
Combinatorial Testing

Rick Kuhn Raghu Kacker

National Institute of
Standards and Technology

Gaithersburg, MD

Institute for Defense Analyses 6 April 2011

Outline
1. Why we are doing this?
2. Number of variables involved in actual software failures
3. What is combinatorial testing (CT)?
4. Design of expts (DoE) vs CT based on covering arrays (CA)
5. Number of tests in t-way testing based on CAs
6. Tool to generate combinatorial test suites based on CAs
7. Determining expected output for each test run
8. Applications (Modeling and simulation, Security vulnerability)
9. Fault localization
10. Combinatorial coverage measurement
11. Sequence covering arrays
12. Conclusion

Automated Combinatorial Testing
 Goals – reduce testing cost, improve cost-benefit ratio for
 software assurance

 Merge automated test generation with combinatorial methods

 New algorithms to make large-scale combinatorial testing practical

 Accomplishments – huge increase in performance, scalability
 + widespread use in real-world applications

 Also non-testing applications – modelling and simulation

 What is NIST and why are we doing this?
• A US Government agency

• The nation’s measurement and testing
 laboratory – 3,000 scientists, engineers,
 and support staff including
 3 Nobel laureates

Analysis of engineering failures,
including buildings, materials, and ...

Research in physics, chemistry,
materials, manufacturing, computer
science

Software Failure Analysis
• We studied software failures in a variety of
 fields including 15 years of FDA medical
 device recall data

• What causes software failures?

• logic errors?

• calculation errors?

• interaction faults?

• inadequate input checking? Etc.

• What testing and analysis would have prevented failures?

• Would statement coverage, branch coverage, all-values, all-pairs etc.
 testing find the errors?

Interaction faults: e.g., failure occurs if
 pressure < 10 (1-way interaction <= all-values testing catches)
 pressure < 10 & volume > 300 (2-way interaction <= all-pairs testing catches)

Software Failure Internals
• How does an interaction fault manifest itself in code?

Example: pressure < 10 & volume > 300 (2-way interaction)

if (pressure < 10) {

 // do something

 if (volume > 300) { faulty code! BOOM! }

 else { good code, no problem}

} else {

 // do something else

}

A test that included pressure = 5 and
volume = 400 would trigger this failure

• Pairwise testing commonly applied to software
• Intuition: some problems only occur as the result of

an interaction between parameters/components
• Tests all pairs (2-way combinations) of variable

values
• Pairwise testing finds about 50% to 90% of flaws

Pairwise testing is popular,
but is it enough?

90% of flaws.
Sounds pretty good!

 Finding 90% of flaws is pretty good, right?

“Relax, our engineers found
 90 percent of the flaws.”

I don't think I
want to get on
that plane.

How about hard-to-find flaws?
•Interactions e.g., failure occurs if

• pressure < 10 (1-way interaction)

• pressure < 10 & volume > 300 (2-way interaction)

• pressure < 10 & volume > 300 & velocity = 5
 (3-way interaction)

• The most complex failure reported required
 4-way interaction to trigger

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4

Interaction

%
 d

et
ec

te
d

Interesting, but
that's just one kind
of application.

NIST study of 15
years of FDA
medical device
recall data

How about other applications?
 Browser (green)

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6
Interactions

%
 d

et
ec

te
d

These faults more
complex than
medical device
software!!

Why?

And other applications?

 Server (magenta)

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6
Interactions

%
 d

et
ec

te
d

Still more?
 NASA distributed database
 (light blue)

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6
Interactions

%
 d

et
ec

te
d

Even more?
Traffic Collision Avoidance System module

(seeded errors) (purple)

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6
Interactions

%
 d

et
ec

te
d

Finally
 Network security (Bell, 2006)
 (orange)

 Curves appear
to be similar
across a variety
of application
domains.

Why this
distribution?

What causes this distribution?

One clue: branches in avionics software.
7,685 expressions from if and while statements

Comparing with Failure Data
Branch
statements

• Maximum interactions for fault triggering
for these applications was 6

• Much more empirical work needed
• Reasonable evidence that maximum interaction

strength for fault triggering is relatively small

So, how many parameters are
involved in really tricky faults?

How does it help
me to know this?

How does this knowledge help?

Still no silver
bullet. Rats!

Biologists have a “central dogma”, and so do we:

If all faults are triggered by the interaction of t or fewer variables,
then testing all t-way combinations can provide strong assurance

(taking into account: value propagation issues, equivalence
partitioning, timing issues, more complex interactions, . . .)

Outline
1. Why we are doing this?
2. Number of variables involved in actual software failures
3. What is combinatorial testing (CT)?
4. Design of expts (DoE) vs CT based on covering arrays (CA)
5. Number of tests in t-way testing based on CAs
6. Tool to generate combinatorial test suites based on CAs
7. Determining expected output for each test run
8. Applications (Modeling and simulation, Security vulnerability)
9. Fault localization
10. Combinatorial coverage measurement
11. Sequence covering arrays
12. Conclusion

What is Combinatorial
Testing?

What is combinatorial testing?
A simple example

How Many Tests Would It Take?

 There are 10 effects, each can be on or off
 All combinations is 210 = 1,024 tests
 What if our budget is too limited for these tests?
 Instead, let’s look at all 3-way interactions …

 There are = 120 3-way interactions.

 Naively 120 x 23 = 960 tests.
 Since we can pack 3 triples into each test, we

need no more than 320 tests.
 Each test exercises many triples:

Now How Many Would It Take?

We can pack a lot into one test, so what’s the
smallest number of tests we need?

10
3

0 1 1 0 0 0 0 1 1 0

A covering array

Each row is a test:
Each column is
a parameter:

Each test covers = 120 3-way combinations

Finding covering arrays is NP hard

All triples in only 13 tests, covering 23 = 960 combinations

10
3

10
3

0 = effect off
1 = effect on

13 tests for all 3-way combinations

210 = 1,024 tests for all combinations

Another familiar example

Plan: flt, flt+hotel, flt+hotel+car
From: CONUS, HI, Europe, Asia …
To: CONUS, HI, Europe, Asia …
Compare: yes, no
Date-type: exact, 1to3, flex
Depart: today, tomorrow, 1yr, Sun, Mon …
Return: today, tomorrow, 1yr, Sun, Mon …
Adults: 1, 2, 3, 4, 5, 6
Minors: 0, 1, 2, 3, 4, 5
Seniors: 0, 1, 2, 3, 4, 5

• No silver bullet because:
 Many values per variable
 Need to abstract values
 But we can still increase information per test

Ordering Pizza

Simplified pizza ordering:

6x4x4x4x4x3x2x2x5x2
 = 184,320 possibilities

6x217x217x217x4x3x2x2x5x2
= WAY TOO MUCH TO TEST

Ordering Pizza Combinatorially
Simplified pizza ordering:

6x4x4x4x4x3x2x2x5x2
 = 184,320 possibilities

2-way tests: 32

3-way tests: 150

4-way tests: 570

5-way tests: 2,413

6-way tests: 8,330

 If all failures involve 5 or fewer
parameters, then we can have
confidence after running all 5-way
tests.

• Suppose we have a system with on-off switches:

A larger example

• 34 switches = 234 = 1.7 x 1010 possible inputs = 1.7 x 1010 tests

How do we test this?

• 34 switches = 234 = 1.7 x 1010 possible inputs = 1.7 x 1010 tests
• If only 3-way interactions, need only 33 tests
• For 4-way interactions, need only 85 tests

What if we knew no failure involves more
than 3 switch settings interacting?

Two ways of using combinatorial
testing

Use combinations here or here

System
under test

Test
data
inputs

Test case OS CPU Protocol

1 Windows Intel IPv4

2 Windows AMD IPv6

3 Linux Intel IPv6

4 Linux AMD IPv4

Configuration

Testing Configurations
• Example: app must run on any configuration of OS, browser,
 protocol, CPU, and DBMS

• Very effective for interoperability testing

Configurations to Test
Degree of interaction coverage: 2
Number of parameters: 5
Maximum number of values per parameter: 3
Number of configurations: 10

Configuration #1:
1 = OS=XP
2 = Browser=IE
3 = Protocol=IPv4
4 = CPU=Intel
5 = DBMS=MySQL

Configuration #2:
1 = OS=XP
2 = Browser=Firefox
3 = Protocol=IPv6
4 = CPU=AMD
5 = DBMS=Sybase

Configuration #3:
1 = OS=XP
2 = Browser=IE
3 = Protocol=IPv6
4 = CPU=Intel
5 = DBMS=Oracle
. . . etc.

t # Tests % of Exhaustive

2 10 14

3 18 25

4 36 50

5 72 100

Testing Smartphone Configurations

int HARDKEYBOARDHIDDEN_NO;
int HARDKEYBOARDHIDDEN_UNDEFINED;
int HARDKEYBOARDHIDDEN_YES;
int KEYBOARDHIDDEN_NO;
int KEYBOARDHIDDEN_UNDEFINED;
int KEYBOARDHIDDEN_YES;
int KEYBOARD_12KEY;
int KEYBOARD_NOKEYS;
int KEYBOARD_QWERTY;
int KEYBOARD_UNDEFINED;
int NAVIGATIONHIDDEN_NO;
int NAVIGATIONHIDDEN_UNDEFINED;
int NAVIGATIONHIDDEN_YES;
int NAVIGATION_DPAD;
int NAVIGATION_NONAV;
int NAVIGATION_TRACKBALL;
int NAVIGATION_UNDEFINED;
int NAVIGATION_WHEEL;

int ORIENTATION_LANDSCAPE;
int ORIENTATION_PORTRAIT;
int ORIENTATION_SQUARE;
int ORIENTATION_UNDEFINED;
int SCREENLAYOUT_LONG_MASK;
int SCREENLAYOUT_LONG_NO;
int SCREENLAYOUT_LONG_UNDEFINED;
int SCREENLAYOUT_LONG_YES;
int SCREENLAYOUT_SIZE_LARGE;
int SCREENLAYOUT_SIZE_MASK;
int SCREENLAYOUT_SIZE_NORMAL;
int SCREENLAYOUT_SIZE_SMALL;
int SCREENLAYOUT_SIZE_UNDEFINED;
int TOUCHSCREEN_FINGER;
int TOUCHSCREEN_NOTOUCH;
int TOUCHSCREEN_STYLUS;
int TOUCHSCREEN_UNDEFINED;

Android configuration
options:

Configuration option values
Parameter Name Values # Values

HARDKEYBOARDHIDDEN NO, UNDEFINED, YES 3

KEYBOARDHIDDEN NO, UNDEFINED, YES 3

KEYBOARD 12KEY, NOKEYS, QWERTY, UNDEFINED 4

NAVIGATIONHIDDEN NO, UNDEFINED, YES 3

NAVIGATION DPAD, NONAV, TRACKBALL, UNDEFINED,
WHEEL

5

ORIENTATION LANDSCAPE, PORTRAIT, SQUARE, UNDEFINED 4

SCREENLAYOUT_LONG MASK, NO, UNDEFINED, YES 4

SCREENLAYOUT_SIZE LARGE, MASK, NORMAL, SMALL, UNDEFINED 5

TOUCHSCREEN FINGER, NOTOUCH, STYLUS, UNDEFINED 4

Total possible configurations:

 3 x 3 x 4 x 3 x 5 x 4 x 4 x 5 x 4 = 172,800

Number of tests generated

t # Tests % of Exhaustive

2 29 0.02

3 137 0.08

4 625 0.4

5 2532 1.5

6 9168 5.3

Outline
1. Why we are doing this?
2. Number of variables involved in actual software failures
3. What is combinatorial testing (CT)?
4. Design of expts (DoE) vs CT based on covering arrays (CA)
5. Number of tests in t-way testing based on CAs
6. Tool to generate combinatorial test suites based on CAs
7. Determining expected output for each test run
8. Applications (Modeling and simulation, Security vulnerability)
9. Fault localization
10. Combinatorial coverage measurement
11. Sequence covering arrays
12. Conclusion

Evolution of
design of experiments (DOE)

to
combinatorial testing of

software and systems using
covering arrays

Design of Experiments (DOE)

Complete sequence of steps to ensure appropriate data will be
obtained, which permit objective analysis that lead to valid
conclusions about cause-effect systems
Objectives stated ahead of time
Opposed to observational studies of nature, society …
Minimal expense of time and cost
Multi-factor, not one-factor-at-a-time

DOE implies design and associated data analysis
Validity of inferences depends on design

A DOE plan can be expressed as matrix
Rows: tests, columns: variables, entries: test values or

treatment allocations to experimental units

Early history
Scottish physician James Lind determined cure of scurvy

Ship HM Bark Salisbury in 1747
12 sailors “were as similar as I could have them”
6 treatments 2 each
Principles used (blocking, replication, randomization)

Theoretical contributor of basic ideas: Charles S Peirce
American logician, philosopher, mathematician
1939-1914, Cambridge, MA

Father of DOE: R A Fisher, 1890-1962, British geneticist
Rothamsted Experiment Station, Hertfordshire, England

Four eras of evolution of DOE

Era 1:(1920’s …): Beginning in agricultural then animal science,
clinical trials, medicine

Era 2:(1940’s …): Use for industrial productivity
Era 3:(1980’s …): Use for designing robust products
Era 4:(2000’s …): Combinatorial Testing of Software

Hardware-Software systems, computer security, assurance of
access control policy implementation (health care records),
verification and validations of simulations, optimization of
models, testing of cloud computing applications, platform,
and infrastructure

Features of DOE

1. System under investigation
2. Variables (input, output and other), test settings
3. Objectives
4. Scope of investigation
5. Key principles
6. Experiment plans
7. Analysis method from data to conclusions
8. Some leaders (subjective, hundreds of contributors)

Agriculture and biological investigations-1

System under investigation
Crop growing, effectiveness of drugs or other treatments
Mechanistic (cause-effect) process; predictability limited

Variable Types
Primary test factors (farmer can adjust, drugs)
Held constant
Background factors (controlled in experiment, not in field)
Uncontrolled factors (Fisher’s genius idea; randomization)

Numbers of treatments
Generally less than 10

Objectives: compare treatments to find better
Treatments: qualitative or discrete levels of continuous

Agriculture and biological investigations-2

Scope of investigation:
Treatments actually tested, direction for improvement

Key principles
Replication: minimize experimental error (which may be large)

replicate each test run; averages less variable than raw data
Randomization: allocate treatments to experimental units at

random; then error treated as draws from normal distribution
Blocking (homogeneous grouping of units): systematic effects

of background factors eliminated from comparisons
Designs: Allocate treatments to experimental units

Randomized Block designs, Balanced Incomplete Block
Designs, Partially balanced Incomplete Block Designs

Agriculture and biological investigations-3

Analysis method from data to conclusions
Simple statistical model for treatment effects
ANOVA (Analysis of Variance)
Significant factors among primary factors; better test settings

Some of the leaders
R A Fisher, F Yates, …
G W Snedecor, C R Henderson*, Gertrude Cox, …
W G Cochran*, Oscar Kempthorne*, D R Cox*, …

Other: Double-blind clinical trials, biostatistics and medical
application at forefront

Industrial productivity-1

System under investigation
Chemical production process, manufacturing processes
Mechanistic (cause-effect) process; predictability medium
Variable Types:
Not allocation of treatments to units
Primary test factors: process variables levels can be adjusted
Held constant
Continue to use terminology from agriculture
Generally less than 10

Objectives:
Identify important factors, predict their optimum levels
Estimate response function for important factors

Industrial productivity-2

Scope of investigation:
Optimum levels in range of possible values (beyond levels

actually used)
Key principles

Replication: Necessary
Randomization of test runs: Necessary
Blocking (homogeneous grouping): Needed less often

Designs: Test runs for chosen settings
Factorial and Fractional factorial designs
Latin squares, Greco-Latin squares
Central composite designs, Response surface designs

Industrial productivity-3
Analysis method from data to conclusions

Estimation of linear or quadratic statistical models for relation
between factor levels and response

Linear ANOVA or regression models
Quadratic response surface models

Factor levels
Chosen for better estimation of model parameters
Main effect: average effect over level of all other factors
2-way interaction effect: how effect changes with level of another
3-way interaction effect: how 2-way interaction effect changes;

often regarded as error
Estimation requires balanced DOE

Some of the leaders
G. E. P. Box*, G. J. Hahn*, C. Daniel, C. Eisenhart*,…

Robust products-1

System under investigation
Design of product (or design of manufacturing process)

Variable Types
Control Factors: levels can be adjusted
Noise factors: surrogates for down stream conditions
AT&T-BL 1985 experiment with 17 factors was large

Objectives:
Find settings for robust product performance: product lifespan

under different operating conditions across different units
Environmental variable, deterioration, manufacturing variation

Robust products-2

Scope of investigation:
Optimum levels of control factors at which variation from noise

factors is minimum
Key principles

Variation from noise factors
Efficiency in testing; accommodate constraints

Designs: Based on Orthogonal arrays (OAs)
Taguchi designs (balanced 2-way covering arrays)

Analysis method from data to conclusions
Pseudo-statistical analysis
Signal-to-noise ratios, measures of variability

Some of the leaders: Genichi Taguchi

Use of OAs for software testing
Functional (black-box) testing

Hardware-software systems
Identify single and 2-way combination faults

Early papers
Taguchi followers (mid1980’s)
Mandl (1985) Compiler testing
Tatsumi et al (1987) Fujitsu
Sacks et al (1989) Computer experiments
Brownlie et al (1992) AT&T

Generation of test suites using OAs
OATS (Phadke*, AT&T-BL)

Combinatorial Testing of Software and Systems -1
System under investigation

Hardware-software systems combined or separately
Mechanistic (cause-effect) process; predictability full (high)
Output unchanged (or little changed) in repeats
Configurations of system or inputs to system

Variable Types: test-factors and held constant
Inputs and configuration variables having more than one option
No limit on variables and test setting

Identification of factors and test settings
Which could trigger malfunction, boundary conditions
Understand functionality, possible modes of malfunction

Objectives: Identify t-way combinations of test setting of any t out
of k factors in tests actually conducted which trigger malfunction;
t << k

Combinatorial Testing of Software and Systems -2
Scope of investigation:

Actual t-way (and higher) combinations tested; no prediction
Key principles: no background no uncontrolled factors

No need of blocking and randomization
No need of replication; greatly decrease number of test runs
Investigation of actual faults suggests: 1 < t < 7
Complex constraints between test settings (depending on

possible paths software can go through)
Designs: Covering arrays cover all t-way combinations

Allow for complex constraints
Other DOE can be used; CAs require fewer tests (exception

when OA of index one is available which is best CA)
‘Interaction’ means number of variables in combination (not

estimate of parameter of statistical model as in other DOE)

Combinatorial Testing of Software and
Systems -3

Analysis method from data to conclusions
No statistical model for test setting-output relationship; no

prediction
No estimation of statistical parameters (main effects, interaction

effects)
Test suite need not be balanced; covering arrays unbalanced
Often output is {0,1}
Need algorithms to identify fault triggering combinations

Some leaders
AT&T-BL alumni (Neil Sloan*), Charlie Colbourn* (AzSU) …
NIST alumni/employees (Rick Kuhn*), Jeff Yu Lei* (UTA/NIST)

Other applications
Assurance of access control policy implementations
Computer security, health records

Components of combinatorial testing
Problem set up: identification of factors and settings
Test run: combination of one test setting for each factor
Test suite generation, high strength, constraints
Test execution, integration in testing system
Test evaluation / expected output oracle
Fault localization

Generating test suites based on CAs

CATS (Bell Labs), AETG (BellCore-Telcordia)
IPO (Yu Lei) led to ACTS (IPOG, …)
Tconfig (Ottawa), CTGS (IBM), TOG (NASA),…
Jenny (Jenkins), TestCover (Sherwood),…
PICT (Microsoft),…
ACTS (NIST/UTA) free, open source intended

Effective efficient for t-way combinations for t = 2, 3, 4, 5, 6, …
Allow complex constraints

Mathematics underlying DOE/CAs
1829-32 Évariste Galois (French, shot in dual at age 20)
1940’s R. C. Bose (father of math underlying DOE)
1947 C. R. Rao* (concept of orthogonal arrays)

Hadamard (1893), RC Bose, KA Bush, Addelman, Taguchi,
1960’s G. Taguchi* (catalog of OAs, industrial use)
Covering arrays (Sloan* 1993) as math objects

Renyi (1971, probabilist, died at age 49)
Roux (1987, French, disappeared leaving PhD thesis)
Katona (1973), Kleitman and Spencer (1973), Sloan* (1993),

CAs connection to software testing: key papers
Dalal* and Mallows* (1997), Cohen, Dalal, Fredman, Patton(1997),

Alan Hartman* (2003), …
Catalog of Orthogonal Arrays (N J A Sloan*, AT&T)
Sizes of Covering Arrays (C J Colbourn*, AzSU)

Concluding remarks
DOE: approach to gain information to improve things
Combinatorial Testing is a special kind of DOE

Chosen input → function → observe output
Highly predictable system; repeatability high understood
Input space characterized in terms of factors, discrete settings
Critical event when certain t-way comb encountered t << k
Detect such t-way combinations or assure absence
Exhaustive testing of all k-way combinations not practical
No statistical model assumed
Unbalanced test suites
Smaller size test suites than other DOE plans, which can be used

Many applications

Outline
1. Why we are doing this?
2. Number of variables involved in actual software failures
3. What is combinatorial testing (CT)?
4. Design of expts (DoE) vs CT based on covering arrays (CA)
5. Number of tests in t-way testing based on CAs
6. Tool to generate combinatorial test suites based on CAs
7. Determining expected output for each test run
8. Applications (Modeling and simulation, Security vulnerability)
9. Fault localization
10. Combinatorial coverage measurement
11. Sequence covering arrays
12. Conclusion

New algorithms to make it practical
• Tradeoffs to minimize calendar/staff time:

• FireEye (extended IPO) – Lei – roughly optimal, can be used for
most cases under 40 or 50 parameters

• Produces minimal number of tests at cost of run time

• Currently integrating algebraic methods

• Adaptive distance-based strategies – Bryce – dispensing one test
at a time w/ metrics to increase probability of finding flaws

• Highly optimized covering array algorithm

• Variety of distance metrics for selecting next test

• PRMI – Kuhn –for more variables or larger domains
• Parallel, randomized algorithm, generates tests w/ a few tunable parameters;
computation can be distributed

• Better results than other algorithms for larger problems

• Smaller test sets faster, with a more advanced user interface
• First parallelized covering array algorithm
• More information per test

12600 1070048 >1 day NA 470 11625 >1 day NA 65.03 10941 6

1549 313056 >1 day NA 43.54 4580 >1
day NA 18s 4226 5

127 64696 >21 hour 1476 3.54 1536 5400 1484 3.05 1363 4

3.07 9158 >12 hour 472 0.71 413 1020 2388 0.36 400 3

2.75 101 >1 hour 108 0.001 108 0.73 120 0.8 100 2

Time Size Time Size Time Size Time Size Time Size

TVG (Open Source) TConfig (U. of Ottawa) Jenny (Open Source) ITCH (IBM) IPOG
T-Way

New algorithms

Traffic Collision Avoidance System (TCAS): 273241102

Times in seconds
That's fast!

Unlike diet plans,
results ARE typical!

• Number of tests: proportional to vt log n

for v values, n variables, t-way interactions
• Thus:

•Tests increase exponentially with interaction strength t : BAD,
but unavoidable
•But only logarithmically with the number of parameters :
GOOD!

• Example: suppose we want all 4-way combinations of n
parameters, 5 values each:

Cost and Volume of Tests

0
500

1000
1500
2000
2500
3000
3500
4000
4500
5000

10 20 30 40 50

Variables

Tests

ACTS Tool

Defining a new system

Variable interaction strength

Constraints

Covering array output

Output
 Variety of output formats:

 XML
 Numeric
 CSV
 Excel

 Separate tool to generate .NET configuration
 files from ACTS output

 Post-process output using Perl scripts, etc.

Output options
Mappable values

Degree of interaction
coverage: 2
Number of parameters: 12
Number of tests: 100

0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 1 1 1 0 1 1 1 1
2 0 1 0 1 0 2 0 2 2 1 0
0 1 0 1 0 1 3 0 3 1 0 1
1 1 0 0 0 1 0 0 4 2 1 0
2 1 0 1 1 0 1 0 5 0 0 1
0 1 1 1 0 1 2 0 6 0 0 0
1 0 1 0 1 0 3 0 7 0 1 1
2 0 1 1 0 1 0 0 8 1 0 0
0 0 0 0 1 0 1 0 9 2 1 1
1 1 0 0 1 0 2 1 0 1 0 1
Etc.

Human readable

Degree of interaction coverage: 2
Number of parameters: 12
Maximum number of values per
parameter: 10
Number of configurations: 100

Configuration #1:

1 = Cur_Vertical_Sep=299
2 = High_Confidence=true
3 = Two_of_Three_Reports=true
4 = Own_Tracked_Alt=1
5 = Other_Tracked_Alt=1
6 = Own_Tracked_Alt_Rate=600
7 = Alt_Layer_Value=0
8 = Up_Separation=0
9 = Down_Separation=0
10 = Other_RAC=NO_INTENT
11 = Other_Capability=TCAS_CA
12 = Climb_Inhibit=true

Eclipse Plugin for ACTS

Work in
progress

Eclipse Plugin for ACTS

Defining
parameters
and values

ACTS Users

Information
Technology

Defense

Finance

Telecom

Outline
1. Why we are doing this?
2. Number of variables involved in actual software failures
3. What is combinatorial testing (CT)?
4. Design of expts (DoE) vs CT based on covering arrays (CA)
5. Number of tests in t-way testing based on CAs
6. Tool to generate combinatorial test suites based on CAs
7. Determining expected output for each test run
8. Applications (Modeling and simulation, Security vulnerability)
9. Fault localization
10. Combinatorial coverage measurement
11. Sequence covering arrays
12. Conclusion

How to automate checking
correctness of output

• Creating test data is the easy part!
• How do we check that the code worked correctly
 on the test input?

• Crash testing server or other code to ensure it does not crash
for any test input (like ‘fuzz testing’)
 - Easy but limited value

• Built-in self test with embedded assertions – incorporate
assertions in code to check critical states at different points in the
code, or print out important values during execution

• Full scale model-checking using mathematical model of system
and model checker to generate expected results for each input
 - expensive but tractable

Crash Testing
• Like “fuzz testing” - send packets or other input
 to application, watch for crashes
• Unlike fuzz testing, input is non-random;
 cover all t-way combinations
• May be more efficient - random input generation
 requires several times as many tests to cover the
 t-way combinations in a covering array
 Limited utility, but can detect
 high-risk problems such as:
 - buffer overflows
 - server crashes

Ratio of Random/Combinatorial Test Set
Required to Provide t-way Coverage

2w ay 3w ay 4w ay
nval=2

nval=6

nval=10

0.00
0.50
1.00
1.50
2.00
2.50
3.00
3.50
4.00
4.50

5.00

Ratio

Interactions

V alues per
variable

4.50-5.00

4.00-4.50

3.50-4.00

3.00-3.50

2.50-3.00

2.00-2.50

1.50-2.00

1.00-1.50

0.50-1.00

0.00-0.50

Built-in Self Test
through Embedded Assertions

Simple example:
assert(x != 0); // ensure divisor is not zero

Or pre and post-conditions:
/requires amount >= 0;

/ensures balance == \old(balance) - amount &&
\result == balance;

Built-in Self Test
Assertions check properties of expected result:
 ensures balance == \old(balance) - amount
 && \result == balance;

•Reasonable assurance that code works correctly across
the range of expected inputs

•May identify problems with handling unanticipated inputs

•Example: Smart card testing

• Used Java Modeling Language (JML) assertions
• Detected 80% to 90% of flaws

Using model checking to produce tests

The system can never
get in this state!

Yes it can, and
here’s how …

 Model-checker test
production:
if assertion is not true,
then a counterexample
is generated.

 This can be
converted to a test
case.

 Black & Ammann, 1999

Model Checking
Example

 Traffic Collision Avoidance
System (TCAS) module
• Used in previous testing research
• 41 versions seeded with errors
• 12 variables: 7 boolean, two 3-value, one 4-

value, two 10-value
• All flaws found with 5-way coverage
• Thousands of tests - generated by model

checker in a few minutes

Tests generated
 t
2-way:
3-way:
4-way:
5-way:
6-way:

0

2000

4000

6000

8000

10000

12000

2-way 3-way 4-way 5-way 6-way

T
e

s
ts

Test cases
156
461

1,450
4,309

11,094

Results

Detection Rate for TCAS Seeded
Errors

0%

20%

40%

60%

80%

100%

2 way 3 way 4 way 5 way 6 way

Fault Interaction level

Detection
rate

• Roughly consistent with data on large systems

• But errors harder to detect than real-world examples

Tests per error

0.0

50.0

100.0

150.0

200.0

250.0

300.0

350.0

2 w ay 3 w ay 4 w ay 5 w ay 6 w ay

Fault Interaction level
T

es
ts Tests per error

Bottom line for model checking based combinatorial testing:
Expensive but can be highly effective

Tradeoffs
 Advantages

− Tests rare conditions
− Produces high code coverage
− Finds faults faster
− May be lower overall testing cost

 Disadvantages
− Very expensive at higher strength interactions (>4-

way)
− May require high skill level in some cases (if formal

models are being used)

Outline
1. Why we are doing this?
2. Number of variables involved in actual software failures
3. What is combinatorial testing (CT)?
4. Design of expts (DoE) vs CT based on covering arrays (CA)
5. Number of tests in t-way testing based on CAs
6. Tool to generate combinatorial test suites based on CAs
7. Determining expected output for each test run
8. Applications (Modeling and simulation, Security vulnerability)
9. Fault localization
10. Combinatorial coverage measurement
11. Sequence covering arrays
12. Conclusion

Document Object Model Events

Event Name Param.

Tests
Abort 3 12
Blur 5 24
Click 15 4352
Change 3 12
dblClick 15 4352
DOMActivate 5 24
DOMAttrModified 8 16
DOMCharacterDataMo
dified

8 64

DOMElementNameCha
nged

6 8

DOMFocusIn 5 24
DOMFocusOut 5 24
DOMNodeInserted 8 128
DOMNodeInsertedIntoD
ocument

8 128

DOMNodeRemoved 8 128
DOMNodeRemovedFrom
Document

 8 128

DOMSubTreeModified 8 64
Error 3 12
Focus 5 24
KeyDown 1 17
KeyUp 1 17

Load 3 24
MouseDown 15 4352
MouseMove 15 4352
MouseOut 15 4352
MouseOver 15 4352
MouseUp 15 4352
MouseWheel 14 1024
Reset 3 12
Resize 5 48
Scroll 5 48
Select 3 12
Submit 3 12
TextInput 5 8
Unload 3 24
Wheel 15 4096
Total Tests 36626

Exhaustive testing of
equivalence class values

World Wide Web Consortium
Document Object Model Events

t Tests % of
Orig.

Test Results

Pass Fail Not
Run

2 702 1.92% 202 27 473
3 1342 3.67% 786 27 529
4 1818 4.96% 437 72 1309
5 2742 7.49% 908 72 1762

6 4227 11.54
% 1803 72 2352

All failures found using < 5% of
original pseudo-exhaustive test set

Buffer Overflows
• Empirical data from the National Vulnerability Database

• Investigated > 3,000 denial-of-service vulnerabilities reported in
the NIST NVD for period of 10/06 – 3/07

• Vulnerabilities triggered by:
• Single variable – 94.7%

example: Heap-based buffer overflow in the SFTP protocol
handler for Panic Transmit … allows remote attackers to execute
arbitrary code via a long ftps:// URL.

• 2-way interaction – 4.9%
example: single character search string in conjunction with a single
character replacement string, which causes an "off by one
overflow"

• 3-way interaction – 0.4%
example: Directory traversal vulnerability when register_globals is
enabled and magic_quotes is disabled
and .. (dot dot) in the page parameter

Finding Buffer Overflows
1. if (strcmp(conn[sid].dat->in_RequestMethod, "POST")==0) {

2. if (conn[sid].dat->in_ContentLength<MAX_POSTSIZE) {

 ……

3. conn[sid].PostData=calloc(conn[sid].dat->in_ContentLength+1024,
sizeof(char));

 ……

4. pPostData=conn[sid].PostData;

5. do {

6. rc=recv(conn[sid].socket, pPostData, 1024, 0);

 ……

7. pPostData+=rc;

8. x+=rc;

9. } while ((rc==1024)||(x<conn[sid].dat->in_ContentLength));

10. conn[sid].PostData[conn[sid].dat->in_ContentLength]='\0';

11. }

Interaction: request-method=”POST”, content-
length = -1000, data= a string > 24 bytes
1. if (strcmp(conn[sid].dat->in_RequestMethod, "POST")==0) {

2. if (conn[sid].dat->in_ContentLength<MAX_POSTSIZE) {

 ……

3. conn[sid].PostData=calloc(conn[sid].dat->in_ContentLength+1024,
sizeof(char));

 ……

4. pPostData=conn[sid].PostData;

5. do {

6. rc=recv(conn[sid].socket, pPostData, 1024, 0);

 ……

7. pPostData+=rc;

8. x+=rc;

9. } while ((rc==1024)||(x<conn[sid].dat->in_ContentLength));

10. conn[sid].PostData[conn[sid].dat->in_ContentLength]='\0';

11. }

Interaction: request-method=”POST”, content-
length = -1000, data= a string > 24 bytes
1. if (strcmp(conn[sid].dat->in_RequestMethod, "POST")==0) {

2. if (conn[sid].dat->in_ContentLength<MAX_POSTSIZE) {

 ……

3. conn[sid].PostData=calloc(conn[sid].dat->in_ContentLength+1024,
sizeof(char));

 ……

4. pPostData=conn[sid].PostData;

5. do {

6. rc=recv(conn[sid].socket, pPostData, 1024, 0);

 ……

7. pPostData+=rc;

8. x+=rc;

9. } while ((rc==1024)||(x<conn[sid].dat->in_ContentLength));

10. conn[sid].PostData[conn[sid].dat->in_ContentLength]='\0';

11. }

true branch

Interaction: request-method=”POST”, content-
length = -1000, data= a string > 24 bytes
1. if (strcmp(conn[sid].dat->in_RequestMethod, "POST")==0) {

2. if (conn[sid].dat->in_ContentLength<MAX_POSTSIZE) {

 ……

3. conn[sid].PostData=calloc(conn[sid].dat->in_ContentLength+1024,
sizeof(char));

 ……

4. pPostData=conn[sid].PostData;

5. do {

6. rc=recv(conn[sid].socket, pPostData, 1024, 0);

 ……

7. pPostData+=rc;

8. x+=rc;

9. } while ((rc==1024)||(x<conn[sid].dat->in_ContentLength));

10. conn[sid].PostData[conn[sid].dat->in_ContentLength]='\0';

11. }

true branch

Interaction: request-method=”POST”, content-
length = -1000, data= a string > 24 bytes
1. if (strcmp(conn[sid].dat->in_RequestMethod, "POST")==0) {

2. if (conn[sid].dat->in_ContentLength<MAX_POSTSIZE) {

 ……

3. conn[sid].PostData=calloc(conn[sid].dat->in_ContentLength+1024,
sizeof(char));

 ……

4. pPostData=conn[sid].PostData;

5. do {

6. rc=recv(conn[sid].socket, pPostData, 1024, 0);

 ……

7. pPostData+=rc;

8. x+=rc;

9. } while ((rc==1024)||(x<conn[sid].dat->in_ContentLength));

10. conn[sid].PostData[conn[sid].dat->in_ContentLength]='\0';

11. }

true branch

Allocate -1000 + 1024 bytes = 24 bytes

Interaction: request-method=”POST”, content-
length = -1000, data= a string > 24 bytes
1. if (strcmp(conn[sid].dat->in_RequestMethod, "POST")==0) {

2. if (conn[sid].dat->in_ContentLength<MAX_POSTSIZE) {

 ……

3. conn[sid].PostData=calloc(conn[sid].dat->in_ContentLength+1024,
sizeof(char));

 ……

4. pPostData=conn[sid].PostData;

5. do {

6. rc=recv(conn[sid].socket, pPostData, 1024, 0);

 ……

7. pPostData+=rc;

8. x+=rc;

9. } while ((rc==1024)||(x<conn[sid].dat->in_ContentLength));

10. conn[sid].PostData[conn[sid].dat->in_ContentLength]='\0';

11. }

true branch

Allocate -1000 + 1024 bytes = 24 bytes

Boom!

Modeling & Simulation Application

• “Simured” network simulator
• Kernel of ~ 5,000 lines of C++ (not including GUI)

• Objective: detect configurations that can
produce deadlock:

• Prevent connectivity loss when changing network
• Attacks that could lock up network

• Compare effectiveness of random vs.
combinatorial inputs

• Deadlock combinations discovered
• Crashes in >6% of tests w/ valid values (Win32

version only)

Simulation Input Parameters
Parameter Values

1 DIMENSIONS 1,2,4,6,8
2 NODOSDIM 2,4,6
3 NUMVIRT 1,2,3,8
4 NUMVIRTINJ 1,2,3,8
5 NUMVIRTEJE 1,2,3,8
6 LONBUFFER 1,2,4,6
7 NUMDIR 1,2
8 FORWARDING 0,1
9 PHYSICAL true, false
10 ROUTING 0,1,2,3
11 DELFIFO 1,2,4,6
12 DELCROSS 1,2,4,6
13 DELCHANNEL 1,2,4,6
14 DELSWITCH 1,2,4,6

5x3x4x4x4x4x2x2
x2x4x4x4x4x4
= 31,457,280
configurations

Are any of them
dangerous?

If so, how many?

Which ones?

Network Deadlock Detection
 Deadlocks
Detected:

combinatorial

t Tests 500 pkts
1000
pkts

2000
pkts

4000
pkts

8000
pkts

2 28 0 0 0 0 0
3 161 2 3 2 3 3
4 752 14 14 14 14 14

Average Deadlocks Detected:
 random

t Tests 500 pkts
1000
pkts

2000
pkts

4000
pkts

8000
pkts

2 28 0.63 0.25 0.75 0. 50 0. 75
3 161 3 3 3 3 3
4 752 10.13 11.75 10.38 13 13.25

Network Deadlock Detection
Detected 14 configurations that can cause deadlock:
 14/ 31,457,280 = 4.4 x 10-7

Combinatorial testing found more deadlocks than
random, including some that might never have been
found with random testing

Why do this testing? Risks:
• accidental deadlock configuration: low
• deadlock config discovered by attacker: much higher
 (because they are looking for it)

Outline
1. Why we are doing this?
2. Number of variables involved in actual software failures
3. What is combinatorial testing (CT)?
4. Design of expts (DoE) vs CT based on covering arrays (CA)
5. Number of tests in t-way testing based on CAs
6. Tool to generate combinatorial test suites based on CAs
7. Determining expected output for each test run
8. Applications (Modeling and simulation, Security vulnerability)
9. Fault localization
10. Combinatorial coverage measurement
11. Sequence covering arrays
12. Conclusion

Fault location

Given: a set of tests that the SUT fails, which
combinations of variables/values triggered the failure?

variable/value combinations
in passing tests

variable/value combinations
in failing tests

These are the ones we want

Fault location – what's the problem?

If they're in failing set but not in
passing set:
1. which ones triggered the failure?
2. which ones don't matter?

out of vt() combinations
n
t

Example:
30 variables, 5 values each
 = 445,331,250
 5-way combinations

142,506 combinations
in each test

Outline
1. Why we are doing this?
2. Number of variables involved in actual software failures
3. What is combinatorial testing (CT)?
4. Design of expts (DoE) vs CT based on covering arrays (CA)
5. Number of tests in t-way testing based on CAs
6. Tool to generate combinatorial test suites based on CAs
7. Determining expected output for each test run
8. Applications (Modeling and simulation, Security vulnerability)
9. Fault localization
10. Combinatorial coverage measurement
11. Sequence covering arrays
12. Conclusion

Combinatorial Coverage Measurement

Tests Variables

a b c d

1 0 0 0 0

2 0 1 1 0

3 1 0 0 1

4 0 1 1 1

5 0 1 0 1

6 1 0 1 1

7 1 0 1 0

8 0 1 0 0

Variable pairs Variable-value
combinations
covered

Coverage

ab 00, 01, 10 .75

ac 00, 01, 10 .75

ad 00, 01, 11 .75

bc 00, 11 .50

bd 00, 01, 10, 11 1.0

cd 00, 01, 10, 11 1.0

100% coverage of 33% of combinations
75% coverage of half of combinations
50% coverage of 16% of combinations

Graphing Coverage Measurement

100% coverage of 33% of combinations
75% coverage of half of combinations
50% coverage of 16% of combinations

Bottom line:
All combinations
covered to at least 50%

Adding a test

Coverage after adding test [1,1,0,1]

Adding another test

Coverage after adding test [1,0,1,1]

Additional test completes coverage

Coverage after adding test [1,0,1,0]
All combinations covered to 100% level,
so this is a covering array.

Combinatorial Coverage Measurement

Outline
1. Why we are doing this?
2. Number of variables involved in actual software failures
3. What is combinatorial testing (CT)?
4. Design of expts (DoE) vs CT based on covering arrays (CA)
5. Number of tests in t-way testing based on CAs
6. Tool to generate combinatorial test suites based on CAs
7. Determining expected output for each test run
8. Applications (Modeling and simulation, Security vulnerability)
9. Fault localization
10. Combinatorial coverage measurement
11. Sequence covering arrays
12. Conclusion

Combinatorial Sequence Testing

Event Description
a connect flow meter
b connect pressure gauge
c connect satellite link
d connect pressure readout
e start comm link
f boot system

• Suppose we want to see if a system works correctly regardless
 of the order of events. How can this be done efficiently?
• Failure reports often say something like:

'failure occurred when A started if B is not already connected'.

• Can we produce compact tests such that all t-way sequences
covered (possibly with interleaving events)?

Sequence Covering Array
 • With 6 events, all sequences = 6! = 720 tests

• Only 10 tests needed for all 3-way sequences,
 results even better for larger numbers of events

• Example: .*c.*f.*b.* covered. Any such 3-way seq covered.
Test Sequence

1 a b c d e f
2 f e d c b a
3 d e f a b c
4 c b a f e d
5 b f a d c e
6 e c d a f b
7 a e f c b d
8 d b c f e a
9 c e a d b f

10 f b d a e c

Sequence Covering Array Properties
• 2-way sequences require only 2 tests
 (write events in any order, then reverse)

• For > 2-way, number of tests grows with log n, for n events

• Simple greedy algorithm produces compact test set

0

50

100

150

200

250

300

5 10 20 30 40 50 60 70 80

2-way

3-way

4-way

Number of events

Tests

Outline
1. Why we are doing this?
2. Number of variables involved in actual software failures
3. What is combinatorial testing (CT)?
4. Design of expts (DoE) vs CT based on covering arrays (CA)
5. Number of tests in t-way testing based on CAs
6. Tool to generate combinatorial test suites based on CAs
7. Determining expected output for each test run
8. Applications (Modeling and simulation, Security vulnerability)
9. Fault localization
10. Combinatorial coverage measurement
11. Sequence covering arrays
12. Conclusion

Industrial Usage Reports
• Work with US Air Force on sequence covering arrays,

submitted for publication
• World Wide Web Consortium DOM Level 3 events

conformance test suite
• Cooperative Research & Development Agreement

with Lockheed Martin Aerospace - report to be released 3rd
or 4th quarter 2011

Technology Transfer

Tools obtained by 700+ organizations;

NIST “textbook” on combinatorial testing
downloaded 8,000+ times since Oct. 2010

Collaborations: USAF 46th Test Wing,
Lockheed Martin, George Mason Univ.,
UMBC, JHU/APL, Carnegie Mellon Univ.

 Rick Kuhn Raghu Kacker
 kuhn@nist.gov raghu.kacker@nist.gov
 http://csrc.nist.gov/acts
 (Or just search “combinatorial testing”. We’re #1!)

Please contact us
if you are interested!

	Slide Number 1
	Outline
	Automated Combinatorial Testing
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Outline
	What is Combinatorial Testing?
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Slide Number 34
	Slide Number 35
	Slide Number 36
	Slide Number 37
	Outline
	Evolution of �design of experiments (DOE) �to �combinatorial testing of software and systems using covering arrays
	Design of Experiments (DOE)
	Early history
	Four eras of evolution of DOE
	Features of DOE
	Agriculture and biological investigations-1
	Agriculture and biological investigations-2
	Agriculture and biological investigations-3
	Industrial productivity-1
	Industrial productivity-2
	Industrial productivity-3
	Robust products-1
	Robust products-2
	Use of OAs for software testing
	Combinatorial Testing of Software and Systems -1
	Combinatorial Testing of Software and Systems -2
	Combinatorial Testing of Software and Systems -3
	Components of combinatorial testing
	Generating test suites based on CAs
	Mathematics underlying DOE/CAs
	Concluding remarks
	Outline
	Slide Number 61
	Slide Number 62
	Slide Number 63
	Slide Number 64
	Slide Number 65
	Slide Number 66
	Slide Number 67
	Slide Number 68
	Slide Number 69
	Slide Number 70
	Eclipse Plugin for ACTS
	Eclipse Plugin for ACTS
	Slide Number 73
	Outline
	Slide Number 75
	Slide Number 76
	Slide Number 77
	Slide Number 78
	Slide Number 79
	Slide Number 80
	Slide Number 81
	Slide Number 82
	Slide Number 83
	Slide Number 84
	Outline
	Slide Number 86
	Slide Number 87
	Slide Number 88
	Slide Number 89
	Slide Number 90
	Slide Number 91
	Slide Number 92
	Slide Number 93
	Slide Number 94
	Slide Number 95
	Slide Number 96
	Slide Number 97
	Slide Number 98
	Outline
	Fault location
	Fault location – what's the problem?
	Outline
	Combinatorial Coverage Measurement �
	Graphing Coverage Measurement �
	Adding a test
	Adding another test
	Additional test completes coverage
	Combinatorial Coverage Measurement �
	Outline
	Combinatorial Sequence Testing �
	Sequence Covering Array�
	Sequence Covering Array Properties
	Outline
	Industrial Usage Reports
	Technology Transfer
	Slide Number 116

