
§jhwang4@csc.ncsu.edu 

Received 30 May 2009
 
Revised 15 July 2009
 
Accepted 27 July 2009
 

Mandatory access control (MAC) mechanisms control which users or processes have 
access to which resources in a system. MAC policies are increasingly specified to facili
tate managing and maintaining access control. However, the correct specification of the 
policies is a very challenging problem. To formally and precisely capture the security 
properties that MAC should adhere to, MAC models are usually written to bridge the 
rather wide gap in abstraction between policies and mechanisms. In this paper, we pro
pose a general approach for property verification for MAC models. The approach defines 
a standardized structure for MAC models, providing for both property verification and 
automated generation of test cases. The approach expresses MAC models in the speci
fication language of a model checker and expresses generic access control properties in 
the property language. Then the approach uses the model checker to verify the integrity, 
coverage, and confinement of these properties for the MAC models and finally generates 
test cases via combinatorial covering array for the system implementations of the models. 

Keywords : Access control; policy; model; testing. 

1. Introduction 

Mandatory access control (MAC) [1] is concerned with determining the allowed 
activities of legitimate users, mediating every attempt by a user to access a resource 
in a system. A given information technology (IT) infrastructure can implement 
MAC systems in many places and at different levels. Operating systems use MAC to 
protect files and directories. Database management systems (DBMS) apply MAC to 
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regulate access to tables and views. Most commercially available application systems 
implement MAC, often independent of the operating systems and/or DBMSs on 
which they are installed. 

The ob jectives of a MAC system are often described in terms of protecting 
system resources against inappropriate or undesired user access. From a business 
perspective, these ob jectives could just as well be described in terms of optimal 
sharing of information. After all, the main objective of IT is to make information 
available to users and applications. A greater degree of sharing may get in the way 
of resource protection; in reality, a well-managed and effective MAC system actually 
facilitates sharing. A sufficiently fine-grained MAC mechanism can enable selective 
sharing of information where in the absence of MAC, sharing may be considered 
too risky altogether [2]. 

When planning a MAC system, three abstractions of controls should be consid
ered: MAC policies, models, and mechanisms. MAC policies are high-level require
ments that specify how access is managed and who, under what circumstances, 
may access what information. While MAC policies can be application-specific and 
thus taken into consideration by the application vendor, policies are just as likely 
to pertain to user actions within the context of an organizational unit or across 
organizational boundaries. For instance, policies may pertain to resource usage 
within or across organizational units or may be based on need-to-know, compe
tence, authority, obligation, or conflict-of-interest factors. Such policies may span 
multiple computing platforms and applications. 

At a high level, MAC policies are enforced through a mechanism that translates a 
user’s access request, often in terms of a structure that a system provides. There are 
a wide variety of structures; for example, a simple table lookup can be performed to 
grant or deny access. Although no well-accepted standard yet exists for determining 
their policy support, some MAC mechanisms are direct implementations of formal 
MAC policy concepts [2]. 

Rather than attempting to evaluate and analyze MAC systems exclusively at the 
mechanism level, security models are usually written to describe security properties 
of a MAC system. A model is a formal presentation of a security policy enforced by 
the MAC system, and is useful for proving theoretical limitations of a system. MAC 
models are of general interest to both users and vendors. They bridge the rather 
wide gap in abstraction between policies and mechanisms. MAC mechanisms can 
be designed to adhere to the properties of the model. Users see a MAC model 
as an unambiguous and precise expression of requirements. Vendors and system 
developers see MAC models as design and implementation requirements. On one 
extreme, a MAC model may be rigid in its implementation of a single policy. On 
the other extreme, a MAC model allows for the expression and enforcement of a 
wide variety of policies and policy classes [2, 3]. 

It is common that a system’s privacy and security are compromised due 
to the faulty MAC model and mechanism of MAC policies instead of the fail
ure of cryptographic primitives or protocols. Such faults can result in serious 
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vulnerabilities, especially when different MAC models and rules are combined. This 
problem becomes increasingly severe as systems become more and more complex, 
and are deployed to manage a large amount of sensitive information and resources 
that are organized into sophisticated structures. Identifying discrepancies between 
policy, model, and implementation is crucial because correct implementation and 
enforcement of policies by applications is based on the premise that the policy 
specifications are correct, therefore the policy specification must undergo rigorous 
verification and validation through systematic verification and testing to ensure 
that they truly encapsulate the desired MAC properties from the policy authors. 

To the best of our knowledge, no techniques exist for verifying whether the 
properties of a MAC policy are correctly expressed in a model as well as whether 
the policy is satisfied in the implementation. In practice, the same MAC policies 
may express multiple different MAC models or express a single model in addi
tion to extra access control (AC) constraints outside of the model. Verifying the 
conformance of MAC models and policies is a non-trivial and critical task. One 
important aspect of such verification is to formally check the inconsistency and 
incompleteness [4–7] of the model and properties because a MAC model and its 
implementation do not necessarily explicitly expressed the policy, which can also 
be implicitly embedded by mixing with direct access constraints or other MAC 
models. 

In our approach, users first specify MAC models in the specification language of 
a model checker, and properties in temporal logic formula. To ensure the correct
ness of the MAC model against the properties, the system automatically verifies 
these properties by exploiting the verification process of the model checker. In this 
process, the confidence of the model’s correctness depends on the quality of the 
specified properties. Next, the system assesses the quality of given properties based 
on mutation analysis and checks the entities (i.e., rules) of the model are sufficiently 
covered and confined by the properties. The assessment result help guide high qual
ity property specification by targeting uncovering or unconfined entities. Finally, 
the system automatically generates test cases (both test inputs and expected out
puts) from the domain variables in the MAC model and specified properties using 
a combinatorial testing technique [9]. The system feeds these test inputs into real 
MAC implementation of the given model to verify whether the actual test outputs 
are the same as the expected outputs. 

The rest of this paper is organized as follows. Section 2 presents a formal model 
of access control model checking. Section 3 describes three fundamental (static, 
dynamic, and historical) MAC models and their properties, which are expressed 
in finite state machine specification and in temporal logic formula, respectively. 
Section 4 describes rule coverage and property confinement checking techniques. 
Section 5 illustrates a combinatorial test suite generation technique. Section 6 
describes our test scheme for model checking, property assessment, and testing. 
Section 7 illustrates the case study to demonstrate our test scheme. Section 8 dis
cusses related work. Section 9 concludes the paper. 
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2. Access Control Model Checking 

There are two levels of verification steps. First, the correct specification of a MAC 
model needs to be verified. To achieve this goal, the scheme of our approach includes 
a black-box model checking method that allows the users to specify AC properties 
and then verifies the MAC model against these properties. Since the confidence 
of the model’s correctness depends on the quality of the specified properties, our 
scheme also includes a white-box property assessment method that applies muta
tion analysis [8] on entities in the model and properties to assess the sufficiency of 
the covering and confinement of the properties for the model. Second, the correct 
implementation of the policy needs to be tested. Our scheme includes a test gen
eration method that generates test cases (both test inputs and expected outputs) 
from the AC variables in the model and specified properties using a combinatorial 
testing technique [9]. The approach then runs these test cases on the MAC imple
mentation to verify whether the actual test outputs are the same as the expected 
outputs. We next provide the formal definition of MAC model checking in terms of 
AC attributes: 

Let S, O, and  A denote respectively the set of all the sub jects, objects, and 
actions in a MAC system. Each sub ject, object, or action is associated with a set of 
attributes that may be used for AC decisions. For example, a sub ject’s attributes 
may include a user’s role, rank, and security clearance. An ob ject’s attributes may 
include a file’s type, a document’s security class, and a printer’s location. 

Definition 1. A MAC  rule r is a statement: “if c then d ”, where constraint c is 
a predicate expression on AC attributes (sub jects, ob jects, or actions) and system 
states (global system events) for the permission decision d. An example rule is “if 
(a user is a member of X group with security level 3 and today is Friday and the 
user’s action is read and the object is file Y ) then grant ”. 

Definition 2. An AC property p is a proposition: “b → d ” where the result of 
the access permission d depends on quantified predicate b on AC attributes and 
system states. An example property is “for al l users whose security level is 2 and 
the action is read and the object is file Y → deny ”. 

An access request q is a tuple (s, o, a),  where  s ⊂ S, o ⊂ O and a ⊂ A. A  request  
(s, o, a) means that subject s requests to take action a on ob ject o. Note that each 
of s, a, or  o may have multiple attributes. A MAC model is a sequence of rules, 
each of which is of the form (sCond, oCond, aCond, decision, gCond, st) in the logic 
expression of c in Definition 1. sCond, oCond and aCond are constraints over the 
attributes of a sub ject, ob ject, and action, respectively. gCond is a general constraint 
that may potentially be over all the attributes of subjects, objects, actions, and other 
properties of a system (e.g., the current time and the load of a system), and s is the 
current state recorded from the previous access event of the MAC system. Given 
a request  (s, o, a), if sCond, oCond, aCond, gCond, and  st are all evaluated to be 
TRUE, then the request is either permitted or denied according to the decision d 
as described in the rule of Definition 1. Thus, each rule’s applicability to a request 
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is of the form: If (sCond ∧ oCond ∧ aCond ∧ gCond ∧ st)then (d). We can specify 
more complex constraint structures in a rule. For example, we can specify rules that 
can be applicable to multiple-attributes requests. 

A deterministic finite state transducer of a MAC model corresponding to a Finite 
State Machine (FSM) with a five-tuple M = (Σ, ST, s0, δ, F ), where: 

Σ =  {sCond 1, . . . , sCond n, aCond 1, . . . , aCond n, oCond 1, . . . , oCond n, 

gCond 1, . . . , gCond }n 

is the input alphabet that represents the attribute constraints associated with sub
ject s, access a, object o, and global event g. 

S = {st0, st2, . . . , stn,Grant ,Deny } is a finite, non-empty set of recorded MAC 
system states and permissions. st0 is the initial state. 

δ is the state-transition function, where δ: ST × Σ → ST 
F = {Grant ,Deny } is the set of final states. 
For static MAC models [10] such as Multi-Level AC (MLS) [11], Role-Based 

AC (RBAC) [12], and Rule-Based AC policies (RuBAC), the FSM Mstatic does 
not require intern states st to reach the permission state, thus F = ST = 
{Grant ,Deny }, i.e., Mstatic is just a straightforward FSM model without state 
transitions. For dynamic MAC models such as N-Person Control [13], and 
Limited Number of Access policies, the input alphabets of FSM Mdynamic are 
Σdynamic = {gCond 1, . . . , gCond }, where  gCondi is the threshold indicator of the n 

access limitation, such as the number of persons have to access at the same time 
in a N-Person control policy, or the maximum number of access allowed for Lim
ited Number of Access policy. For historical MAC models such as Chinese Wall 
[14] and Workflow policies [15], the input alphabets of the FSM Mhistorical are 
Σhistorical = Σ  − {gCond 1, . . . , gCond }, where  sCondi, aCondi, and  oCondi con-n 

tribute to a historical recording that is used as determining factors for the next 
permission decision. Note that it is possible for different types of MAC models to 
combine into one model such that Mcombine = {Mstatic ∪ Mdynamic ∪ Mhistorical}2 . 

An AC property p in Definition 2 as expressed by the proposition p: ST ×Σ2 → 
ST of FSM, which can be collectively translated in terms of logical formula such 
that p = (si ∗ sCond 1 ∗ · · ·∗ sCond n ∗aCond 1 ∗ · · ·∗aCond n ∗oCond 1 ∗ · · ·∗oCond n ∗ 
gCond 1 ∗ · · · ∗ gCond ) → d, where  p ∈ P is a set of properties, and ∗ is a Boolean n 

operator in terms of logical formulas of temporal logic such as computational tree 
logic (CTL) [16, 17] and linear-time temporal logic (LTL) [18]. The purpose of model 
checking is to verify the set ST in M in which p is true according to an exhaustive 
state space search. In addition, by verifying the set of states in which the negation 
of p is true, we can obtain the set of counterexamples to make the assertion that 
p is true. The satisfaction of a MAC model M to the AC properties P by model 
checking is composed of two requirements: 

(1) Safety, where M satisfies P in description of safety. That is, there is no violation 
of rules to the logic specified in P , and it is assured that M will eventually be in a 
desired state after it takes actions in compliance with a user access request. Thus, 
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Axiom 1. AC safety verification is to verify Macp satisfies Pacp of MAC 
policy acp. 

(2) Liveness, where M will not have unexpected complexities. That is, there is 
neither a deadlock in which the system waits forever for system events, nor a livelock 
in which the model repeatedly executes the same operations forever. Thus, 

Axiom 2. Liveness check on M calculates the complexity to prove that the model 
is practical, i.e., liveness of Macp is that Pacp will be satisfied within finite states 
(a permission decision of AC request will be eventually made) for policy acp. 

Figure 1 shows the relations between M and P in a model checking framework. 
The AC rules define the system behaviors that function as the transition relation 

δ in M . Then when the AC property is represented by temporal logic formula p, 
we can represent the assertion that model M satisfies p by M | = Ab → AXd 
from Definition 2 using temporal logic quantifier A to represent “always”, and logic 
quantifier X to represent “is true next state”. The purpose of safety verification 
(Axiom 1) and liveness verification (Axiom 2) using model checking is to determine 
whether these assertions are true, and to identify a state in which the assertions 
are not true as a counterexample for the assertions. Since the behavior of the MAC 
system can be represented by FSM M , and the properties that M must satisfy 
can be represented by temporal logic formulas, we can define the correctness of 
policies more precisely as that the model can be led from every possible state that 
is reachable from initial states to the defined final state while complying with the 
properties [19]. 

3. Generic Access Control Properties 

This section demonstrates the three fundamental (static, dynamic, and historical) 
MAC models and properties from the separation of duty and safety point of view 
[10, 20]. We also illustrate how a model and its properties can be specified in a 
model checking environment. 

3.1. Static models 

Static policies regulate the access permission by static system states or condi
tions such as rules, attributes, and system environments (times and locations for 
access). Popular MAC models with these types of properties include RBAC, MLS, 

Policy: 
(rules, 
constraints) 

Access control model: M 

= (Σ , ST, s0, δ, F) 
AC properties: 

P ={p1…pn} 
Verify the 
safety and 
liveness of P 

Fig. 1. Mandatory Access Control model and property. 
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and RuBAC. These types of models can be specified by asynchronous or direct 
specification expressions of an FSM. The transition relation of authorization states 
is directly specified as a propositional formula in terms of the current and next 
values of the state variables. Any current state/next state pair is in the transition 
relation if and only if it satisfies the formula, as demonstrated in the following direct 
specification of  an FSM:  

{ 
VARIABLES
 

access state : boolean; /* 1 as grant, 0 as deny*/
 
. . . . . . . . . . 
  

INITIAL
 
access state := 0;
 

TRANS /* transit to next access state */
 
next (access state) :=
 

((constraint 1 & constraint 2  &  . . . . . .  constraint  n) |

(constraint a & constraint b  &  . . . . . .  constraint  m) . . . . . . ..);
 

} 

where the system state of access authorization is initialized as the deny state and 
moved to the grant state for any access request that complies with the constraints 
of the rule corresponding with each constraint predicate (i.e., constraint 1. .  .  .&  
constraint n) in a rule, and stay in the deny state otherwise. The properties of the 
static constraints can be verified using the properties expressed in the following 
temporal logic formulae: 

AG (constraint 1 & constraint 2  &  . . . .  constraint  n) → AX (access state = 1)
 
AG (constraint a & constraint b  &  . . . .  constraint  m) → AX (access state = 1) . .  . . . . 
  
AG ! ((constraint 1  &  . . . .constraint  n) | (constraint a  &  . . . .  constraint  m) |. . . )  →
 
AX (access state = 0)
 

which simply means that all access requests that comply with specified constraints 
for the rules should be granted, and all non-compliant ones should be denied. Spec
ifications of the form “AG (b) → AX (d)” (Definition 2) indicate essentially that for 
all paths (the “A” in “AG”) for all states globally (the “G”), if b holds then (“→”) 
for all paths, in the next state (the “X” in “AX ”) d will hold. 

3.2. Dynamic models 

Dynamic policies regulate the access permission by dynamic system states or con
ditions such as specified events or system counters or N-person AC policy. A MAC 
model with these types of properties specifies that accesses are permitted only by 
a certain subject to a certain ob ject with certain limitations (e.g., ob ject x can be 
accessed only no more than i times simultaneously by user group y). For exam
ple, if a user’s role is a cashier, he or she cannot be an accountant at the same 
time when handling a customer’s checks. This type of model can be specified with 
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asynchronous or direct specification expressions of an FSM, which uses a vari
able semaphore to express the dynamic properties of the authorization decision 
process. Another example of dynamic constraint states is enforcing a limited num
ber of concurrent accesses to an object. The authorization process for a user thus 
has four states: idle, entering, critical, and  exiting. A user is normally in the idle state. 
The user is moved to the entering state when the user wants to access the critical 
ob ject. If the limited number of access times is not reached, the user is moved to 
the critical state, and the number of the current access is increased by 1. When the 
user finishes accessing the critical ob ject, the user is moved to the exiting state, and 
the number of the current access is decreased by 1. Then the user is moved from 
the exiting state to the idle state. The authorization process can be modeled as the 
following asynchronous FSM specification: 

{ 
VARIABLES
 

count, access limit : INTEGER;
 
request 1 : process request (count);
 
request 2 : process request (count);
 
. . . . . . . 
  
request n: process request (count);
 
/∗max number of user requests allowed by the system∗/
 
access limit := k; /*max number of concurrent access∗/
 
count := 0; act {rd, wrt}; object {obj};
 
process request (access limit) {


VARIABLES
 
permission : {start, grant, deny};
 
state : {idle, entering, critical, exiting};
 

INITIAL STATE (permission) := start;
 
INITIAL STATE (state) := idle;
 
NEXT STATE (state) := CASE {


state == idle : {idle, entering};
 
state == entering & ! (count > access limit): critical;
 
state == critical : {critical, exiting};
 
state == exiting : idle;
 
OTHERWISE: state};
 

NEXT STATE (count) := CASE {

state == entering : count +1;
 
state == exiting : count −1;
 
OTHERWISE: DO NOTHING };
 

NEXT STATE (permission) := CASE {
(state == entering) & (act == rd) & (object == obj): grant;  
OTHERWISE: deny; 
}

}
} 
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The state variables of the preceding example are used as the asynchronous states 
for the concurrent access of the limited number of access requests. The specification 
of the dynamic constraints is verified through the following properties expressed in 
temporal logic formula: 

AG (state == entering) & (act == rd) & (object == obj) → AX (access = 
grant) 

AG (state == idle | state == critical | state == exiting) → AX (access = deny) 

where temporal logic formula AG (b) → AX (d) (Definition 2) indicates that “if 
condition p is true at time t, condition d is true at all times later than t. 

3.3. Historical models 

Historical policies regulate the access permission by historical access states or 
recorded and predefined series of events. The representative MAC policies for this 
type of AC model are Chinese Wall and Workflow AC policies. This type of model 
can be best described by synchronous or direct specification expressions of an 
FSM. For example, the following synchronous FSM specification specifies a Chi
nese Wall AC model where there are two Conflict of Interest groups COI1, COI2 of 
ob jects: 

{ 
VARIABLES
 

access {grant, deny};
 
act {rd, wrt};
 
o state {none, COI1, COI2}; 
u state {1, 2, 3};
 

INITIAL STATE(u state) := 1;
 
INITIAL STATE(o state) := none;
 
NEXT STATE(state) := CASE {


u state == 1 & act == rd & o state == COI1 : 2; 
  
u state == 1 & act == rd & o state == COI2 : 3; 
  
u state == 2 & act == rd & o state == COI1 : 2; 
  
u state == 2 & act == rd & o state == COI2 : 2; 
  
u state == 3 & act == rd & o state == COI1 : 3; 
  
u state == 3 & act == rd & o state == COI2 : 3; 
  
OTHERWISE: 1; };
 

NEXT STATE(access) := CASE {

u state == 2 & act == rd & o state == COI1: grant;
 
u state == 3 & act == rd & o state == COI2: grant;
 
OTHERWISE: deny; };
 
NEXT STATE (act) := act;
 
NEXT STATE (o state) := object;
 

} 
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The properties of the dynamic constraints can be verified by verifying the following 
temporal logic formula: 

AG ((u state  ==  2  & act  ==  rd  & o  state == COI1 ) | (u state == 3 & act == rd & 
o state == COI2 )) → AX (access = grant)
 
AG ! ((u state == 2 & act == rd & o state == COI1 ) | (u
 state == 3 & act == rd 
& o  state == COI2 )) → AX (access = deny) 

where temporal logic AG (b) → AX (d) indicates that the access event d is invocated 
by historical events in b. 

4. Coverage and Confinement Checking 

Although the integrity of logic in MAC model can be checked by the safety and 
liveness verification (Section 2), the MAC models are still not fault-proof because 
the temporal logic in the properties might not be thorough in covering all possible 
values of all rules or all conditions in rules. For example, an extra permit rule may be 
added to a list of rules specified for a MAC model, and the constraint of this rule may 
not be included in any of the properties; therefore, the unauthorized access allowed 
by this extra rule cannot be exposed by only the safety and liveness verification, thus 
leading to a fault due to insufficient properties (i.e., coverage fault). Further, even 
if the properties cover all the rules in the model, it is possible that the properties 
do not completely confine to intended properties: the complement of a specified 
predicate does not guarantee results to the complement of the permission of a 
property, thus risking exceptional permissions despite the constraints enforced by 
the property. The rules in the model, properties, and confined properties may each 
describe its own space of permission conditions, and may not be congruent in one 
space as the initial relation illustrated examples in Fig. 2. The safety and liveness 
check can assure only the logic integrity of some rules against some properties. The 
complete satisfaction of a model to its properties requires fixing of coverage and 
confinement faults if any spotted by additional Coverage and Confinement Check 
(CCC), the second line of defense against such semantic faults. 

CCC requires mutant versions of the model [21], and extra modified properties 
for additional model checking. As illustrated in Fig. 2, the goal of CCC is to ensure 
that the rules in the model are completely covered by the properties, and to confirm 
that no exceptional access permissions are granted unless intentionally allowed. The 
first step of CCC is to discover the rules, which are seeped through the specification 
of the properties by applying model checking on mutated versions of rules. The sec
ond step is to detect unexpected access permission that might not be the intention 
of the policy author by applying model checking on modified properties extracted 
from the original properties. The preceding steps are described in Secs. 4.1 and 4.2 
after the following formal definitions. 

Axiom 3. A MAC  rule  r is covered by an AC property p when the access decision d 
of p depends on r of the MAC model, verified through safety and liveness checking 



′ 

′ 

May 27, 2011 11:33 WSPC/117-IJSEKE - SPI-J111 0218-1940
S021819401100513X

Model Checking for Verification of MAC Models and Properties 113 

or 

Specified 
properties 

Confined 
properties 

Specified 
properties 

Model 

Confined 
properties 

Confined 
properties / 

Model / 

properties 

specified 
properties 

Confined 

Model 

specified 
Model/ 

properties 

Coverage fault 
fixing 

Confinement 
fault fixing 

Initial relation 

All rules and all 
properties verified 

All rules and properties 
are verified and confined 

Some rules and 
some properties 

verified 

Fig. 2. Model, confined properties, and specified properties. 

without counterexamples of r against p. Function CM (. . . ri. . . pi...) =  TRUE  |
FALSE decides if rule ri in the model M is covered by property pi, where  ri is a 
member of rule set R, and  pi is a member of property set P . For example, the rule: 
“users with security level 3 can read file Y ” is covered by the property: “For al l 
users with security greater then 2 can read file Y ”. 

Definition 3. The negation of a MAC rule r, ∼ r = “if  c then ¬d” from  
Definition 1. For example, the negation of the example rule in Definition 1 is “if 
(a user is a member of X group with security level 3 and today is Friday and the 
user’s action is read and the object is file Y ) then deny ”. 

Definition 4. The complement of an AC property p = b → d, p = ¬b → ¬d, 
is the complement expression of p, i.e., the negation of b causes the negation of d. 
For example, p = (x ∧ y ∧ z) → grant , p = ¬(x ∧ y ∧ z) → deny. For example, 
the complement of the example property in Definition 2 is “for al l users whose 
security level is not 2 or the action is not read or the object  is not  file Y  → grant ”. 

4.1. Rule coverage checking 

The key notion of rule coverage checking is to synthesize a version of the given 
model in such a way that the permission of its rules is mutated such that ruleris 
changed to ∼ r. If property set P is satisfied by both mutated and original models 
of M through model checking, then some of the rules and their mutants would never 
apply to P ; in  other  words,  P does not cover all the rules in model M . Formally: 

Theorem 1. If (CM (r, p) ∧ CM (∼ r, p)) then “r is not applied to properties p”. 



′ 
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Proof. CM (r, p) =  TRUE  says  that  p depends on rule r to reach the access decision 
(Axiom 1). CM (∼ r, p) =  TRUE  says  that  p depends on rule ∼ r to reach the access 
decision d, since  r = “if  c then d” and  ∼ r = “if  c then ¬d”(Definitions 1 and 3), 
which leads to CM (r, ∼ r, p) = TRUE, i.e., p depends on both r and ∼ r for d. 
The only condition for this result to hold is when r is a “don’t care” variable  in  
the Boolean predicate of p; in  other  words,  r is not covered by p. 

As an example in Fig. 3, the safety and liveness checking verify that p conforms 
to the model without counterexamples; however, by applying the CCC by mutating 
the rule u == j : grant to u == j :  deny  for the coverage checking, the result shows 
that the property satisfies the mutated rules as well (without counterexamples), 
indicating that the variable u in the rule r was never applied to the property p. 

This result shows that the rule u == j : grant is not verified with the property 
AG (q == i) → access = grant. One way for addressing this insufficiency is adding a 
new property that describes proper control of u. Note that it is necessary to check 
every r in M against the set of all properties P to achieve thorough verification. 

4.2. Property confinement checking 

Property confinement checking ensures that there is no exceptional permission 
allowed in addition to the specified properties; this checking requires a confined 
property p (Definition 4) modified from the original property p to be added for 
the next run of model checking. Confinement check should discover the discrepancy 
of the specified properties and the properties the MAC policy author intend. The 
rationale is that if model M does not satisfy p′, then there are exceptional access 
permissions that leak through p, formally: 

Theorem 2. If (CM (r, p) ∧ CM (r, p′)) then there is no exceptional permission 
allowed from p in model M against rule r. 

NEXT_STATE(q):= CASE { 
x :i 
.... 

} 

NEXT_STATE(access):= CASE { 
u == j :grant 
g == I : grant 

OTHERWISE: deny 

...... 
} 

NEXT_STATE(access):= CASE { 
u == j :deny 
g == I : deny 
OTHERWISE: grant

 ...... 
} 

Mutant 

....... 
AG (q == i) → access = grant 

c 

d 

r 

−d 

b d 

~r 

p 

Fig. 3. Example of uncovered rules in a MAC model. 
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....... 
AG (u == i) → access = grant 

NEXT_STATE(u):= CASE {
 x==s :i 
x==t :j 

NEXT_STATE(access):= CASE { 
u==k :deny 
...... 

Otherwise grant 
} 

¬AG (u == i) → access = denyAddition  

r d 

b d 
−b −dp p’ 

Fig. 4. Unconfined rule in a property. 

Proof. CM (r, p) says  that  p is covered by model M with rule r, and  CM (r, p′) 
says that p′ is covered by rule r (Axiom 3), since CM (r, p) ∧ CM (r, p′) equaling to 
CM (r, p, p′) implies that r is covered by both p and p′, such that p: r → d and 
p′: ¬r → ¬d, which means any rule that is a negation of r will cause permission 
d changes to ¬d. 

Figure 4 shows a transition to an unspecified state for a certain range of data 
values that allow exceptional permission not covered by a specified property because 
the value of access when u value is different than i (such as u = j) also grants access 
permission by the rule otherwise : grant. This fault can be caught by a counterex
ample AG (u == j) → access = grant when checking the model M against the 
additional confinement property ¬ AG (u == i) → access = deny derived from 
original property AG (u == i) → access = grant. The additional model check
ing for confinement verification informs the MAC policy authors which property 
is not confined so that the MAC policy author can add new rules to enforce the 
safety of the model. As in this case, changing the rule otherwise : grant to oth

erwise : deny and adding all granted rules in the state will correct the problem. 

Note that it is possible the MAC policy author intentionally allowed the excep
tion for a specified property, and it is necessary to check every p against the set of 
rules R = {r1, . . . , rn} to achieve thorough verification. 

5. Test Suite Generation 

As testing must always be conducted once a policy is implemented to assure cor
rect implementation, automated generation of test cases can reduce total costs, 
thus making formal specification easier to integrate into the development process in 
addition to supporting property verification. Model checking is ideal for this inte
gration because it can solve the oracle problem for testing (determining expected 
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results for a particular set of test input data). A case study of this technique 
for software is given by [22]. Even with highly automated tools, real-world devel
opment budgets rarely allow the development and exploration of formal models, 
because the cost must be balanced against the cost of releasing code with faults 
that would not be caught in testing. But testing typically consumes 50% or more 
of a development budget. Generating test cases from formal specifications makes it 
cost-effective to allocate a portion of the testing budget to produce a formal spec
ification, which can then be used to confirm desired properties and generate test 
cases. 

Combinatorial testing is a methodology that tests all t-way [23] combinations of 
input parameter values. For n variables with v values, t-way combinations, combina
torial testing requires a number of tests proportional to vt log n, which is enormous 
to be practical if t is a large enough number; however, the most common form is 
pairwise testing, in which all pairs of input values are covered in at least one test. 
Higher strength versions of this method cover 3-way, 4-way, or more interactions 
at least once. The advantage of combinatorial testing for verifying MAC policies 
is that AC often relies on a small number of discrete values for most parameters. 
For example, an MLS policy (i.e., standard military classification policy) may have 
levels unclassified, confidential, secret, top secret, plus a small number of categories, 
all applied to a collection of resources such as files and programs. While real-world 
MAC is likely to have far too many variables for exhaustive testing, it will probably 
be possible to test, for example, all 5-way combinations of variable values. Thus 
a failure that results from the interaction of five or fewer variables is likely to be 
caught. The number of tests required to provide 5-way coverage may be large, but 
if complete tests are fully automated, then this form of testing is practical even for 
large systems. 

The first step in combinatorial testing of the policy is to find a set of tests that 
will cover all t-way combinations of parameter values for the desired combinatorial 
interaction strength t. This collection of tests is known as a covering array. The  
covering array specifies test data, where each row of the array can be regarded as 
a set of parameter values for an individual test. Collectively, the rows of the array 
cover all t-way combinations of parameter values. An example is given in Fig. 5, 
which shows a 3-way covering array for 10 variables with two values each. The 
interesting property of this array is that any three columns contain all eight possible 
values for three binary variables. For example, taking columns F, G, and H, we can 
see that all eight possible 3-way combinations (000,001,010,011,100,101,110,111) 
occur somewhere in the rows of the three columns. In fact, this is true for any three 
columns. Collectively, therefore, this set of tests will exercise all 3-way combinations 
of input values in only 13 tests, as compared with 1024 for exhaustive coverage. 
Similar arrays can be generated to cover up to all 6-way combinations. A non
commercial research tool called Automated Combinatorial Testing Suite (ACTS) 
[24] developed by NIST and the University of Texas at Arlington makes this possible 
with much greater efficiency than previous tools. For example, a commercial tool 
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A B C D E F G H I J 
1 0 0 0 0 0 0 0 0 0 0 
2 1 1 1 1 1 1 1 1 1 1 
3 1 1 1 0 1 0 0 0 0 1 
4 1 0 1 1 0 1 0 1 0 0 
5 1 0 0 0 1 1 1 0 0 0 
6 0 1 1 0 0 1 0 0 1 0 
7 0 0 1 0 1 0 1 1 1 0 
8 1 1 0 1 0 0 1 0 1 0 
9 0 0 0 1 1 1 0 0 1 1 
10 0 0 1 1 0 0 1 0 0 1 
11 0 1 0 1 1 0 0 1 0 0 
12 1 0 0 0 0 0 0 1 1 1 
13 0 1 0 0 0 1 1 1 0 1 

Fig. 5. 3-way covering array for 10 parameters with 2 values each. 

required 5400 seconds to produce a less optimal test set than ACTS generated in 
4.2 seconds. 

To produce test cases that guarantee combinatorial coverage to an interaction 
level t, we produce a t-way covering array [22] for input parameters used in the 
policy. Informally, a covering array can be viewed as a table of input data where 
each column is an input parameter and values in each column are parameter values, 
so that each row represents a test. All possible t-way combinations of parameter 
values are guaranteed to be covered at least once. If t = 2, this procedure results in 
the familiar “pairwise” testing, but using new algorithms, we are able to produce 
covering arrays up to strength t = 6.  

Two specification claims in forms of properties are generated for each covering 
array row, one for result grant and one for result deny. Values  vij are taken from 
row i, column j of the covering array, for all rows. 

AG (p1 = v11& ... & pn = v1n) → AX !(access state = grant) 
AG (p1 = v21& ... & pn = v2n) → AX !(access state = grant) 
. . . . . .  
AG (p1 = vn1& ... & pn = vnn) → AX !(access state = grant) 
AG (p1 = v11& ... & pn = v1n) → AX !(access state = deny) 
AG (p1 = v21& ... & pn = v2n) → AX !(access state = deny) 
. . . . . .  
AG (p1 = vn1& ... & pn = vnn) → AX !(access state = deny) 

For a covering array with n rows, a total of 2n specification claims will thus be 
produced, one grant and one deny for each row of the covering array. In the claims, 
possible results grant or deny are negated. For each claim, if this set of values cannot 
in fact lead to the particular result, the model checker indicates that this is true. 
If the claim is false, the model checker indicates so and provides a counterexample 
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with a trace of parameter input values and states that will prove it to be false. 
The model checker thus filters the claims that we have produced so that a total 
of n test inputs are generated. In effect, each one is a test case, i.e., a set of input 
parameter values and expected result. It is then simple to map these values into 
test cases in the syntax needed for the system under test. When interaction testing 
is done today, t is nearly always 2 (i.e., pairwise testing) because higher strength 
interactions require exponentially more test cases. Thus, higher strength interaction 
testing requires fully automated generation of test input data and expected results, 
which is made possible through model checking. 

This technique makes it possible to produce two complementary types of test 
cases. In addition to combinatorial test cases, fault-based testing can be automated. 
By inserting particular faults in the specification, then generating counterexamples 
using the model checker, we can produce test cases that will detect these faults or 
faults that are subsumed by them. 

6. Test Scheme 

A generic test scheme for MAC models and properties verification can be con
structed. The scheme starts by expressing MAC models in the specification lan
guage of a model checker, and the AC properties in temporal logic formula. Then 
the system verifies these properties by exploiting the verification process of the 
model checker. Next, another run of model checking with mutated rules and modi
fied properties guarantees that the rules are covered and confined by the properties. 
Finally, test cases consisting of input data and expected results are created by apply
ing the covering array generated from the combinatorial array generation function 
to model checking with the sufficient properties. One goal of the techniques in this 
approach is to reduce overall software assurance costs by integrating verification 
with test generation. 

The scheme in Fig. 6 contains four ma jor functions implementing the previously 
described mechanisms. The function Model Checking checks the MAC model against 
the specified AC properties, including three such checks. The first is phase safety 
and liveness verification, which ensures that the specified properties are satisfied by 
the model. The second is phase verification, which rectifies the differences between 
the MAC rules and properties in terms of coverage and confinement through the 
Coverage and Confinement Mutation function. When the results report uncovered 
entities, the users further modify/add new properties or rules to amend the discrep
ancies. The last check, phase of model checking takes the covering array generated 
by the Covering Array generator and integrates the array variables into generic deny 
and grant properties for detecting counterexamples against properties resulted from 
the second phase. The counterexamples are then fed into the Test Case generator 
to produce the test cases (both test inputs and their expected outputs). These test 
cases running on the MAC implementation can comprehensively cover the behavior 
and verify whether the actual test outputs are the same as the expected outputs. 
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Access control policy 
implementation 

Covering 
Array 

Covering array 

Generator 

Access control 
model 

Model 
Checking 

Counterexamples 

Test Case Test casesCoverage and Access control 
GeneratorConfinement properties

Mutation 

Fig. 6. Scheme for MAC model/AC properties testing. 

7. Case Study 

We developed a tool called Access Control Policy Testing System (ACPTS). The 
tool helps a user specify policy models and their properties. ACPTS integrates 
NuSMV [25] for symbolic model checking and ACTS for generating combinatorial 
tests. From ACTS, the covering array specifies test data, where each row of the array 
can be regarded as a set of parameter values for an individual test. Collectively, the 
rows of the covering array cover all t-way combinations of parameter values for 
incorporating into Symbolic Model Verifier (SMV) property specifications that can 
be processed by the NuSMV model checker. 

In this study, we used a simple grading RBAC access control policy model com
posed by ACPTS. We also describe its property set for verification. The policy 
model and its property set are converted into NuSMV model and verified whether 
its property set is satisfied. We then perform covering array generation for combi
natorial tests, mutant rule verification for detecting for detecting insufficient rule 
coverage by a specified property set, and mutant property verification to detect 
the discrepancy of the specified properties and the properties that the MAC policy 
author intend. 

7.1. Model specification in ACPTS 

A policy author can edit (i.e., add, delete, and modify) RBAC, Multi-Level security, 
and Workflow policy models [26] and their properties using the tool. The top-left 
window in Fig. 7 shows specified policy models as a tree structure. The top-right 
window provides a working area for the policy author to edit a selected model. In 
Fig. 7, the policy author specifies an RBAC policy with a set of roles (i.e., Faculty 
and Student), user-role relations (i.e., Jane is Faculty and Jim is Student), and 
roles’ permissions (e.g., Faculty can write grades and Student cannot write grades). 
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Fig. 7. An example RBAC policy model using ACPTS. 

Property 
TextProperty Editor 

Fig. 8. An example property specified in ACPTS. 

As shown in Fig. 8, the property describes the conditions for permitting a Faculty 
to write grades. Note that the policy author does not need to specify some of 
NuSMV-specific constraint symbols (i.e., AG and AX). However, such constraint 
symbols are added by ACPTS when a property is converted to the NuSMV format 
shown in Fig. 9. 
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MAC State 
Descriptions 

MAC State 
Transitions 

MAC 
Properties 

Fig. 9. A NuSMV input describing an example RBAC model and its property. 

For model and property verification, NuSMV takes the description of finite state 
systems of the MAC model and specified properties as input; it then verifies finite 
state systems against their properties. NuSMV produces verification reports on 
whether the given properties are satisfied; when a property is violated, a counterex
ample will be generated accordingly. Figure 9 shows a NuSMV input describing the 
example RBAC model. 

7.2. Covering array generation 

For covering array generation, ACTS takes the description of variables as input; 
it then generates t-way covering arrays for given variables. The ACPTS generates 
2-way and 3-way covering array for combinatorial tests, and compare their size and 
rule coverage. 

Figure 10 shows the generated 2-way and 3-way covering arrays for the given sub
jects (e.g., Faculty, and Student), resources (e.g., grades and records), and actions 
(e.g., write and view), and, 4 and 8 rows are generated, respectively. As an MAC 
policy model is often composed of three attributes (sub ject, action, ob ject), a 3-way 
covering array can be considered as exhaustively includes all possible combinations 
of values in each attribute. We can reduce the number of rows in a covering array 
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Fig. 10. 2-way (left) and 3-way (right) covering array of given subjects, resources, and actions by 
ACTS. 

by considering 2-way combinations of these attributes for detecting a fault related 
to 2-way interactions. 

7.3. Mutant rules 

We perform mutant rule verification to detect insufficient rule coverage by a specified 
property set. When ACPTS detects any missing rule coverage, a policy author can 
augment the existing properties with new properties to achieve high rule coverage. 

In order to check whether a given property set in Fig. 9 is satisfied, we mutate 
the first and second rules one at a time to produce two mutant rules as shown 
in Fig. 11 where r1 and r2 represent mutant rules of the first and second rules, 
respectively by negating their decisions (Definition 3) in Fig. 9. As a verification 
result, the property set is not satisfied and a counterexample is reported as follows. 

-> State: 1.1 <
decision = NA 
role subject = Faculty 
action = write 
resource = grades 
. . .  
-> State: 1.2 <
decision = Deny 

This counterexample indicates that the property set can cover at least one of 
the two mutated rules. The counterexample illustrates that the property (Faculty 
is permitted to write grades) is violated because a request that a Faculty is denied 
to write grades. 

r1: role subject = Faculty & resource = grades & action = write : Deny; 
r2: role subject = Student & resource = grades & action = write : Permit; 

Fig. 11. Mutant rules. 



May 27, 2011 11:33 WSPC/117-IJSEKE - SPI-J111 0218-1940
S021819401100513X

Model Checking for Verification of MAC Models and Properties 123 

To determine which rule is not covered by the property set, we mutate a rule 
(one at a time) in the original policy. When only the first rule is mutated, the 
counterexample is generated in the process of verification. This counterexample 
indicates that the first rule is covered by the property set. However, when the 
second rule is mutated, no counterexample is generated. This verification result 
indicates that the second rule is not covered by the property set. Therefore, the 
existing property set achieves insufficient rule coverage not covering the second rule 
coverage. We manually generate and augment the following property derived from 
the second rule. 

SPEC AG ((role subject = Student) & (resource = grades) & (action = write) -> 
AF decision = Deny) 

With the addition of this property, the new property set is sufficient in achieving 
full rule coverage and NuSMV reports counterexamples in the verification of all the 
mutants. 

7.4. Mutant property 

We conduct property confinement checking to detect security problems caused by 
allowing exceptional permission. We generate and add a property’s mutant property 
to the NuSMV model for the next run of model checking. Figure 12 shows a mutant 
property derived from the property set described in Fig. 9. 

The model in Fig. 9 is verified against the mutated property, and a counterex
ample is reported as follows. 

-> State: 1.1 <
decision = NA 
role subject = Student 
action = view 
resource = records 

This counterexample illustrates that the mutated property is violated because 
NuSMV found that non-applicable decision (denoted as “NA”) is returned for a 
request that a Student view records. This checking detects the discrepancy of the 
specified properties by the counterexample, which is derived from otherwise : decision 
(which is specified as “1 : decision; ” in Fig. 9). Therefore, we change otherwise : 
decision to otherwise : Deny (which is specified as “1 : Deny; ” in Fig. 9) to remove 
such discrepancy. Our confinement checking technique helps detect such discrepancy 

SPEC AG ( ! (role subject = Facutly) & (resource = grades) & (action = write) 
-> AF decision = Deny) 

Fig. 12. Mutant property. 
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and the policy author can increase their confidence for policy correctness by fixing 
the discrepancy or confirming the discrepancy to be intended. 

8. Related Work 

There exist several verification techniques for applying model checking on MAC poli
cies but few general verification techniques for applying model checking on MAC 
models and generating test cases as our proposed approach. Zhang et al. [27] present 
a model-checking algorithm that evaluates if a MAC policy can satisfy a user’s access 
request as well as prevent intruders from reaching their malicious goals. Instead of 
generic model language, policies of the MAC system and goals of agents must be 
described in the AC description and specification language introduced as RW in 
their earlier work. The language does not provide the flexibility for the specification 
of dynamic or historical types of MAC model nor for the descriptions of the general 
properties of access constraints. Kikuchi et al. [19] proposed the policy verifica
tion and validation framework based on model checking that exhaustively verifies 
a policy’s validity by considering the relations between system characteristics and 
policies. Their approach defines the validity of policies and the information needed 
to verify them from the viewpoint of model checking as well as constructs the policy 
verification framework based on the definition. Besides rule-based system policies, 
there is no demonstration that shows the proposed framework is proper for generic 
MAC policies. Schaad et al. [28] presented a model-checking approach to analyze 
the delegation and revocation functionalities of workflow-based enterprise resource 
management (ERP) systems. Their approach is done in the context of a real-world 
banking workflow requiring static and dynamic separation of duty properties. The 
approach derived information about the workflow from Business Process Execu
tion Language (BPEL) specifications and ERP business ob ject repositories. This 
was captured in an SMV specification together with a definition of possible delega
tion and revocation scenarios. Their focus was on how to capture the workflow in 
an SMV model amended by an LTL-based specification of the Separation of Duty 
properties without much consideration of generic MAC models. 

Commercial policy manager tools such as IBM security policy manager [36] 
and Cisco policy manager [37] do not generate policy models for property verifica
tion, property assessment, and test suite generation. The tools include PDP (Policy 
Decision Point) and security protocol support. Some of the tools have limited ver
ification feature. For example, IBM security policy manager includes limited SOD 
(Separation of Duty) check on given policies. 

Table 1 summarizes model specification, property verification, property assess
ment, test suite generation feature information for each of related approaches. Each 
row of the table corresponds to a related model checking or policy manager approach 
and each of columns corresponds to its features. More specifically, the second column 
in the table includes description of demonstrated policy models in the corresponding 
approach. 
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Table 1. Comparison of features on related model chcking and policy manager approaches. 

Test 
Model Property Property suite 

Product specification verification assessment generation 

ACPTS Static, dynamic, Yes Yes Yes 
and historic 
policy model 

Model Checking tool Static policy model Yes No No 
(Zhang et al.) 

Model Checking tool Static policy model Yes No No 
(Kikuchi et al.) 

Model Checking tool Historic policy Yes No No 
(Schaad et al.) model 

IBM Security Policy No Yes (Separation No No 
Manager V7.0 of Duty) 

Cisco Policy Manager No No No No 

Different from these existing approaches, our proposed approach is targeted 
at MAC models and their generic properties, and is more general and applicable 
in a larger scope of models and properties. In addition to property verification, 
our approach provides efficient test generation, which generates test cases that 
guarantee combinatorial coverage for the input parameters used in the policy, thus 
a thorough verification of MAC implementation. 

9. Conclusion 

To verify properties for MAC models, we propose a new general approach that 
expresses MAC models in the specification language of a model checker and 
generic AC properties in its property language as temporal logic formula. Then 
the approach exploits the verification process of the model checker to verify the 
specified models against the specified properties. Our approach is able to sup
port the verification of three common types of generic AC properties: static, 
dynamic, and historical constraints. In addition, the approach also supports auto
mated generation of test cases to check the conformance of the models and their 
implementations. 

In future work, we plan to develop a tool for assisting the users in specifying 
MAC models and properties in a more user friendly way. We also plan to investi
gate and expand the scope of models and properties supported by our approach. 
Through our research, we will gain understanding about testing and verifying MAC 
policies in policy development, which should lead to better policy quality and higher 
security assurance in general. Our research results related to fundamentally advanc
ing knowledge and understanding will be disseminated in software engineering and 
security conferences, journals, and books in various forms (e.g., papers, tutorials, 
and book chapters). The groundwork for the proposed work has been widely pub
lished [29–35], and we will continue to widely disseminate the results produced by 
the proposed work. 
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The work of conformance verification of generic MAC properties brings benefits 
to society in two aspects. First, it should lead the practices for testing and verifying 
MAC policies in improving policy quality and security in general. Second, innova
tions in new testing and verification algorithms and tools tend to propagate quickly 
across application or task domains where MAC policies are used. 
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