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Automated Combinatorial Testing 
 Goals – reduce testing cost, improve cost-benefit ratio for  
   software assurance 

 Merge automated test generation with combinatorial methods 

 New algorithms to make large-scale combinatorial testing practical 
  
 Accomplishments – huge increase in performance, scalability  
   + widespread use in real-world applications 

 Also non-testing applications – modelling and simulation  



 What is NIST and why are we doing this? 
• A US Government agency  

• The nation’s measurement and testing 
   laboratory – 3,000 scientists, engineers,  
   and support staff including 
   3 Nobel laureates 

Analysis of engineering failures, 
including buildings, materials, and ... 

Research in physics, chemistry, 
materials, manufacturing, computer 
science 



Software Failure Analysis 
• We studied software failures in a variety of 
   fields including 15 years of FDA medical  
   device recall data 

• What causes software failures? 

• logic errors? 

• calculation errors? 

• interaction faults? 

• inadequate input checking?   Etc.  

• What testing and analysis would have prevented failures? 

• Would statement coverage, branch coverage, all-values, all-pairs etc. 
   testing find the errors? 
 
Interaction faults:  e.g.,  failure occurs if 
 pressure < 10                           (1-way interaction <= all-values testing catches) 
 pressure < 10 & volume > 300 (2-way interaction <= all-pairs testing catches  ) 



Software Failure Internals 
• How does an interaction fault manifest itself in code? 
 
Example:  pressure < 10 & volume > 300   (2-way interaction)  
 
if (pressure < 10) { 

 // do something 

 if (volume > 300)  { faulty code!  BOOM! } 

 else { good code, no problem} 

} else { 

 // do something else 

} 

A test that included pressure = 5 and 
volume = 400 would trigger this failure 



  

• Pairwise testing commonly applied to software 
• Intuition: some problems only occur as the result of 

an interaction between parameters/components 
• Tests all pairs (2-way combinations) of variable 

values 
• Pairwise testing finds about 50% to 90% of flaws 

Pairwise testing is popular,  
but is it enough? 

90% of flaws.  
Sounds pretty good! 



  Finding 90% of flaws is pretty good, right? 

“Relax, our engineers found  
 90 percent of the flaws.” 

I don't think I 
want to get on 
that plane. 



How about hard-to-find flaws? 
•Interactions   e.g.,  failure occurs if 

• pressure < 10     (1-way interaction)  

• pressure < 10 & volume > 300 (2-way interaction)  

• pressure < 10 & volume > 300 & velocity = 5  
  (3-way interaction)  

• The most complex failure reported required  
    4-way interaction to trigger 
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Interesting, but 
that's just one kind 
of application. 

NIST study of 15 
years of FDA 
medical device 
recall data 



How about other applications?  
 Browser (green) 
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These faults more 
complex than 
medical device 
software!! 
 
Why? 



And other applications? 

 Server (magenta)  
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Still more? 
 NASA distributed database 
             (light blue) 
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Even more? 
Traffic Collision Avoidance System module 

(seeded errors)  (purple) 
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Finally 
 Network security (Bell, 2006) 
         (orange) 

 Curves appear 
to be similar 
across a variety 
of application 
domains. 
 
Why this 
distribution? 



 
 
 

What causes this distribution?   

One clue:  branches in avionics software. 
7,685 expressions from if and while statements 



Comparing with Failure Data 
Branch 
statements 



• Maximum interactions for fault triggering 
for these applications was 6 

• Much more empirical work needed 
• Reasonable evidence that maximum interaction 

strength for fault triggering is relatively small 
 

 
 

So, how many parameters are  
involved in really tricky faults? 

How does it help 
me to know this? 



 
 

 
 

How does this knowledge help? 

Still no silver 
bullet.  Rats! 

Biologists have a “central dogma”, and so do we: 
 
If all faults are triggered by the interaction of t or fewer variables, 
then testing all t-way combinations can provide strong assurance 
 
(taking into account:  value propagation issues, equivalence 
partitioning, timing issues, more complex interactions,  . . . ) 
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What is Combinatorial 
Testing? 



What is combinatorial testing? 
A simple example 



How Many Tests Would It Take? 

 There are 10 effects, each can be on or off 
 All combinations is 210 = 1,024 tests 
 What if our budget is too limited for these tests? 
 Instead, let’s look at all 3-way interactions … 



 There are           = 120 3-way interactions. 

 Naively 120 x 23 = 960 tests. 
 Since we can pack 3 triples into each test, we 

need no more than 320 tests. 
 Each test exercises many triples:   
                 

Now How Many Would It Take? 

We can pack a lot into one test, so what’s the 
smallest number of tests we need? 

10 
3 

0   1   1   0   0   0   0   1   1   0 



A covering array 

Each row is a test: 
Each column is  
a parameter: 

 
Each test covers       = 120 3-way combinations 
 
Finding covering arrays is NP hard 

All triples in only 13 tests, covering      23 = 960 combinations  

10 
3 

10 
3 



  

0 = effect off 
1 = effect on 

13 tests for all 3-way combinations 

210 = 1,024 tests for all combinations 



Another familiar example 

Plan:  flt, flt+hotel, flt+hotel+car 
From: CONUS, HI, Europe, Asia … 
To: CONUS, HI, Europe, Asia … 
Compare:  yes, no 
Date-type: exact, 1to3, flex 
Depart: today, tomorrow, 1yr, Sun, Mon …  
Return: today, tomorrow, 1yr, Sun, Mon … 
Adults: 1, 2, 3, 4, 5, 6 
Minors: 0, 1, 2, 3, 4, 5 
Seniors: 0, 1, 2, 3, 4, 5 

• No silver bullet because: 
      Many values per variable 
      Need to abstract values 
   But we can still increase information per test 



Ordering Pizza 

Simplified pizza ordering: 

6x4x4x4x4x3x2x2x5x2 
 = 184,320 possibilities 

6x217x217x217x4x3x2x2x5x2  
=  WAY TOO MUCH TO TEST 



Ordering Pizza Combinatorially 
Simplified pizza ordering: 

6x4x4x4x4x3x2x2x5x2 
 = 184,320 possibilities 

 

2-way tests:      32 

3-way tests:     150 

4-way tests:     570 

5-way tests:   2,413 

6-way tests:  8,330 

 If all failures involve 5 or fewer 
parameters, then we can have 
confidence after running all 5-way 
tests.  



• Suppose we have  a system with on-off switches: 
 

 
 

A larger example 



• 34 switches = 234 = 1.7 x 1010 possible inputs = 1.7 x 1010 tests 
 
 

How do we test this? 



• 34 switches = 234 = 1.7 x 1010 possible inputs = 1.7 x 1010 tests 
• If only 3-way interactions, need only 33 tests 
• For 4-way interactions, need only 85 tests 
 
 
 

What if we knew no failure involves more 
than 3 switch settings interacting? 



  

 
 

Two ways of using combinatorial 
testing 

Use combinations here or here 

 
System  
under test 
 

Test 
data 
inputs 

Test case OS CPU Protocol 

1 Windows Intel IPv4 

2 Windows AMD IPv6 

3 Linux Intel IPv6 

4 Linux AMD IPv4 

Configuration 



Testing Configurations 
• Example:  app must run on any configuration of OS, browser, 
  protocol, CPU, and DBMS 

• Very effective for interoperability testing  



Configurations to Test 
Degree of interaction coverage: 2 
Number of parameters: 5 
Maximum number of values per parameter: 3 
Number of configurations: 10 
------------------------------------- 
Configuration #1: 
1 = OS=XP 
2 = Browser=IE 
3 = Protocol=IPv4 
4 = CPU=Intel 
5 = DBMS=MySQL 
------------------------------------- 
Configuration #2: 
1 = OS=XP 
2 = Browser=Firefox 
3 = Protocol=IPv6 
4 = CPU=AMD 
5 = DBMS=Sybase 
------------------------------------- 
Configuration #3: 
1 = OS=XP 
2 = Browser=IE 
3 = Protocol=IPv6 
4 = CPU=Intel 
5 = DBMS=Oracle 
. . .  etc. 

t # Tests % of Exhaustive 

2 10 14 

3 18 25 

4 36 50 

5 72 100 



  

 
 

Testing Smartphone Configurations 

int HARDKEYBOARDHIDDEN_NO;   
int HARDKEYBOARDHIDDEN_UNDEFINED;   
int HARDKEYBOARDHIDDEN_YES; 
int KEYBOARDHIDDEN_NO; 
int KEYBOARDHIDDEN_UNDEFINED;   
int KEYBOARDHIDDEN_YES; 
int KEYBOARD_12KEY; 
int KEYBOARD_NOKEYS;   
int KEYBOARD_QWERTY;   
int KEYBOARD_UNDEFINED;   
int NAVIGATIONHIDDEN_NO;   
int NAVIGATIONHIDDEN_UNDEFINED;   
int NAVIGATIONHIDDEN_YES;   
int NAVIGATION_DPAD;  
int NAVIGATION_NONAV;   
int NAVIGATION_TRACKBALL;   
int NAVIGATION_UNDEFINED;   
int NAVIGATION_WHEEL;   

int ORIENTATION_LANDSCAPE;   
int ORIENTATION_PORTRAIT;   
int ORIENTATION_SQUARE;   
int ORIENTATION_UNDEFINED;  
int SCREENLAYOUT_LONG_MASK;   
int SCREENLAYOUT_LONG_NO;   
int SCREENLAYOUT_LONG_UNDEFINED;   
int SCREENLAYOUT_LONG_YES;   
int SCREENLAYOUT_SIZE_LARGE;   
int SCREENLAYOUT_SIZE_MASK;   
int SCREENLAYOUT_SIZE_NORMAL;   
int SCREENLAYOUT_SIZE_SMALL;   
int SCREENLAYOUT_SIZE_UNDEFINED;   
int TOUCHSCREEN_FINGER;   
int TOUCHSCREEN_NOTOUCH;   
int TOUCHSCREEN_STYLUS;   
int TOUCHSCREEN_UNDEFINED; 

Android configuration 
options: 



  

 
 

Configuration option values 
Parameter Name Values # Values 

HARDKEYBOARDHIDDEN NO, UNDEFINED, YES 3 

KEYBOARDHIDDEN NO, UNDEFINED, YES 3 

KEYBOARD 12KEY, NOKEYS, QWERTY, UNDEFINED 4 

NAVIGATIONHIDDEN NO, UNDEFINED, YES 3 

NAVIGATION DPAD, NONAV, TRACKBALL, UNDEFINED, 
WHEEL 

5 

ORIENTATION LANDSCAPE, PORTRAIT, SQUARE, UNDEFINED 4 

SCREENLAYOUT_LONG MASK, NO, UNDEFINED, YES 4 

SCREENLAYOUT_SIZE LARGE, MASK, NORMAL, SMALL, UNDEFINED 5 

TOUCHSCREEN FINGER, NOTOUCH, STYLUS, UNDEFINED 4 

Total possible configurations: 

 3 x 3 x 4 x 3 x 5 x 4 x 4 x 5 x 4 = 172,800    



  

 
 

Number of tests generated 

t # Tests % of Exhaustive 

2 29 0.02 

3 137 0.08 

4 625 0.4 

5 2532 1.5 

6 9168 5.3 
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Evolution of  
design of experiments (DOE)  

to  
combinatorial testing of 

software and systems using 
covering arrays 



Design of Experiments (DOE) 

Complete sequence of steps to ensure appropriate data will be 
obtained, which permit objective analysis that lead to valid 
conclusions about cause-effect systems 
Objectives stated ahead of time 
Opposed to observational studies of nature, society … 
Minimal expense of time and cost 
Multi-factor, not one-factor-at-a-time 

DOE implies design and associated data analysis 
Validity of inferences depends on design 

A DOE plan can be expressed as matrix 
Rows: tests, columns: variables, entries: test values or 

treatment allocations to experimental units 



Early history 
Scottish physician James Lind determined cure of scurvy 

Ship HM Bark Salisbury in 1747  
12 sailors “were as similar as I could have them” 
6 treatments 2 each 
Principles used (blocking, replication, randomization) 

Theoretical contributor of basic ideas: Charles S Peirce 
American logician, philosopher, mathematician 
1939-1914, Cambridge, MA 

Father of DOE: R A Fisher, 1890-1962, British geneticist 
Rothamsted Experiment Station, Hertfordshire, England 



Four eras of evolution of DOE 

Era 1:(1920’s …): Beginning in agricultural then animal science, 
clinical trials, medicine 

Era 2:(1940’s …): Use for industrial productivity 
Era 3:(1980’s …): Use for designing robust products  
Era 4:(2000’s …): Combinatorial Testing of Software 

Hardware-Software systems, computer security, assurance of 
access control policy implementation (health care records), 
verification and validations of simulations, optimization of 
models, testing of cloud computing applications, platform, 
and infrastructure 

 



Features of DOE 

1. System under investigation 
2. Variables (input, output and other), test settings 
3. Objectives 
4. Scope of investigation 
5. Key principles 
6. Experiment plans 
7. Analysis method from data to conclusions 
8. Some leaders (subjective, hundreds of contributors) 



Agriculture and biological investigations-1 

System under investigation 
Crop growing, effectiveness of drugs or other treatments 
Mechanistic (cause-effect) process; predictability limited 

Variable Types 
Primary test factors (farmer can adjust, drugs) 
Held constant  
Background factors (controlled in experiment, not in field) 
Uncontrolled factors (Fisher’s genius idea; randomization) 

Numbers of treatments 
Generally less than 10  

Objectives: compare treatments to find better 
Treatments: qualitative or discrete levels of continuous  



Agriculture and biological investigations-2 

Scope of investigation: 
Treatments actually tested, direction for improvement 

Key principles 
Replication: minimize experimental error (which may be large) 

replicate each test run; averages less variable than raw data 
Randomization: allocate treatments to experimental units at 

random; then error treated as draws from normal distribution 
Blocking (homogeneous grouping of units): systematic effects 

of background factors eliminated from comparisons 
Designs: Allocate treatments to experimental units 

Randomized Block designs, Balanced Incomplete Block 
Designs, Partially balanced Incomplete Block Designs 



Agriculture and biological investigations-3 

Analysis method from data to conclusions 
Simple statistical model for treatment effects 
ANOVA (Analysis of Variance) 
Significant factors among primary factors; better test settings  

Some of the leaders 
R A Fisher, F Yates, … 
G W Snedecor, C R Henderson*, Gertrude Cox, … 
W G Cochran*, Oscar Kempthorne*, D R Cox*, … 

Other: Double-blind clinical trials, biostatistics and medical 
application at forefront  



Industrial productivity-1 

System under investigation 
Chemical production process, manufacturing processes 
Mechanistic (cause-effect) process; predictability medium 
Variable Types:  
Not allocation of treatments to units 
Primary test factors: process variables levels can be adjusted 
Held constant 
Continue to use terminology from agriculture 
Generally less than 10  

Objectives:  
Identify important factors, predict their optimum levels 
Estimate response function for important factors 



Industrial productivity-2 

Scope of investigation: 
Optimum levels in range of possible values (beyond levels 

actually used) 
Key principles 

Replication:  Necessary 
Randomization of test runs: Necessary 
Blocking (homogeneous grouping): Needed less often 

Designs: Test runs for chosen settings 
Factorial and Fractional factorial designs 
Latin squares, Greco-Latin squares 
Central composite designs, Response surface designs 
 



Industrial productivity-3 
Analysis method from data to conclusions 

Estimation of linear or quadratic statistical models for relation 
between factor levels and response 

Linear ANOVA or regression models 
Quadratic response surface models 

Factor levels  
Chosen for better estimation of model parameters 
Main effect: average effect over level of all other factors 
2-way interaction effect: how effect changes with level of another 
3-way interaction effect: how 2-way interaction effect changes; 

often regarded as error 
Estimation requires balanced DOE 

Some of the leaders 
G. E. P. Box*, G. J. Hahn*, C. Daniel, C. Eisenhart*,… 



Robust products-1 

System under investigation 
Design of product (or design of manufacturing process) 

Variable Types 
Control Factors: levels can be adjusted 
Noise factors: surrogates for down stream conditions 
AT&T-BL 1985 experiment with 17 factors was large 

Objectives:  
Find settings for robust product performance: product lifespan 

under different operating conditions across different units 
Environmental variable, deterioration, manufacturing variation 



Robust products-2 

Scope of investigation: 
Optimum levels of control factors at which variation from noise 

factors is minimum 
Key principles 

Variation from noise factors 
Efficiency in testing; accommodate constraints  

Designs: Based on Orthogonal arrays (OAs) 
Taguchi designs (balanced 2-way covering arrays)  

Analysis method from data to conclusions 
Pseudo-statistical analysis 
Signal-to-noise ratios, measures of variability 

Some of the leaders: Genichi Taguchi 



Use of OAs for software testing 
Functional (black-box) testing 

Hardware-software systems 
Identify single and 2-way combination faults 

Early papers 
Taguchi followers (mid1980’s) 
Mandl (1985) Compiler testing 
Tatsumi et al (1987) Fujitsu 
Sacks et al (1989) Computer experiments 
Brownlie et al (1992) AT&T 

Generation of test suites using OAs 
OATS (Phadke*, AT&T-BL) 

 



Combinatorial Testing of Software and Systems -1 
System under investigation 

Hardware-software systems combined or separately 
Mechanistic (cause-effect) process; predictability full (high)  
Output unchanged (or little changed) in repeats 
Configurations of system or inputs to system 

Variable Types: test-factors and held constant 
Inputs and configuration variables having more than one option 
No limit on variables and test setting 

Identification of factors and test settings 
Which could trigger malfunction, boundary conditions 
Understand functionality, possible modes of malfunction 

Objectives: Identify t-way combinations of test setting of any t out 
of k factors in tests actually conducted which trigger malfunction; 
t << k  



Combinatorial Testing of Software and Systems -2 
Scope of investigation: 

Actual t-way (and higher) combinations tested; no prediction  
Key principles: no background no uncontrolled factors 

No need of blocking and randomization 
No need of replication; greatly decrease number of test runs 
Investigation of actual faults suggests: 1 < t < 7 
Complex constraints between test settings (depending on 

possible paths software can go through) 
Designs: Covering arrays cover all t-way combinations 

Allow for complex constraints 
Other DOE can be used; CAs require fewer tests (exception 

when OA of index one is available which is best CA) 
‘Interaction’ means number of variables in combination (not 

estimate of parameter of statistical model as in other DOE) 



Combinatorial Testing of Software and 
Systems -3 

Analysis method from data to conclusions 
No statistical model for test setting-output relationship; no 

prediction  
No estimation of statistical parameters (main effects, interaction 

effects)  
Test suite need not be balanced; covering arrays unbalanced 
Often output is {0,1} 
Need algorithms to identify fault triggering combinations 

Some leaders 
AT&T-BL alumni (Neil Sloan*), Charlie Colbourn* (AzSU) … 
NIST alumni/employees (Rick Kuhn*), Jeff Yu Lei* (UTA/NIST) 

Other applications 
Assurance of access control policy implementations 
Computer security, health records 



Components of combinatorial testing 
Problem set up: identification of factors and settings  
Test run: combination of one test setting for each factor  
Test suite generation, high strength, constraints  
Test execution, integration in testing system 
Test evaluation / expected output oracle 
Fault localization 



Generating test suites based on CAs 

CATS (Bell Labs), AETG (BellCore-Telcordia) 
IPO (Yu Lei) led to ACTS (IPOG, …) 
Tconfig (Ottawa), CTGS (IBM), TOG (NASA),…   
Jenny (Jenkins), TestCover (Sherwood),… 
PICT (Microsoft),…  
ACTS (NIST/UTA) free, open source intended  

Effective efficient for t-way combinations for t = 2, 3, 4, 5, 6, … 
Allow complex constraints 



Mathematics underlying DOE/CAs  
1829-32 Évariste Galois (French, shot in dual at age 20) 
1940’s R. C. Bose (father of math underlying DOE) 
1947  C. R. Rao* (concept of orthogonal arrays) 

Hadamard (1893), RC Bose, KA Bush, Addelman, Taguchi, 
1960’s G. Taguchi* (catalog of OAs, industrial use) 
Covering arrays (Sloan* 1993) as math objects 

Renyi (1971, probabilist, died at age 49) 
Roux (1987, French, disappeared leaving PhD thesis)  
Katona (1973), Kleitman and Spencer (1973), Sloan* (1993), 

CAs connection to software testing: key papers 
Dalal* and Mallows* (1997), Cohen, Dalal, Fredman, Patton(1997), 

Alan Hartman* (2003), … 
Catalog of Orthogonal Arrays (N J A Sloan*, AT&T) 
Sizes of Covering Arrays (C J Colbourn*, AzSU) 



Concluding remarks 
DOE: approach to gain information to improve things 
Combinatorial Testing is a special kind of DOE 

Chosen input → function → observe output 
Highly predictable system; repeatability high understood 
Input space characterized in terms of factors, discrete settings 
Critical event when certain t-way comb encountered t << k 
Detect such t-way combinations or assure absence 
Exhaustive testing of all k-way combinations not practical 
No statistical model assumed 
Unbalanced test suites 
Smaller size test suites than other DOE plans, which can be used 

Many applications 
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New algorithms to make it practical 
• Tradeoffs to minimize calendar/staff time: 

• FireEye (extended IPO) – Lei – roughly optimal, can be used for 
most cases under 40 or 50 parameters 

• Produces minimal number of tests at cost of run time 

• Currently integrating algebraic methods 

• Adaptive distance-based strategies – Bryce – dispensing one test 
at a time w/ metrics to increase probability of finding flaws 

• Highly optimized covering array algorithm 

• Variety of distance metrics for selecting next test  

• PRMI – Kuhn –for more variables or larger domains 
• Parallel, randomized algorithm, generates tests w/ a few tunable parameters; 
computation can be distributed 

• Better results than other algorithms for larger problems    



• Smaller test sets faster, with a more advanced user interface 
• First parallelized covering array algorithm 
• More information per test 

12600 1070048 >1 day NA 470 11625 >1 day NA 65.03 10941 6 

1549 313056 >1 day NA 43.54 4580 >1 
day NA 18s 4226 5 

127 64696 >21 hour 1476 3.54 1536 5400 1484 3.05 1363 4 

3.07 9158 >12 hour 472 0.71 413 1020 2388 0.36 400 3 

2.75 101 >1 hour 108 0.001 108 0.73 120 0.8 100 2 

Time Size Time Size Time Size Time Size Time Size 

TVG (Open Source)  TConfig (U. of Ottawa)  Jenny (Open Source)  ITCH (IBM)  IPOG 
T-Way 

New algorithms 

Traffic Collision Avoidance System (TCAS):  273241102 

Times in seconds 
That's fast! 

Unlike diet plans,  
results ARE typical! 



  
• Number of tests:  proportional to vt log n 

for v values, n variables, t-way interactions 
• Thus: 

•Tests increase exponentially with interaction strength t : BAD, 
but unavoidable 
•But only logarithmically with the number of parameters : 
GOOD! 

• Example: suppose we want all 4-way combinations of n 
parameters, 5 values each: 
 
 

Cost and Volume of Tests 
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ACTS Tool 



Defining a new system 



Variable interaction strength  



Constraints 



Covering array output 



Output 
 Variety of output formats: 

 XML 
 Numeric 
 CSV 
 Excel 

 
 Separate tool to generate .NET configuration 
  files from ACTS output 
 
 Post-process output using Perl scripts, etc.  
 
 



Output options 
Mappable values 

 
Degree of interaction 
coverage: 2 
Number of parameters: 12 
Number of tests: 100 
 
----------------------------- 
 
0 0 0 0 0 0 0 0 0 0 0 0  
1 1 1 1 1 1 1 0 1 1 1 1  
2 0 1 0 1 0 2 0 2 2 1 0  
0 1 0 1 0 1 3 0 3 1 0 1  
1 1 0 0 0 1 0 0 4 2 1 0  
2 1 0 1 1 0 1 0 5 0 0 1  
0 1 1 1 0 1 2 0 6 0 0 0  
1 0 1 0 1 0 3 0 7 0 1 1  
2 0 1 1 0 1 0 0 8 1 0 0  
0 0 0 0 1 0 1 0 9 2 1 1  
1 1 0 0 1 0 2 1 0 1 0 1  
Etc.  
 
 

Human readable 
 
Degree of interaction coverage: 2 
Number of parameters: 12 
Maximum number of values per 
parameter: 10 
Number of configurations: 100 
----------------------------------- 
Configuration #1: 
 
1 = Cur_Vertical_Sep=299 
2 = High_Confidence=true 
3 = Two_of_Three_Reports=true 
4 = Own_Tracked_Alt=1 
5 = Other_Tracked_Alt=1 
6 = Own_Tracked_Alt_Rate=600 
7 = Alt_Layer_Value=0 
8 = Up_Separation=0 
9 = Down_Separation=0 
10 = Other_RAC=NO_INTENT 
11 = Other_Capability=TCAS_CA 
12 = Climb_Inhibit=true 



Eclipse Plugin for ACTS 

 

Work in  
progress 



Eclipse Plugin for ACTS 

Defining 
parameters 
and values 

 



ACTS Users 

Information 
Technology 

Defense 

Finance 

Telecom 
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How to automate checking  
correctness of output  

• Creating test data is the easy part! 
• How do we check that the code worked correctly  
   on the test input? 

• Crash testing server or other code to ensure it does not crash 
for any test input (like ‘fuzz testing’) 
   - Easy but limited value 

• Built-in self test with embedded assertions – incorporate 
assertions in code to check critical states at different points in the 
code, or print out important values during execution 

• Full scale model-checking using mathematical model of system 
and model checker to generate expected results for each input 
   - expensive but tractable 



Crash Testing 
• Like “fuzz testing” - send packets or other input  
  to application, watch for crashes 
• Unlike fuzz testing, input is non-random;  
   cover all t-way combinations 
• May be more efficient - random input generation 
  requires several times as many tests to cover the  
  t-way combinations in a covering array 
 Limited utility, but can detect  
   high-risk problems such as: 
         - buffer overflows 
         - server crashes 



Ratio of Random/Combinatorial Test Set 
Required to Provide t-way Coverage 
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Built-in Self Test  
through Embedded Assertions 

Simple example:    
assert( x != 0);    // ensure divisor is not zero 
 
 
Or pre and post-conditions: 
/requires amount >= 0; 
 
/ensures balance  == \old(balance) - amount &&  
\result == balance; 
 
 



Built-in Self Test 
Assertions check properties of expected result: 
     ensures balance  == \old(balance) - amount  
       &&  \result == balance; 
 
•Reasonable assurance that code works correctly across 
the range of expected inputs 
 
•May identify problems with handling unanticipated inputs 
 
•Example:   Smart card testing 

• Used Java Modeling Language (JML) assertions 
• Detected 80% to 90% of flaws 

 
 



Using model checking to produce tests 

The system can never 
get in this state! 

Yes it can, and 
here’s how … 

 Model-checker test 
production:   
if assertion is not true, 
then a counterexample 
is generated.   
 
 This can be 
converted to a test 
case. 

 Black & Ammann, 1999 



Model Checking 
Example 

 Traffic Collision Avoidance  
System (TCAS) module 
• Used in previous testing research 
• 41 versions seeded with errors 
• 12 variables: 7 boolean, two 3-value, one 4-

value, two 10-value 
• All flaws found with 5-way coverage 
• Thousands of tests - generated by model 

checker in a few minutes 



Tests generated 
    t 
2-way:      
3-way:        
4-way:      
5-way:      
6-way: 
 
 

0
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12000
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T
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Test cases 
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1,450 
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11,094 



Results 

Detection Rate for TCAS Seeded 
Errors
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• Roughly consistent with data on large systems 

• But errors harder to detect than real-world examples 

Tests per error
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Bottom line for model checking based combinatorial testing: 
Expensive but can be highly effective 



Tradeoffs 
 Advantages 

− Tests rare conditions 
− Produces high code coverage 
− Finds faults faster 
− May be lower overall testing cost 

 Disadvantages 
− Very expensive at higher strength interactions (>4-

way) 
− May require high skill level in some cases (if formal 

models are being used) 
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Document Object Model Events 

Event Name Param. 

 
     

Tests 
Abort   3 12 
Blur 5         24 
Click 15 4352 
Change 3 12 
dblClick 15 4352 
DOMActivate 5 24 
DOMAttrModified 8 16 
DOMCharacterDataMo
dified 

8 64 

DOMElementNameCha
nged 

6 8 

DOMFocusIn 5 24 
DOMFocusOut 5 24 
DOMNodeInserted 8 128 
DOMNodeInsertedIntoD
ocument 

8 128 

DOMNodeRemoved 8 128 
DOMNodeRemovedFrom
Document 

       8 128 

DOMSubTreeModified 8 64 
Error 3 12 
Focus 5 24 
KeyDown 1 17 
KeyUp 1 17 

Load 3 24 
MouseDown 15 4352 
MouseMove 15 4352 
MouseOut 15 4352 
MouseOver 15 4352 
MouseUp 15 4352 
MouseWheel 14 1024 
Reset 3 12 
Resize 5 48 
Scroll 5 48 
Select 3 12 
Submit 3 12 
TextInput 5 8 
Unload 3 24 
Wheel 15 4096 
Total Tests   36626 

Exhaustive testing of 
equivalence class values 



World Wide Web Consortium  
Document Object Model Events 

t Tests % of  
Orig. 

Test Results 

Pass Fail Not 
Run 

2 702 1.92% 202 27 473 
3 1342 3.67% 786 27 529 
4 1818 4.96% 437 72 1309 
5 2742 7.49% 908 72 1762 

6 4227 11.54
% 1803 72 2352 

All failures found using < 5% of 
original pseudo-exhaustive test set 



Buffer Overflows 
• Empirical data from the National Vulnerability Database  

• Investigated > 3,000 denial-of-service vulnerabilities reported in 
the NIST NVD for period of 10/06 – 3/07 

• Vulnerabilities triggered by: 
• Single variable – 94.7% 

example:   Heap-based buffer overflow in the SFTP protocol 
handler for Panic Transmit … allows remote attackers to execute 
arbitrary code via a long  ftps://  URL.  

• 2-way interaction – 4.9% 
example: single character search string in conjunction with a single 
character replacement string, which causes an "off by one 
overflow"  

• 3-way interaction – 0.4% 
example:  Directory traversal vulnerability when register_globals is 
enabled and magic_quotes is disabled  
and .. (dot dot) in the page parameter 



Finding Buffer Overflows 
1.   if (strcmp(conn[sid].dat->in_RequestMethod, "POST")==0) { 

2.     if (conn[sid].dat->in_ContentLength<MAX_POSTSIZE) { 

  …… 

3.   conn[sid].PostData=calloc(conn[sid].dat->in_ContentLength+1024, 
sizeof(char)); 

             …… 

4.         pPostData=conn[sid].PostData;  

5.         do { 

6.            rc=recv(conn[sid].socket, pPostData, 1024, 0); 

           …… 

7.            pPostData+=rc; 

8.            x+=rc; 

9.         } while ((rc==1024)||(x<conn[sid].dat->in_ContentLength)); 

10.  conn[sid].PostData[conn[sid].dat->in_ContentLength]='\0'; 

11.   } 

 



Interaction: request-method=”POST”, content-
length = -1000, data= a string > 24 bytes 
1.   if (strcmp(conn[sid].dat->in_RequestMethod, "POST")==0) { 

2.     if (conn[sid].dat->in_ContentLength<MAX_POSTSIZE) { 

  …… 

3.   conn[sid].PostData=calloc(conn[sid].dat->in_ContentLength+1024, 
sizeof(char)); 

             …… 

4.         pPostData=conn[sid].PostData;  

5.         do { 

6.            rc=recv(conn[sid].socket, pPostData, 1024, 0); 

           …… 

7.            pPostData+=rc; 

8.            x+=rc; 

9.         } while ((rc==1024)||(x<conn[sid].dat->in_ContentLength)); 

10.  conn[sid].PostData[conn[sid].dat->in_ContentLength]='\0'; 

11.   } 

 



Interaction: request-method=”POST”, content-
length = -1000, data= a string > 24 bytes 
1.   if (strcmp(conn[sid].dat->in_RequestMethod, "POST")==0) { 

2.     if (conn[sid].dat->in_ContentLength<MAX_POSTSIZE) { 

  …… 

3.   conn[sid].PostData=calloc(conn[sid].dat->in_ContentLength+1024, 
sizeof(char)); 

             …… 

4.         pPostData=conn[sid].PostData;  

5.         do { 

6.            rc=recv(conn[sid].socket, pPostData, 1024, 0); 

           …… 

7.            pPostData+=rc; 

8.            x+=rc; 

9.         } while ((rc==1024)||(x<conn[sid].dat->in_ContentLength)); 

10.  conn[sid].PostData[conn[sid].dat->in_ContentLength]='\0'; 

11.   } 

 

true branch 



Interaction: request-method=”POST”, content-
length = -1000, data= a string > 24 bytes 
1.   if (strcmp(conn[sid].dat->in_RequestMethod, "POST")==0) { 

2.     if (conn[sid].dat->in_ContentLength<MAX_POSTSIZE) { 

  …… 

3.     conn[sid].PostData=calloc(conn[sid].dat->in_ContentLength+1024, 
sizeof(char)); 

             …… 

4.         pPostData=conn[sid].PostData;  

5.         do { 

6.            rc=recv(conn[sid].socket, pPostData, 1024, 0); 

           …… 

7.            pPostData+=rc; 

8.            x+=rc; 

9.         } while ((rc==1024)||(x<conn[sid].dat->in_ContentLength)); 

10.  conn[sid].PostData[conn[sid].dat->in_ContentLength]='\0'; 

11.   } 

 

true branch 



Interaction: request-method=”POST”, content-
length = -1000, data= a string > 24 bytes 
1.   if (strcmp(conn[sid].dat->in_RequestMethod, "POST")==0) { 

2.     if (conn[sid].dat->in_ContentLength<MAX_POSTSIZE) { 

  …… 

3.     conn[sid].PostData=calloc(conn[sid].dat->in_ContentLength+1024, 
sizeof(char)); 

             …… 

4.         pPostData=conn[sid].PostData;  

5.         do { 

6.            rc=recv(conn[sid].socket, pPostData, 1024, 0); 

           …… 

7.            pPostData+=rc; 

8.            x+=rc; 

9.         } while ((rc==1024)||(x<conn[sid].dat->in_ContentLength)); 

10.  conn[sid].PostData[conn[sid].dat->in_ContentLength]='\0'; 

11.   } 

 

true branch 

Allocate  -1000 + 1024 bytes = 24 bytes 



Interaction: request-method=”POST”, content-
length = -1000, data= a string > 24 bytes 
1.   if (strcmp(conn[sid].dat->in_RequestMethod, "POST")==0) { 

2.     if (conn[sid].dat->in_ContentLength<MAX_POSTSIZE) { 

  …… 

3.     conn[sid].PostData=calloc(conn[sid].dat->in_ContentLength+1024, 
sizeof(char)); 

             …… 

4.         pPostData=conn[sid].PostData;  

5.         do { 

6.            rc=recv(conn[sid].socket, pPostData, 1024, 0); 

           …… 

7.            pPostData+=rc; 

8.            x+=rc; 

9.         } while ((rc==1024)||(x<conn[sid].dat->in_ContentLength)); 

10.  conn[sid].PostData[conn[sid].dat->in_ContentLength]='\0'; 

11.   } 

 

true branch 

Allocate  -1000 + 1024 bytes = 24 bytes 

Boom! 



Modeling & Simulation Application 

• “Simured” network simulator 
• Kernel of ~ 5,000 lines of C++ (not including GUI) 

• Objective:  detect configurations that can 
produce deadlock: 

• Prevent connectivity loss when changing network 
• Attacks that could lock up network 

• Compare effectiveness of random vs. 
combinatorial inputs 

• Deadlock combinations discovered 
• Crashes in >6% of tests w/ valid values (Win32 

version only) 
 



Simulation Input Parameters 
Parameter Values 

1 DIMENSIONS             1,2,4,6,8 
2 NODOSDIM  2,4,6 
3 NUMVIRT  1,2,3,8 
4 NUMVIRTINJ  1,2,3,8 
5 NUMVIRTEJE   1,2,3,8 
6 LONBUFFER   1,2,4,6 
7 NUMDIR  1,2 
8 FORWARDING   0,1 
9 PHYSICAL  true, false 
10 ROUTING  0,1,2,3 
11 DELFIFO    1,2,4,6 
12 DELCROSS    1,2,4,6 
13 DELCHANNEL    1,2,4,6 
14 DELSWITCH  1,2,4,6 

5x3x4x4x4x4x2x2
x2x4x4x4x4x4 
= 31,457,280 
configurations 

Are any of them 
dangerous? 
 
If so, how many? 
 
Which ones? 



Network Deadlock Detection 
  Deadlocks 
Detected: 

combinatorial 

t Tests 500 pkts 
1000 
pkts 

2000 
pkts 

4000 
pkts 

8000 
pkts 

2 28 0 0 0 0 0 
3 161 2 3 2 3 3 
4 752 14 14 14 14 14 

Average Deadlocks Detected: 
 random 

t Tests 500 pkts 
1000 
pkts 

2000 
pkts 

4000 
pkts 

8000 
pkts 

2 28 0.63 0.25 0.75 0. 50 0. 75 
3 161 3 3 3 3 3 
4 752 10.13 11.75 10.38 13 13.25 



Network Deadlock Detection 
Detected 14 configurations that can cause deadlock: 
       14/ 31,457,280 = 4.4 x 10-7 

 
Combinatorial testing found more deadlocks than 
random, including some that might never have been 
found with random testing 
         

Why do this testing?  Risks: 
• accidental deadlock configuration:  low 
• deadlock config discovered by attacker:  much higher 
                               (because they are looking for it) 
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Fault location 

Given:  a set of tests that the SUT fails, which 
combinations of variables/values triggered the failure? 

variable/value combinations 
in passing tests 

variable/value combinations 
in failing tests 

These are the ones we want 



Fault location – what's the problem? 

If they're in failing set but not in 
passing set: 
1. which ones triggered the failure? 
2. which ones don't matter? 

out of vt( ) combinations 
n 
t 

Example: 
30 variables, 5 values each 
 = 445,331,250  
    5-way combinations 
 
142,506 combinations  
in each test 
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Combinatorial Coverage Measurement  
 

Tests Variables 

a b c d 

1 0 0 0 0 

2 0 1 1 0 

3 1 0 0 1 

4 0 1 1 1 

5 0 1 0 1 

6 1 0 1 1 

7 1 0 1 0 

8 0 1 0 0 

Variable pairs Variable-value 
combinations 
covered 

Coverage 

ab 00, 01, 10                 .75 

ac 00, 01, 10          .75 

ad 00, 01, 11          .75 

bc 00, 11                .50 

bd 00, 01, 10, 11     1.0 

cd 00, 01, 10, 11      1.0 

100% coverage of 33% of combinations 
75% coverage of half of combinations 
50% coverage of 16% of combinations  



Graphing Coverage Measurement  
 

100% coverage of 33% of combinations 
75% coverage of half of combinations 
50% coverage of 16% of combinations  

Bottom line: 
All combinations 
covered to at least 50% 



Adding a test 

Coverage after adding test [1,1,0,1]  



Adding another test 

Coverage after adding test [1,0,1,1] 



Additional test completes coverage 

Coverage after adding test [1,0,1,0] 
All combinations covered to 100% level,  
so this is a covering array.   



Combinatorial Coverage Measurement  
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Combinatorial Sequence Testing  
 

Event Description 
a connect flow meter 
b connect pressure gauge 
c connect satellite link 
d connect pressure readout 
e start comm link 
f boot system 

• Suppose we want to see if a system works correctly regardless  
  of the order of events.  How can this be done efficiently? 
• Failure reports often say something like:  

'failure occurred when A started if B is not already connected'. 

• Can we produce compact tests such that all t-way sequences 
covered (possibly with interleaving events)?   



Sequence Covering Array 
 • With 6 events, all sequences = 6! = 720 tests 

• Only 10 tests needed for all 3-way sequences,  
   results even better for larger numbers of events 

• Example:  .*c.*f.*b.* covered.  Any such 3-way seq covered. 
Test Sequence 

1 a b c d e f 
2 f e d c b a 
3 d e f a b c 
4 c b a f e d 
5 b f a d c e 
6 e c d a f b 
7 a e f c b d 
8 d b c f e a 
9 c e a d b f 

10 f b d a e c 



Sequence Covering Array Properties 
• 2-way sequences require only 2 tests  
   (write events in any order, then  reverse) 

• For > 2-way, number of tests grows with log n, for n events 

• Simple greedy algorithm produces compact test set 
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Industrial Usage Reports 
• Work with US Air Force on sequence covering arrays, 

submitted for publication 
• World Wide Web Consortium DOM Level 3 events 

conformance test suite 
• Cooperative Research & Development Agreement  

with Lockheed Martin Aerospace - report to be released 3rd 
or 4th quarter 2011 
 



Technology Transfer 
 
Tools obtained by 700+ organizations;  

NIST “textbook” on combinatorial testing 
downloaded 8,000+ times since Oct. 2010 
 

Collaborations: USAF 46th Test Wing, 
Lockheed Martin, George Mason Univ., 
UMBC, JHU/APL, Carnegie Mellon Univ.  
 



      Rick Kuhn                       Raghu Kacker  
        kuhn@nist.gov          raghu.kacker@nist.gov 
                      http://csrc.nist.gov/acts 
            (Or just search “combinatorial testing”.  We’re #1!) 

Please contact us  
if you are interested! 
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