NIST

MNational Institute of
Standords ond Technology

Combinatorial Testing
Rick Kuhn Raghu Kacker

National Institute of
Standards and Technology
Gaithersburg, MD

Institute for Defense Analyses 6 April 2011

Outline

Why we are doing this?

Number of variables involved in actual software failures
What is combinatorial testing (CT)?

Design of expts (DoE) vs CT based on covering arrays (CA)
Number of tests in t-way testing based on CAs

Tool to generate combinatorial test suites based on CAs
Determining expected output for each test run

Applications (Modeling and simulation, Security vulnerability)

© 0 N U bk Wb

Fault localization

10. Combinatorial coverage measurement
11. Sequence covering arrays

12. Conclusion

Automated Combinatorial Testing ..ece=:

B Goals — reduce testing cost, improve cost-benefit ratio for
software assurance

B Merge automated test generation with combinatorial methods

B New algorithms to make large-scale combinatorial testing practical

B Accomplishments — huge increase in performance, scalability
+ widespread use in real-world applications

B Also non-testing applications — modelling and simulation

A UNIVERSITY OF |
= TEXAS
‘W‘ ARLINGTON

CEORGE UtahState "-:;::;~‘ /
l\’l:As University

UHIUEHSIT"I"’

A P The Johns Hopkins University
LOCKNEED MARTIN:
Applied Physics Laboratory e e sortie o ﬁ

What is NIST and why are we doing this?

« AUS Government agency

« The nation’s measurement and testing
laboratory — 3,000 scientists, engineers,
and support staff including
3 Nobel laureates

Research in physics, chemistry,
materials, manufacturing, computer
science

LA

1
‘!’f‘": L-_eh.----*'

Analysis of engineering failures,
NIST . . - .
Natioal Insiute of including buildings, materials, and ...

Software Failure Analysis .sme

* We studied software failures in a variety of g -
fields including 15 years of FDA medical =t
device recall data

* What causes software failures?

* logic errors?

e calculation errors?

e interaction faults?

 inadequate input checking? Etc.
e What testing and analysis would have prevented failures?

* Would statement coverage, branch coverage, all-values, all-pairs etc.
testing find the errors?

Interaction faults: e.g., failure occurs if
pressure < 10 (1-way interaction <= all-values testing catches)
pressure < 10 & volume > 300 (2-way interaction <= all-pairs testing catches)

: NIST
Software Failure Internals w.smees:

» How does an interaction fault manifest itself in code?

Example: pressure < 10 & volume > 300 (2-way interaction)

IT (pressure < 10) {
// do something
it (volume > 300) { faulty code! BOOM! }
else { good code, no problem}

} else {

// do something else

}

A test that included pressure = 5 and
volume = 400 would trigger this failure

: : : : NIST
Pairwise testing Is popular, T

but Is it enough?

. Pairwise testing commonly applied to software

. Intuition: some problems only occur as the result of
an interaction between parameters/components

ests all pairs (2-way combinations) of variable
values

. Pairwise testing finds about 50% to 90% of flaws

Sounds pretty good!

{

[90% of flaws.

Finding 90% of flaws is pretty good, right?
e |

S (T don't think T\
“ . want to get on
Relax, our engineers found | that plane.

90 percent of the flaws." -

NIST

MNaotional Institute of
Stondords ond Technology

How about hard-to-find flaws’> i

sInteractions e.g.,
e pressure < 10
o pressure < 10 & volume > 300 (2-way interaction)

 pressure < 10 & volume > 300 & velocity =5

failure occurs if

(1-way interaction)

(3-way interaction)

* The most complex failure reported required

4-way interaction to trigger

% detected

100

90

80

70

60

50

40

30

20

10

0

Interaction

NIST study of 15
years of FDA
medical device
recall data

Interesting, but
that's just one kind
of application.

How about other applications?

Browser (green)

% detected

100

90

80

70

60

50

40

30

20

10

/|
/

L~

2 3

Interactions

4

NIST

Naotional Institute of
Stondords ond Technology

These faults more
complex than
medical device
software!!

Why?

And other applications?

Server (magenta)

% detected

100

90

80

70

60

50

40

30

20

10

—————
/ /

-

NIST

Naotional Institute of
Stondords ond Technology

Still more?

NASA distributed database

(light blue)

% detected

100

90

80

70

60

50

40

30

20

10

]

NIST

Naotional Institute of
Stondords ond Technology

Even more?

NIST

Naotional Institute of
Stondords ond Technology

Traffic Collision Avoidance System module

(seeded errors) (purple)

% detected

100

90

80

70 A

60

50

40

30

20

10

NIST

Finally o A ot o
Network security (Bell, 2006)
(orange)
100 e Curves appear
90 e | to be similar
0 / // | across a variety
oL / /7 // of app_lication
7 pd domains.
= 60
g v
E 50 1
= 40 Why this
2 / distribution?
20 3
10
0
1 2 3 4 5 b
Interactions

. . . . NIST
What causes this distribution? el e o

100.0% - - =

90.0%

80.0%

70.0%

60.0%

50.0%

40.0%

30.0%

20.0%

10.0%

0.0%
1 2 3 4 b b 7 g 3

One clue: branches in avionics software.
7,685 expressions from /fand while statements

Comparing with Failure Data

100 - /_________..——— .
=~ |
90 o e 8
80 A //////
% - _'|_'// ///é/
£ &0 :
B
3 40
E . B8
20 ,/
10
0

——Med Dev.
—— Browser
Server
NASA
—NW Sec
e A T

3 4

Interactions

NIST

Matienal Institute of
Stondords ond Technology

Branch
statements

NIST

Mational Institute of

So, how many parameters are ———
iInvolved in really tricky faults?

Maximum interactions for fault triggering
for these applications was 6

Much more empirical work needed

Reasonable evidence that maximum interaction
strength for fault triggering is relatively small

How does it help
me to know this?

NIST

Mational Institute of

How does this knowledge help? e S

Biologists have a “central dogma”, and so do we:

If all faults are triggered by the interaction of t or fewer variables,
then testing all t-way combinations can provide strong assurance

(taking into account: value propagation issues, equivalence
partitioning, timing issues, more complex interactions, . ..)

Still no silver
bullet. Rats!

Outline

Why we are doing this?

Number of variables involved in actual software failures
What is combinatorial testing (CT)?

Design of expts (DoE) vs CT based on covering arrays (CA)
Number of tests in t-way testing based on CAs

Tool to generate combinatorial test suites based on CAs
Determining expected output for each test run

Applications (Modeling and simulation, Security vulnerability)

© 0 N U bk Wb

Fault localization

10. Combinatorial coverage measurement
11. Sequence covering arrays

12. Conclusion

What 1s Combinatorial
Testing?

What is combinatorial testing?
A simple example

[=}

[]
Font Bx
Fonk “haracter Spacing | Texk Effects
Fonk: Font style: Size:
Times Reqgular 12
Times [ﬁ] Fegular g [ﬁ]
Times Mew Roman Italic 9
Trebuchet M35 Bold 10
Tw Cen MT] 12 (]
Font color: Underling skyle:
Automatic | | (none W
[] strikethrough [] shadow [] small caps
[] Double strikethrough [] all caps
[] superscript [] Emboss [] Hidden
[] subscript [] Engrave
M /
Timnes
This iz a scalable printer Fant, The screen irage ray not ratch prnted autput,
Defaulk, .. (] 4] [Cancel NH

Motienal Institute of
Standords and Technelogy

How Many Tests Would It Take?

o There are 10 effects, each can be on or off

. All combinations is 219 = 1,024 tests

« What If our budget is too limited for these tests?
« Instead, let’s look at all 3-way interactions ...

NIST

Matienal Institute of
Standords and Technelogy

Now How Many Would It Take?

. There are 1?()) = 120 3-way interactions.

 Naively 120 x 23 = 960 tests.

« Since we can pack 3 triples into each test, we
need no more than 320 tests.

« Each test exercises many triples:

A
r \

0110000110

J \

Y \ Y}
Y

We can pack a lot into one test, so what’s the
smallest number of tests we need?

NISI'

ational Institute o
Iu-n:lnrdi and ul'mnnl g]r

A covering array
All triples in only 13 tests, covering [130]23 = 960

combinations

Each column is
a parameter:

This is a scalable printer font, The screen image may not match prinked output,

—_— b Vo

Eachrowisatestt [O[o|OjJoJoloJo}{O][O0}
<AEEEC SRR RN Sy BN EE I
1[1|1|(0]1}0 DiD 0 :
1 /0|31]0)1 (010 |
1|0 O0¥0|1p1|1)|0O0]|0O
0 |1]130|0|1]|0¢0|1 |
0|0 | 130 1‘0 11 [1
1]1|0y1|opo|1)]o]|1
ololo|1|1l1|oO 1|1y 7=
O|lo|1|1|0|O0|1|0]O
0l1]/0y1|1|0|0{1]|O
1/0l0|O0|O0]|O|O|1]1
O|1|o0|0|0Op1|1|1]|O0

Each test covers[lg?] = 120 3-way combinations

Finding covering arrays is NP hard

= =\ =\ O\WOND O\O\=H\H\O
gm g_' -IAIg
O
9/

NIST

MNational Institute of
Standards ond Technology

O OO0OO0OHOO+HHKEFEKFHO
HOFR OO, O OOFKFO
OO0, OO0OKHFHFOFFEFHO
OO0O+HrKFRKFHLRHOOO+HORO
OO0OrROFRLROHOHOHKHEO
HOOORrROOKrHHFHFORO
HOORFROFHKFRFOHOORO
H R, OOOR,ROORKRORO
O OO0ORrRrKHRKRLRFHLOOORO
HHH,OFRRFROOOOORFRFO

0 = effect off -7
1 = effect on

13 tests for all 3-way combinations

210 = 1 024 tests for all combinations

NIST

Naotional Institute of
Stondords ond Technology

[1
Font

Font Character Spacing | Texk Effects

Fonk: Fonk skyle: Sizes

Times Regular 12
Times | | Regular a -
Times Mew Faman Ttalic Q (o
Trebuchet M3 Bold 10
Tunga Bl:lld Itah': 1 1 -

' 12 il
Tw Cen MT] =
Font color: . nderling style:
futomatic w | | (none) L
e ——
Ffects
[] strikethrough [] shadow []5mall caps
[] Double strikethrough []all caps
[] superscripk [] Embiss [Hidden
[] subscript []Engrave
Times

Thiz is a scalable printer Font, The screen image may nat match printed autput,

Defaulk, .. Ik l [Cancel

NIST

Natienal Institute of
Standards ond Technology

Another familiar example

No silver bullet because:
* travelocity Many values per variable
Need to abstract values
But we can still increase information per test

NN Vacation Packages Flights Hotels

Travel Info Center Flight Status Destination Guides Trae

T ———— Plan: fit, fit+hotel, fit+hotel+car

O Flight + Hotel _E‘ZJEEL_J‘-JU From: CONUS, HI, Europe, Asia ...
@il To: CONUS, HI, Europe, Asia ...

= = Compare: yes, no

[lCompare surounding siports B ... » Date-type: exact, 1to3, flex

() Exact dates (L) #1103 days () Flasible dates Depart: today, tomorrow, 1yr, Sun, Mon ...
Depart. mmikiyyy |] Anyime (v Return: today, tomorrow, 1yr, Sun, Mon ...
Reture ity |]| dmptine | Adults: 1, 2,3,4,5,6

Aclults (18-64) Minors (2-17) Seniors (63+) H Mlnors O; 11 21 31 41 5

an oe Ie Seniors: 0,1, 2, 3,4,5

NIST

Mational Institute of

Ordering Pizza ———

StEp o Select your favorite size and pizza crust. L:- A e
- L

| Large Original Crust~~ [se|

Step e

Select your favorite pizza toppings from the pull down. Whole toppings cover the entire pizza. First 12 and second

, o | 6x217x217x217x4x3x2x2x5x2
I want to add or remove tnpp&r}:ﬂi: on this pizza -- adéil;nr:[whule or half pizza. - WAY TOO MUCH -‘-o TEST

Cheese Bacon Olives
Remove Remove Remove

15 toppings cover half the pizza. For a regular cheese pizza, do not add toppings.

| Add toppings whole piza{i]

[Adé rppings 1t hl m@ Simplified pizza ordering:

| Add toppings 2nd half v @ 6x4x4x4x4x3x2x2xDx2
= 184,320 possibilities

Step 9 Select your pizza instructions.

I want to add special instructions for this pizza -- light, extra or no sauce; light or no cheese; well done bake
'Regular Sauce | |Normal Cheese v/ | Normal Bake % iNormal Cut v

Step o Add to order.

Quantity
Add To Order =) Add To Order & Checkout =

NIST

Ordering Pizza Combinatorially s
Simplified pizza ordering:

6x4x4x4x4x3x2x2xbx2
= 184,320 possibilities

2-way tests: 32

3-way tests: 150
4-way tests: 570
5-way tests: 2,413
6-way tests: 8,330

If all failures involve 5 or fewer
parameters, then we can have
confidence after running all 5-way
Tests.

A larger example

Suppose we have a system with on-off switches:

Mational Insfitute of
Standards and Technelogy

How do we test this?

34 switches = 234 = 1.7 x 10%° possible inputs = 1.7 x 1019 tests

Mational Insfitute of
Standards and Technelogy

What if we knew no failure involves more
than 3 switch settings interacting?

34 switches = 234 = 1.7 x 10%° possible inputs = 1.7 x 100 tests
If only 3-way interactions, need only 33 tests
For 4-way Interactions, need only 85 tests

Mational Insfitute of
Standards and Technelogy

Two ways of using combinatorial
testing

Use combinations here or here

1
1
1
1
1
v

Test case 0s CPU | Protocol
1 Windows | Intel IPv4
2 Windows | AMD IPv6
3 Linux | Intel IPv6
4 Linux | AMD IPv4

Configuration

A= — m L _

System
" under test

FFFFF

Flight Only
tel QA E5240
tel + Car Shavdiage
To:
[[] Compare surrouncing airports Kl
(3 Exact dates () #4110 & days () Flexible dates NH
Depart mmiddlyyyy | T Anvtime v
et oty | Antne (v ! Natienal Institute of
Adute (16.66) Mners (217) Serirs 959] Standards and Technology
- - -

Testing Configurations

« Example: app must run on any configuration of OS, browser,
protocol, CPU, and DBMS

 Very effective for interoperability testing

—

Browser

IE

Protocol

MySQL

Firefox

Sybase

IE

Oracle

Firefox

MySQL

IE

Sybase

Firefox

Oracle

IE

MySQL

2
3
4
4
6
7
8
9

Firefox

Sybase

Firefox

Oracle

=

Firefox

Oracle

Mational Institute of

Standords and Technelogy

Configurations to Test

Degree of interaction coverage: 2
Number of parameters: 5
Maximum number of values per parameter: 3
Number of configurations: 10
Configuration #1.:

1=0S=XP

2 = Browser=IE

3 = Protocol=IPv4

4 = CPU=Intel

5= DBMS=MySQL

Configuration #2:

1=0S=XP

2 = Browser=Firefox

3 = Protocol=IPv6

4 = CPU=AMD

5 = DBMS=Sybase

Configuration #3:

1=0S=XP

2 = Browser=IE

3 = Protocol=IPv6

4 = CPU=Intel
5 =DBMS=0Oracle
. etc.

t # Tests | % of Exhaustive

2 10 14

3 18 25

4 36 50

5 72 100
NIST

Matienal Institute of
Standords and Technelogy

Testing Smartphone Configurations

Android configuration
options:

int HARDKEYBOARDHIDDEN_NO;

int HARDKEYBOARDHIDDEN_UNDEFINED;
int HARDKEYBOARDHIDDEN_YES;

int KEYBOARDHIDDEN_NO,;

int KEYBOARDHIDDEN_UNDEFINED;
int KEYBOARDHIDDEN_YES;

int KEYBOARD_12KEY;

int KEYBOARD_NOKEYS,;

int KEYBOARD_QWERTY;

int KEYBOARD_UNDEFINED;

int NAVIGATIONHIDDEN_NO;

int NAVIGATIONHIDDEN_UNDEFINED;
int NAVIGATIONHIDDEN_YES;

int NAVIGATION_DPAD;

int NAVIGATION_NONAV;

int NAVIGATION_TRACKBALL,;

int NAVIGATION_UNDEFINED;

int NAVIGATION_WHEEL;

int ORIENTATION_LANDSCAPE;

int ORIENTATION_PORTRAIT;

int ORIENTATION_SQUARE;

int ORIENTATION_UNDEFINED;

int SCREENLAYOUT_LONG_MASK;

int SCREENLAYOUT_LONG_NGO;

int SCREENLAYOUT_LONG_UNDEFINED;
int SCREENLAYOUT_LONG_YES;

int SCREENLAYOUT_SIZE_LARGE;

int SCREENLAYOUT_SIZE_MASK;

int SCREENLAYOUT_SIZE_NORMAL;

int SCREENLAYOUT_SIZE_SMALL;

int SCREENLAYOUT_SIZE_UNDEFINED;
int TOUCHSCREEN_FINGER;

int TOUCHSCREEN_NOTOUCH,;

int TOUCHSCREEN_STYLUS;

int TOUCHSCREEN_UNDEFINED;

NIST

Naotienal Institute of
Standards ond Technology

Configuration option values

Parameter Name Values # Values
HARDKEYBOARDHIDDEN | NO, UNDEFINED, YES 3
KEYBOARDHIDDEN NO, UNDEFINED, YES 3
KEYBOARD 12KEY, NOKEYS, QWERTY, UNDEFINED 4
NAVIGATIONHIDDEN NO, UNDEFINED, YES 3
NAVIGATION DPAD, NONAV, TRACKBALL, UNDEFINED, 5
WHEEL
ORIENTATION LANDSCAPE, PORTRAIT, SQUARE, UNDEFINED 4
SCREENLAYOUT_LONG MASK, NO, UNDEFINED, YES 4
SCREENLAYOUT _SIZE LARGE, MASK, NORMAL, SMALL, UNDEFINED 5
TOUCHSCREEN FINGER, NOTOUCH, STYLUS, UNDEFINED 4

Total possible configurations:
3X3X4x3x5x4x4x5x4=172,800 NIST

Natienal Institute of
Standards ond Technology

Number of tests generated

t # Tests % of Exhaustive

2 29 0.02
3 137 0.08
4 625 0.4
5 2532 1.5
6 90168 5.3

NIST

Natienal Institute of
Standards ond Technology

Outline

Why we are doing this?

Number of variables involved in actual software failures
What is combinatorial testing (CT)?

Design of expts (DoE) vs CT based on covering arrays (CA)
Number of tests in t-way testing based on CAs

Tool to generate combinatorial test suites based on CAs
Determining expected output for each test run

Applications (Modeling and simulation, Security vulnerability)

© 0 N U bk Wb

Fault localization

10. Combinatorial coverage measurement
11. Sequence covering arrays

12. Conclusion

Evolution of
design of experiments (DOE)
to
combinatorial testing of
software and systems using
covering arrays

NIST

Natienal Institute of
Standards ond Technology

Design of Experiments (DOE)

Complete sequence of steps to ensure appropriate data will be
obtained, which permit objective analysis that lead to valid
conclusions about cause-effect systems

Objectives stated ahead of time
Opposed to observational studies of nature, society ...
Minimal expense of time and cost
Multi-factor, not one-factor-at-a-time
DOE implies design and associated data analysis

Validity of inferences depends on design
A DOE plan can be expressed as matrix

Rows: tests, columns: variables, entries: test values or
treatment allocations to experimental units

NIST

Naotienal Institute of
Standards ond Technology

Early history

Scottish physician James Lind determined cure of scurvy

Ship HM Bark Salisbury in 1747
12 sallors “were as similar as | could have them”
6 treatments 2 each
Principles used (blocking, replication, randomization)
Theoretical contributor of basic ideas: Charles S Peirce
American logician, philosopher, mathematician
1939-1914, Cambridge, MA
Father of DOE: R A Fisher, 1890-1962, British geneticist

Rothamsted Experiment Station, Hertfordshire, England

NIST

Naotienal Institute of
Standards ond Technology

Four eras of evolution of DOE

Era 1:(1920’s ...): Beginning in agricultural then animal science,
clinical trials, medicine

Era 2:(1940’s ...): Use for industrial productivity
Era 3:(1980’s ...): Use for designing robust products
Era 4:(2000’s ...): Combinatorial Testing of Software

Hardware-Software systems, computer security, assurance of
access control policy implementation (health care records),
verification and validations of simulations, optimization of
models, testing of cloud computing applications, platform,
and infrastructure

NIST

Naotienal Institute of
Standards ond Technology

© N O U A W N B

Features of DOE

. System under investigation

Variables (input, output and other), test settings

. Objectives
. Scope of investigation
. Key principles

. Experiment plans

Analysis method from data to conclusions

. Some leaders (subjective, hundreds of contributors)

NIST

Naotienal Institute of
Standards ond Technology

Agriculture and biological investigations-1

System under investigation

Crop growing, effectiveness of drugs or other treatments
Mechanistic (cause-effect) process; predictability limited
Variable Types

Primary test factors (farmer can adjust, drugs)

Held constant

Background factors (controlled in experiment, not in field)

Uncontrolled factors (Fisher’s genius idea; randomization)
Numbers of treatments

Generally less than 10
Objectives: compare treatments to find better

Treatments: qualitative or discrete levels of continuous NIST

Naotienal Institute of
Standards ond Technology

Agriculture and biological investigations-2

Scope of investigation:

Treatments actually tested, direction for improvement
Key principles

Replication: minimize experimental error (which may be large)
replicate each test run; averages less variable than raw data

Randomization: allocate treatments to experimental units at
random: then error treated as draws from normal distribution

Blocking (homogeneous grouping of units): systematic effects
of background factors eliminated from comparisons

Designs: Allocate treatments to experimental units

Randomized Block designs, Balanced Incomplete Block
Designs, Partially balanced Incomplete Block Designs

NIST

Naotienal Institute of
Standards ond Technology

Agriculture and biological investigations-3

Analysis method from data to conclusions

Simple statistical model for treatment effects

ANOVA (Analysis of Variance)

Significant factors among primary factors; better test settings
Some of the leaders

R A Fisher, F Yates, ...
G W Snedecor, C R Henderson*, Gertrude Cox, ...
W G Cochran*, Oscar Kempthorne*, D R Cox*, ...

Other: Double-blind clinical trials, biostatistics and medical
application at forefront

NIST

Naotienal Institute of
Standards ond Technology

Industrial productivity-1

System under investigation

Chemical production process, manufacturing processes
Mechanistic (cause-effect) process; predictability medium
Variable Types:
Not allocation of treatments to units
Primary test factors: process variables levels can be adjusted
Held constant
Continue to use terminology from agriculture
Generally less than 10

Objectives:

|ldentify important factors, predict their optimum levels
Estimate response function for important factors NIST

Naotienal Institute of
Standards ond Technology

Industrial productivity-2

Scope of investigation:

Optimum levels in range of possible values (beyond levels
actually used)

Key principles

Replication: Necessary

Randomization of test runs: Necessary

Blocking (homogeneous grouping): Needed less often

Designs: Test runs for chosen settings

Factorial and Fractional factorial designs
Latin squares, Greco-Latin squares
Central composite designs, Response surface designs

NIST

Naotienal Institute of
Standards ond Technology

Industrial productivity-3

Analysis method from data to conclusions

Estimation of linear or quadratic statistical models for relation
between factor levels and response

Linear ANOVA or regression models
Quadratic response surface models
Factor levels

Chosen for better estimation of model parameters
Main effect: average effect over level of all other factors
2-way interaction effect: how effect changes with level of another

3-way interaction effect: how 2-way interaction effect changes;
often regarded as error

Estimation requires balanced DOE

S f the lead
ome of the leaders NIST

G. E. P. Box*, G. J. Hahn*, C. Daniel, C. EiSenhart®,... susndor adohasios

Robust products-1

System under investigation

Design of product (or design of manufacturing process)
Variable Types

Control Factors: levels can be adjusted

Noise factors: surrogates for down stream conditions

AT&T-BL 1985 experiment with 17 factors was large
Objectives:

Find settings for robust product performance: product lifespan
under different operating conditions across different units

Environmental variable, deterioration, manufacturing variation

NIST

Naotienal Institute of
Standards ond Technology

Robust products-2

Scope of investigation:

Optimum levels of control factors at which variation from noise
factors is minimum

Key principles

Variation from noise factors

Efficiency in testing; accommodate constraints
Designs: Based on Orthogonal arrays (OAS)

Taguchi designs (balanced 2-way covering arrays)
Analysis method from data to conclusions

Pseudo-statistical analysis
Signal-to-noise ratios, measures of variability

Some of the leaders: Genichi Taguchi
NIST

Naotienal Institute of
Standards ond Technology

Use of OAs for software testing

Functional (black-box) testing

Hardware-software systems

|dentify single and 2-way combination faults
Early papers

Taguchi followers (mid1980’s)
Mandl (1985) Compiler testing
Tatsumi et al (1987) Fujitsu
Sacks et al (1989) Computer experiments
Brownlie et al (1992) AT&T
Generation of test suites using OAs

OATS (Phadke*, AT&T-BL)

NIST

Naotienal Institute of
Standards ond Technology

Combinatorial Testing of Software and Systems -1

System under investigation

Hardware-software systems combined or separately
Mechanistic (cause-effect) process; predictability full (high)
Output unchanged (or little changed) in repeats
Configurations of system or inputs to system

Variable Types: test-factors and held constant

Inputs and configuration variables having more than one option
No limit on variables and test setting
|dentification of factors and test settings

Which could trigger malfunction, boundary conditions
Understand functionality, possible modes of malfunction

Objectives: Identify t-way combinations of test setting of any t out
of k factors in tests actually conducted which trigger malfunction;

t << k NIST

Naotienal Institute of
Standards ond Technology

Combinatorial Testing of Software and Systems -2
Scope of investigation:

Actual t-way (and higher) combinations tested; no prediction
Key principles: no background no uncontrolled factors

No need of blocking and randomization

No need of replication; greatly decrease number of test runs

Investigation of actual faults suggests: 1 <t<7

Complex constraints between test settings (depending on
possible paths software can go through)

Designs: Covering arrays cover all t-way combinations

Allow for complex constraints

Other DOE can be used; CAs require fewer tests (exception
when OA of index one Is available which is best CA)

‘Interaction’ means number of variables in combination (not
estimate of parameter of statistical model as in other DOE)

Combinatorial Testing of Software and
Systems -3

Analysis method from data to conclusions

No statistical model for test setting-output relationship; no
prediction

No estimation of statistical parameters (main effects, interaction
effects)

Test suite need not be balanced; covering arrays unbalanced

Often output is {0,1}

Need algorithms to identify fault triggering combinations
Some leaders

AT&T-BL alumni (Neil Sloan*), Charlie Colbourn* (AzSU) ...
NIST alumni/employees (Rick Kuhn*), Jeff Yu Lei* (UTA/NIST)
Other applications

Assurance of access control policy implementations NIST

Naotienal Institute of
Standards ond Technology

Computer security, health records

Components of combinatorial testing

Problem set up: identification of factors and settings
Test run: combination of one test setting for each factor
Test suite generation, high strength, constraints

Test execution, integration in testing system

Test evaluation / expected output oracle

Fault localization

NIST

Naotienal Institute of
Standards ond Technology

Generating test suites based on CAs

CATS (Bell Labs), AETG (BellCore-Telcordia)
IPO (Yu Lei) led to ACTS (IPOG, ...)

Tconfig (Ottawa), CTGS (IBM), TOG (NASA),...

Jenny (Jenkins), TestCover (Sherwood),...
PICT (Microsoft),...
ACTS (NIST/UTA) free, open source intended

Effective efficient for t-way combinations fort= 2, 3, 4, 5, 6, ...

Allow complex constraints

NIST

Naotienal Institute of
Standards ond Technology

Mathematics underlying DOE/CAs
1829-32 Evariste Galois (French, shot in dual at age 20)
1940’s R. C. Bose (father of math underlying DOE)
1947 C. R. Rao* (concept of orthogonal arrays)

Hadamard (1893), RC Bose, KA Bush, Addelman, Taguchi,
1960’s G. Taguchi* (catalog of OAs, industrial use)
Covering arrays (Sloan* 1993) as math objects

Renyi (1971, probabilist, died at age 49)

Roux (1987, French, disappeared leaving PhD thesis)

Katona (1973), Kleitman and Spencer (1973), Sloan* (1993),
CAs connection to software testing: key papers

Dalal* and Mallows* (1997), Cohen, Dalal, Fredman, Patton(1997),
Alan Hartman* (2003), ...

Catalog of Orthogonal Arrays (N J A Sloan*, AT&T)
Sizes of Covering Arrays (C J Colbourn*, AzSU) Jﬂf"lﬁr,

Standards ond Technology

Concluding remarks

DOE: approach to gain information to improve things
Combinatorial Testing is a special kind of DOE

Chosen input — function — observe output

Highly predictable system; repeatability high understood

Input space characterized in terms of factors, discrete settings
Critical event when certain t-way comb encountered t << k
Detect such t-way combinations or assure absence

Exhaustive testing of all k-way combinations not practical

No statistical model assumed

Unbalanced test suites

Smaller size test suites than other DOE plans, which can be used

Many applications
NIST

Naotienal Institute of
Standards ond Technology

Outline

Why we are doing this?

Number of variables involved in actual software failures
What is combinatorial testing (CT)?

Design of expts (DoE) vs CT based on covering arrays (CA)
Number of tests in t-way testing based on CAs

Tool to generate combinatorial test suites based on CAs
Determining expected output for each test run

Applications (Modeling and simulation, Security vulnerability)

© 0 N U bk Wb

Fault localization

10. Combinatorial coverage measurement
11. Sequence covering arrays

12. Conclusion

New algorithms to make it practical

 Tradeoffs to minimize calendar/staff time:

* FireEye (extended IPO) — Leil — roughly optimal, can be used for
most cases under 40 or 50 parameters

 Produces minimal number of tests at cost of run time

 Currently integrating algebraic methods

- Adaptive distance-based strategies — Bryce — dispensing one test
at a time w/ metrics to increase probability of finding flaws

» Highly optimized covering array algorithm
 Variety of distance metrics for selecting next test
 PRMI — Kuhn —for more variables or larger domains

 Parallel, randomized algorithm, generates tests w/ a few tunable parameters;
computation can be distributed

 Better results than other algorithms for larger problems

NIST

Matienal Institute of
Standords and Technelogy

New algorithms
Smaller test sets faster, with a more advanced user interface
First parallelized covering array algorithm
More information per test

NIST

Notional Institute of
Standards and Technoelogy

IPOG ITCH (IBM) Jenny (Open Source) TConfig (U. of Ottawa) TVG (Open Source)
T-Way
Size Time Size Time Size Time Size Time Size Time
100 0.8 120 0.73 108 0.001 108 >1 hour 101 2.75
400 0.36 2388 1020 413 0.71 472 >12 hour 9158 3.07
136 — 3.00 1480 400 1536 3.54 1476 >21 hour 64696 127
- > 1 N
(4220 | 18s NA 4580 43.54 NA >1 day 313056 1549
N day .
m\@iﬁ? NA— >1 day 11625 470 NA >1 day 1070048 12600

Traffic Collision Avoidance System (TCAS): 273241102

Times In seconds

Unlike diet plans,
results ARE typical!

That's fast!

Cost and Volume of Tests

Number of tests: proportional to vt log n
for v values, n variables, t-way interactions
Thus:

-Tests increase exponentially with interaction strength t : BAD,
but unavoidable

-But only logarithmically with the number of parameters :
GOOD!

Example: suppose we want all 4-way combinations of n
parameters, 5 values each:

5000
4500 //0
4000
3000
-
2000 r g
1500
1000
500
° | | | | NIST
10 20 30 40 50
) Mational Institute of
Variables Standords and Technelegy

ACTS Tool

<] FireEye 1.0- FireEye Main Window

NIST

Mational Institute of

Standards ond Technology

Syskem Edit Operations Help
[T i?j | i . X e i \
L™ H I'Q@ Algarithrm | IPOG v | Strength |2+ | @J
S Ey Test Result |]]G Statistics | 2
........ | &
=0 [R':":'] e | CUR_Y... | HIGH. ... | TWO_... | OWN_... |OTHER... | OWN_... | AT | UP_SE... | DO, . | OTHE. .. |OTHER... | CLIME.
SYSTEM-TCAS
et : 1 |292 true true 1 1 &0 0 0 0 MO_IMT... TCAS_TA true
=0 Cur_Mertical_Sep
@ 209 z 300 False False z z &01 1 0 399 DO_MO,., (OTHER [False
& 300 3 |eo1 true False 1 z &0 z] 400 DO_MO... OTHER true
- 501 4 |z99 False true z 1 &01 3 0 499 DO_MO,.. TCAS_TA [false
s . | 5 [zo00 False true 1 1 &01] 0 500 DO_MO... OTHER [true
=2 High_Confidence T
% true & |601 False true z z £00 1 0 639 MO_IMT... TCAS_TA [alse
- false 7 Jzo False False z 1 &1 z 0 £40 MO_IMT... TCAS_TA true
| true False 1 z £00 3 0 739 MO_IMT.../OTHER [alse
=140 Two_of_Three_Reporte |
I true False z 1 &1 o] 740 DO_MO... TCAS_TA brue
- 4 true (SRR
. & Fake |10 299 true true 1 z £00 1 0 840 DO_MO,.. OTHER [false
I 11 |z00 False true 1 z &0 z 399 0 DO_MO... TCAS_TA [alse
=) Own_Tracked_alt et
e 1 601 true False z 1 601 3 399 399 DO_MO,.. TCAS_TA true
ez 299 False true z 1 &01] 399 400 MO_IMT... OTHER [alse
£1-£3) Other_Tracked_Alt 300 true False 1 z &0 1 309 400 DO_MO,., [OTHER brue
e 1 &01 true False z z £00 z 399 500 DO_MO... TCAS_TA [alse
P 299 true False 1 1 &01 3 399 639 DO_MO,.. OTHER |true
E3-E3 Own_Tracked_Alk_Rate 300 true true 1 z &0 0 399 640 DO_MO... OTHER [False
- 4 600 601 False krue 2 1 601 1 399 7349 Do MO, TCAS_TA brue
- 801 299 False true 1 2 &0 2 399 740 MO_IMT.., OTHER false
- 300 False False z 1 &01 3 399 840 MO_IMT... TCAS_TA true
=) Alt_Layer_Value
e D 601 true False z 1 601 1 400 o DO_MO,.. OTHER true
e 1 299 False true 1 z &0 0 400 399 MO_IMT... TCAS_TA [alse
P 300 * * * * * 3 400 400 DO_MO... TCAS_TA *
3 601 N N N N i 2 400 499 MNO_INT... * *
-3 Up_Separation N 299 i o o i * 1 400 500 MO_IMT... * &
L....._D 300 N N N : ¥ 0 400 639 DO_MO... * *
o 399 601 i ! i i i 3 400 &40 DO_NO.., * *
@ 400 299 i M M i i 2 400 739 DO_MNO.., * *
499 300 = B i i - 1 400 740 DO_MO.., * *
- 500 &01 * * * * * 0 400 840 Do_MO,,, * * £
- B30 299 true true 1 1 &00 3 499] MO_IMT... OTHER true
- cam) 300 False False z 2 01 2 499 399 DO MO, TCAS TA false ™
| b4 | ¥

NIST

Natienal Institute of
Standards ond Technology

Defining a new system

New System Form

| Parameters | Relations | Constrainks

System Mame TCAS

Svstem Parameter

Fararmekter Nare |

Parameter Type | Boolean

Parameter Yalues

Simple Yalue |

Fange value |

add ko Table

Sawved Parameters

Paramater MNarme

Cur_Mertical Sep
High_Confidence
Two_of _Three_Reparts
Coan_Tracked Al
Other Track_Alk
Cwwn_Tracked_Alk_Rake
Alk_Layer_Walue
Up_Separation
Down_Separation
Qkher _RaC
Other_Capahility
Clirb_Inhibit

Parameter Yalue
[299,300,601]
[true,false]
[true,false]

[1,2]

[1,2]

[&00,601]
[0,1,2,3]
[0,399,400,499,500,639,640,7...
[0,399,400,499,500,659, 640, 7. ..
[NO_IMTEMT,DO_MOT _CLIME,...
[TCAS CA,Other]
[true,false]

Add Syskem

l [Cancel

Remowe H Modify:

NIST

Mational Institute of

Variable interaction strength ===

Mew System Form

Parameters

X]

Strength

Cwn_Tracked Al

Dther Track: Al

alk_Laver_Walue

Okther _RAC
Other_Capability
Clirnb_Inkibit

!Cur_'-.-'ertil:al_Sep |4

Two_of_Three_Reports | Aol

Cwun_Tracked_Alk_Rate [Femove

Paramater Mames Strength

Cur Merbcall Sep High Confidence; Two of .55 _

alk_Layer Yalue, Up_Separation,Down_Sepa... 3

NIST

- Naotional Institute of
Constraints -
Py S patrn [
|'|-l-|:|ln:l.n-| Pokibone | ':lill:llln:i'll-'-'
=i dinge s Corsbrae b
PV ()} =tm2da-=-|BRII =1 *)-%=+ kel
Torrtra-~F Frkber
-l.ﬁ-.'- 1 Ak Uniiat il - '-'_—.-::-.;.”__._' Load Fram =

| Modfyspmen || Ganeel

Covering array output

<] FireEye 1.0- FireEye Main Window

NIST

Mational Institute of

Standards ond Technology

Syskem Edit Operations Help
[T i?j | i . X e i \
L™ H L@@ Algarithrm | IPOG v | Strength |2+ | @J
ST Test Result | I]G Statiskics | =
........ [hW
=0 [R':":'] o ’ CUR_Y... | HIGH. ... | TWO_... | OWN_... |OTHER... | OWN_... | AT | UP_SE... | DO, . | OTHE. .. |OTHER... | CLIME.
SYSTEM-TCAS
i . 1 299 true true 1 1 G600]]] MO _IMT... TCAS_TA krue
=0 Cur_Mertical_Sep
g 799 2 300 false false 2 2 601 1] 399 Do MO, OTHER false
- I true False 1 z &0 2 0 400 DO_MO... OTHER true
. 4 [zes False true z 1 801 5 0 499 DO_MO... TCAS TA False
- . | 5 [z00 False true 1 1 &01 0 0 =00 DO _MO... OTHER brue
=2 High_Confidence T
@ true & G601 False true 2 2 &00 1] 639 MO _IMT,.. TCAS_TA False
@y False il 7 299 false false z 1 601 z] 640 WNO_IMT,., TCAS_TA true
3 300 true false 1 2 &00 3 0 739 MO_IMT... OTHER False
=140 Two_of_Three_Reporte |
| g 601 true false 2 1 601]] 740 DO _MO,.. TCAS_TA krue
- krue || AP
& False | 10 |zoa true true 1 z &0 1 0 540 DO_MO.., OTHER false
! 11 300 False true 1 2 G600 2 399] Do _MO,,, TCAS_TA False
=) Own_Tracked_alt et
w1 G601 true false 2 1 G601 3 399 399 Do MO, TCAS_TA brue
B 299 fFalse true 2 1 601] 399 400 MO_IMT... OTHER false
E1-E3) Other_Tracked_alt 300 true False 1 2 &00 1 339 439 DO_NO... OTHER true
w1 601 true false 2 2 G600 2 399 S0o0 Do MO, TCAS_TA False
iy ? 299 true false 1 1 G601 3 399 639 Do MO, OTHER true
£ Own_Tracksd_Alk_Rate 300 true true 1 2 600 0 399 640 DO_MO... OTHER False
- 4 600 601 False krue 2 1 601 1 399 7349 Do MO, TCAS_TA brue
= J:i) 209 False true 1 2 600 2 399 740 NO_INT... OTHER False
- 300 False false 2 1 G601 3 399 340 MO_IMT... TCAS_TA krue
=) Alt_Layer_Value
e 0 601 true false 2 1 601 1 400] Do MO, OTHER true
w1 299 False true 1 2 &00] 400 399 MO _IMT,.. TCAS_TA False
e E 300 5 5 ik i o 3 400 400 Do MO, TCAS TA *
3 601 N N N N i 2 400 499 MNO_INT... * *
-3 Lip_Separation 299 i * 2 i g 1 400 500 NO_INT.,. * *
L....._D 300 N N N : ¥ 0 400 639 DO_MO... * *
o 399 601 i ! i i i 3 400 &40 DO_NO.., * *
@ 400 299 i M M i i 2 400 739 DO_MNO.., * *
499 300 = B i i - 1 400 740 DO_MO.., * *
% 500 &01 N M M M * 0 400 340 DO_MO,., * #
- B39 299 true true 1 1 600 3 499 0 NO_INT... OTHER. true
e 300 False false 2 2 G601 2 499 399 Do M., TCAS TA false ™
> | >

NIST

Out P ut Standards and Technoiogy
. Variety of output formats:
« XML
« Numeric
« CSV
« Excel

« Separate tool to generate .NET configuration
files from ACTS output

« Post-process output using Perl scripts, etc.

NIST

Output Optlons National Institute of
Standards ond Technology
Mappable values Human readable
Degree of iInteraction Degree of iInteraction coverage: 2
coverage: 2 Number of parameters: 12
Number of parameters: 12 Maximum number of values per
Number of tests: 100 parameter: 10

Number of configurations: 100

Configuration #1:

Cur_Vertical Sep=299
High_Confidence=true
Two_of Three_ Reports=true
Own_Tracked Alt=1
Other_Tracked Alt=1
Own_Tracked Alt Rate=600
Alt_Layer Value=0
Up_Separation=0
Down_Separation=0

Other RAC=NO_INTENT
Other_Capability=TCAS CA
Climb_Inhibit=true

ROOORRRRORO
OORRFRPROOORRO
OORORRFRORFRORO
RPRORORFROORRO
OORORORRFRORO
NROWNROWNERO
RPOOOOO0OO0OO0OOOO
OCOWONOUNWNERO
RPNROOONRNRO
OROROORFRORRO
RPROFRORORORO
R OO~NOUDNWNER

T T R T TR T TR

MFRONRFPRONRPRONERO
—+
O
=
N = O
o

Eclipse Plugin for ACTS

2 Resource - Ecipse Pater I

File Edit MNawvigate Search Project Run

3~ Q- i P

Window Help

frﬁ_j Project Explorer 3

a =2 testproject
- B src
- = JRE Systemn Librany [JawvaSE-1.6]
= test|

Mew

Go Into

Show In

Copy
Copy Qualified Name

Paste
Delete

X & i (i

Remowve from Context
Build Path
Mowve...

Rename...

 E—
o= Cut

An outl

Import...
Export...

o L E

Refresh

Validate

Show in Remote Systems wview
Mew ACTS Sut

Fun As

Debug As

Profile As

Alt+Shift+W »

Ctrl+C

Ctrl+W
Delete
Ctri+ ARl+ Shift+ Down

F2

F5

NIST

Notional Institute of
Standards and Technoelogy

Work In
progress

Eclipse Plugin for ACTS

e T

1l

SUT Parameters

Please enter SUT Parameters using commas to separate multiple values

Parameter Mame:

Parameter Type: EMLIT - Range Bounds: | 0 . | = |1 s | | Generate |

Parameter Values:

| Clear | [Add |

Parameter Name Parameter Yalue

| Mu:ldiﬁ,fl | Remove

@ <Back | MNet> || Finsh |[_ . Cancel

NIST

Notional Institute of
Standards and Technoelogy

Defining
parameters
and values

ACTS Users

NIST

Natienal Institute of
Standards ond Technology

a Airline=s

H Defenzel/govt
O Eledronics
O Finance

W \ideo games
O HWVAL

mr

O Language

m Medipharma
M Retail'zales
O Telecom

O Tranzportation

Outline

Why we are doing this?

Number of variables involved in actual software failures
What is combinatorial testing (CT)?

Design of expts (DoE) vs CT based on covering arrays (CA)
Number of tests in t-way testing based on CAs

Tool to generate combinatorial test suites based on CAs
Determining expected output for each test run

Applications (Modeling and simulation, Security vulnerability)

© 0 N U bk Wb

Fault localization

10. Combinatorial coverage measurement
11. Sequence covering arrays

12. Conclusion

How to automate checking
correctness of output

e Creating test data is the easy part!

 How do we check that the code worked correctly
on the test input?

e Crash testing server or other code to ensure it does not crash
for any test input (like ‘fuzz testing’)
- Easy but limited value

* Built-in self test with embedded assertions — incorporate
assertions in code to check critical states at different points in the
code, or print out important values during execution

* Full scale model-checking using mathematical model of system
and model checker to generate expected results for each input
- expensive but tractable

NIST

Motional Institute of
Shandords and Technelogy

Crash Testing

- Like “fuzz testing” - send packets or other input
to application, watch for crashes

- Unlike fuzz testing, input is non-random;
cover all t-way combinations

- May be more efficient - random input generation
requires several times as many tests to cover the
t-way combinations in a covering array

Limited utility, but can detect
high-risk problems such as:
- buffer overflows

- server crashes
NIST

Mational Institute of
Shandords and Technelogy

Ratio of Random/Combinatorial Test Set
Required to Provide t-way Coverage

@ 4.50-5.00
W 4.00-4.50
0 3.50-4.00
@ 3.00-3.50
0 2.50-3.00
W 2.00-2.50
0 1.50-2.00
0 1.00-1.50
® 0.50-1.00
0 0.00-0.50

Ratio

5.00 1/

4.50-
4.00-
3.50
3.00
2.50
2.00-
1.50 1
1.00
0.50 1
0.00-

- nval=10

nva=6 yajues per

variable

2w ay 3way vay nval=2

Interactions

NIST

Motional Institute of
Shandords and Technelogy

Built-in Self Test
through Embedded Assertions

Simple example:
assert(x '=0); // ensure divisor Is not zero

Or pre and post-conditions:
[requires amount >= 0;

/ensures balance == \old(balance) - amount &&
\result == balance;

NIST

Mational Institute of
Shandords and Technelogy

Built-in Self Test

Assertions check properties of expected result:
ensures balance ==\old(balance) - amount
&& \result == balance;

*Reasonable assurance that code works correctly across
the range of expected inputs

May identify problems with handling unanticipated inputs

Example: Smart card testing
e Used Java Modeling Language (JML) assertions
e Detected 80% to 90% of flaws

NIST

Mational Institute of
Shandords and Technelogy

NIST

Notional Institute of
Standards and Technoelogy

Using model checking to produce tests

-~

he system can nev
get in this statel

A

g

2l

1‘

here's how ...

Yes it can, ancﬂ\

J

System
source

mufavt
nacs

I

generate
mutants

model

\ checker

conrfer-

examples

Complete
i Tests

Run

o Tests

i Cmnbine .scencm‘:’oi

scenarios

test

" results

generate
test input

fesf cases -
TDA -

Black & Ammann, 1999

® Model-checker test
production:

If assertion is not true,
then a counterexample
IS generated.

® This can be
converted to a test
case.

Model Checking
Example N

A R

o 1raffic Collision Avoidance
System (TCAS) module

« Used Iin previous testing research
« 41 versions seeded with errors

o 12 variables: 7 boolean, two 3-value, one 4-
value, two 10-value

« All flaws found with 5-way coverage

« Thousands of tests - generated by model
checker in a few minutes

NIST

MNational Institute of
Standards ond Technology

2-way.
3-way:.
4-way:.
S-way:
6-way:

Tests generated

Test cases
156

461

1,450
4,309
11,094

|
i

Tests

12000

10000

8000

6000

4000

2000

2-way

3-way

4-way

S-way

6-way

NIST

Results i gl &

* Roughly consistent with data on large systems

e But errors harder to detect than real-world examples

100%
80%
60%
40%
20%

0%

Detection Rate for TCAS Seeded

Errors

/

%

i

y

—o— Detection
rate

Fault Interaction level

2way 3way 4 way 5way 6 way

Tests

Tests per error

350.0

300.0
250.0 /
200.0

150.0 / —&— Tests per error

100.0 //
500 /
0.0 9//T

2way 3way 4way 5Sway 6way

Fault Interaction level

Bottom line for model checking based combinatorial testing:
Expensive but can be highly effective

NIST
Tradeoffs ealCERNERE

« Advantages

- Tests rare conditions

- Produces high code coverage

- Finds faults faster

- May be lower overall testing cost

« Disadvantages

- Very expensive at higher strength interactions (>4-
way)

- May require high skill level in some cases (if formal
models are being used)

Outline

Why we are doing this?

Number of variables involved in actual software failures
What is combinatorial testing (CT)?

Design of expts (DoE) vs CT based on covering arrays (CA)
Number of tests in t-way testing based on CAs

Tool to generate combinatorial test suites based on CAs
Determining expected output for each test run

Applications (Modeling and simulation, Security vulnerability)

© 0 N U bk Wb

Fault localization

10. Combinatorial coverage measurement
11. Sequence covering arrays

12. Conclusion

Document Object Model Events

Event Name Param. Tests

Load 3 24
gﬁj‘;” g ;i MouseDown 15 4352
MouseMove 15 4352
Click 15 4352 MouseOut 15 4352
Change 3 12 MouseOver 15 4352
DOMActivate 5 24 MouseWheel 14 1024
DOMAttrModified 8 16 Reset 3 12
DOMCharacterDataMo 8 64 Resize 5 48
dified Scroll 5 48
DOMEIlementNameCha 6 8 Select 3 12
nged Submit 3 12
DOMFocuslin 5 24 Text|nput 5 8
DOMFocusOut 5 24 Unload 3 24
DOMNodelnserted 8 128 \Wheel 15 4096
DOMNodelnsertedintoD 8 128 Total Tests 36626
ocument
DOMNodeRemoved 8 128
DOMNodeRemovedFrom 8 128
Document
DOMSubTreeModified 8 64 . .
Error 3 12 Exhaustive testing of
Koy Down — equivalence class values
KeyUp 1 17 NIST

Hatienal Institute of
Standards and Technoelogy

World Wide Web Consortium
Document Object Model Events

Test Results

t Tests Yo Ol Not
Orig. Pass Fail °

Run

2 702 1.92% 202 27 473
529

. 1309

2742 7.499 1762

6 4227 L84 {2 2352

%

All failures found using < 5% of
original pseudo-exhaustive test set

M < — 0 —CE J E O

-~ 3 (i 3 = /3

100

0

&0

70

60

20

40

30

20 &

1 2 3 4 5 6
Interaction strength
Wed. Dev. Broveer
_____ SEF-EF TTTIITIIL] N_ﬂ:lE.A
e NW Sec ———-DON

Hatienal Institute of
Standards and Technoelogy

" Sponsored by ,F * A
w- /¥ DHS National Cyber Secu WDWIdonfUﬁ-CEFT .: ;

atn:mal Vulnerabl 1Y, abe 7 i
B u ffer Ove rfl OWS utomating vulnerability man ge ty me 5urer:i"|ent,and compliance checkin

Empirical data from the National Vulnerability Database

. Investigated > 3,000 denial-of-service vulnerabilities reported in
the NIST NVD for period of 10/06 — 3/07

- Vulnerabilities triggered by:

. Single variable — 94.7%
example: Heap-based buffer overflow in the SFTP protocol
handler for Panic Transmit ... allows remote attackers to execute
arbitrary code via a long ftps:// URL.

. 2-way Interaction — 4.9%
example: single character search string in conjunction with a single
character replacement string, which causes an "off by one
overflow"

. 3-way interaction — 0.4%
example: Directory traversal vulnerability when register _globals is
enabled and magic_quotes is disabled
and .. (dot dot) in the page parameter NIST

Maotional Institute of
Standards and Technoelogy

.. NIST
Finding Buffer Overflows e

1. IT (strcmp(conn[sid].dat->1n_RequestMethod, ""POST')==0) {
2. iIT (conn[sid].dat->i1in_ContentLength<MAX POSTSIZE) {

3. conn[sid].PostData=calloc(conn[sid].dat->in_ContentLength+1024,
sizeof(char));

4. pPostData=conn[sid].PostData;

5. do {

6. rc=recv(conn[sid].socket, pPostData, 1024, 0);

7. pPostData+=rc;

8. X+=rcC;

9. } while ((rc==1024)]](x<conn[sid].dat->in_ContentLength));

10. conn[sid].PostDataJconn[sid].dat->1n_ContentLength]="\0";
11. }

NIST

Hotienal Instifute of

Interaction: request-method="POST”, content- Standords and Technoosy
length = -1000, data= a string > 24 bytes

1. IT (strcmp(conn[sid].dat->1n_RequestMethod, ""POST')==0) {

2. iIT (conn[sid].dat->i1in_ContentLength<MAX POSTSIZE) {

3. conn[sid].PostData=calloc(conn[sid].dat->in_ContentLength+1024,
sizeof(char));

4. pPostData=conn[sid].PostData;

5. do {

6. rc=recv(conn[sid].socket, pPostData, 1024, 0);

7. pPostData+=rc;

8. X+=rcC;

9. } while ((rc==1024)]](x<conn[sid].dat->in_ContentLength));

10. conn[sid].PostDataJconn[sid].dat->1n_ContentLength]="\0";
11. }

NIST

Mational Institute of

Interaction: request-method="POST", content- -
length = -1000, data= a string > 24 bytes

1. IT (strcmp(conn[sid].dat->in_RequestMethod, ""POST")==0) { Tr-ue br'anch

2. iIT (conn[sid].dat->i1n_ContentLength<MAX POSTSIZE) {

3. conn[sid].PostData=calloc(conn[sid].dat->in_ContentLength+1024,
sizeof(char));

4. pPostData=conn[sid].PostData;

5. do {

6. rc=recv(conn[sid].socket, pPostData, 1024, 0);

7. pPostData+=rc;

8. X+=rcC;

9. } while ((rc==1024)]](x<conn[sid].dat->in_ContentLength));

10. conn[sid].PostDataJconn[sid].dat->1n_ContentLength]="\0";
11. }

NIST

Mational Institute of

Interaction: request-method="POST", content- -
length = -1000, data= a string > 24 bytes

1. iIT (strcmp(conn[sid].dat->1n_RequestMethod, ""POST')==0) {

2. iIT (conn[sid].dat->in_ContentLength<MAX POSTSIZE) { true br'anch

3. conn[sid].PostData=calloc(conn[sid].dat->in_ContentLength+1024,
sizeof(char));

4. pPostData=conn[sid].PostData;

5. do {

6. rc=recv(conn[sid].socket, pPostData, 1024, 0);

7. pPostData+=rc;

8. X+=rcC;

9. } while ((rc==1024)]](x<conn[sid].dat->in_ContentLength));

10. conn[sid].PostDataJconn[sid].dat->1n_ContentLength]="\0";
11. }

NIST

Mational Institute of

Interaction: request-method="POST", content- -
length = -1000, data= a string > 24 bytes

1. 1T (strcmp(conn[sid].dat->1n_RequestMethod, ""POST")==0) {

2. iIT (conn[sid].dat->in_ContentLength<MAX POSTSIZE) { true br'anch

3 conn[sid].PostData=calloc(conn[sid].dat->in_ContentLength+1024,

sizeof(char)); Allocate -1000 + 1024 bytes = 24 bytes

4. pPostData=conn[sid].PostData;

5. do {

6. rc=recv(conn[sid].socket, pPostData, 1024, 0);

7. pPostData+=rc;

8. X+=rcC;

9. } while ((rc==1024)] | (x<conn[sid].dat->1n_ContentLength));

10. conn[sid].PostDataJconn[sid].dat->in_ContentLength]="\0";
11. }

NIST

Mational Institute of

Interaction: request-method="POST", content- -
length = -1000, data= a string > 24 bytes

1. iIT (strcmp(conn[sid].dat->1n_RequestMethod, ""POST')==0) {

2. if (conn[sid].dat->in_ContentLength<MAX_POSTSIZE) {| +pye branch

3 conn[sid].PostData=calloc(conn[sid].dat->in_ContentLength+1024,

sizeof(char)); Allocate -1000 + 1024 bytes = 24 bytes

4. pPostData=conn[sid].PostData;

5. do { /\

6. rc=recv(conn[sid].socket, pPostData, 1024, 0) Boom!
7. pPostData+=rc;

8. X+=rcC;

9. } while ((rc==1024)]](x<conn[sid].dat->in_ContentLength));

10. conn[sid].PostDataJconn[sid].dat->1n_ContentLength]="\0";
11. }

Modeling & Simulation Application

. “Simured” network simulator
. Kernel of ~ 5,000 lines of C++ (not including GUI)

- Objective: detect configurations that can
produce deadlock:
. Prevent connectivity loss when changing network
. Attacks that could lock up network

- Compare effectiveness of random vs.
combinatorial inputs

. Deadlock combinations discovered

. Crashes in >6% of tests w/ valid values (WIin32

version only) NIST

Hatienal Institute of
Standards and Technoelogy

Parameter Values
1 DIMENSIONS 1,2,4,6,8
2 NODOSDIM 2,4,6
3 NUMVIRT 1,2,3,8
4 NUMVIRTINJ 1,2,3,8
5 NUMVIRTEJE 1,2,3,8
6 LONBUFFER 1,2,4,6
7 NUMDIR 1,2
8 FORWARDING 0,1
9 PHYSICAL true, false
10 ROUTING 0,1,2,3
11 DELFIFO 1,2,4,6
12 DELCROSS 1,2,4,6
13 DELCHANNEL 1,2,4,6
14 DELSWITCH 1,2,4,6

Simulation Input Parameters

BHX3XAXAXAXAX2X2
X2XAXAXAX4AX4

= 31,457,280
configurations

Are any of them
dangerous?

If so, how many?

Which ones?

NIST

Hatienal Institute of
Standards and Technoelogy

Network Deadlock Detection

Deadlocks
Detected:
combinatorial

1000 2000 4000 8000

t Tests 500 pkts pkts pkts pkts pkts
2 28 0) 0) 0) 0) 0)
3 161 2 3 2 3 3
4 752 14 14 14 14 14

Average Deadlocks Detected:
random

1000 2000 4000 8000
Tests 500 pkts pkts pkts pkts pkts
28 0.63 0.25 0.75 0.50 0.75
161 3 3 3 3 3
752 10.13 11.75 10.38 13 13.25

B W N ~+

NIST

Maotional Institute of
Standards and Technoelogy

NIST

Matienal Institute of
Standords and Technelogy

Network Deadlock Detection

Detected 14 configurations that can cause deadlock:
14/ 31,457,280 = 4.4 x 10/

Combinatorial testing found more deadlocks than
random, including some that might never have been
found with random testing

Why do this testing? Risks:

 accidental deadlock configuration: low

» deadlock config discovered by attacker: much higher
(because they are looking for it)

Outline

Why we are doing this?

Number of variables involved in actual software failures
What is combinatorial testing (CT)?

Design of expts (DoE) vs CT based on covering arrays (CA)
Number of tests in t-way testing based on CAs

Tool to generate combinatorial test suites based on CAs
Determining expected output for each test run

Applications (Modeling and simulation, Security vulnerability)

© 0 N U bk Wb

Fault localization

10. Combinatorial coverage measurement
11. Sequence covering arrays

12. Conclusion

| NIST
Fault location S and Tathasing

Given: a set of tests that the SUT fails, which
combinations of variables/values triggered the failure?

variable/value combinations
In passing tests

These are the ones we want

variable/value combinations
In failing tests

Fault location — what's the problem?

If they're in failing set but not in
passing set:

1. which ones triggered the failure?
2. which ones don't matter?

n
out of Vt(t) combinations

Example:
30 variables, 5 values each
= 445,331,250

5-way combinations

142,506 combinations
In each test

NIST

Maotional Institute of
Standards and Technoelogy

Outline

Why we are doing this?

Number of variables involved in actual software failures
What is combinatorial testing (CT)?

Design of expts (DoE) vs CT based on covering arrays (CA)
Number of tests in t-way testing based on CAs

Tool to generate combinatorial test suites based on CAs
Determining expected output for each test run

Applications (Modeling and simulation, Security vulnerability)

© 0 N U bk Wb

Fault localization

10. Combinatorial coverage measurement
11. Sequence covering arrays

12. Conclusion

Combinatorial Coverage Measurement

Tests | Variables
1 0 O 0O O
3 1 O 0 1

Variable pairs | Variable-value Coverage
combinations

covered

00, 01, 10

bc 00, 11 .50

s T
-.... cd 00,01, 10,11 1.0
7 1 0 1 O

-.... 100% coverage of 33% of combinations
75% coverage of half of combinations

50% coverage of 16% of combinations

NIST

MNotional Institute of
Standards and Technoelogy

Coverage

Graphing Coverage Measurement

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

Coverage for fie

figl.cev
Total 2-way =0.792

Cov>=0.00=
Cov>==005
Cov==01

=k

no

Cov>=01
Cov==0
Cov==0

Cov >=0.
Cov >=10.
Cov >=0.

Cov ==10.

/A

— Cov >=0.
> Cov >=10.
— Cov ==

N Cov ==

\ Cov >=
Cov ==
\ Cov ==

uﬁﬁﬁﬁﬁ???%?%?¥?§"""

ﬂﬂﬂﬂﬂﬂ

3% 0% 51 1 5 08 01 o B 8 3 o R 6 8 OB R 1

\ Emr}
Cov >= EI' 95

BRBERBEBRBEE38888383888

=R =l =l =R === === ettt el

Cov>=100=2%

— Zway

Jway

0.00 0.10 0.20 0.30 0.40 0.50 0.60
0.05 0.15 0.25 0.35 0.45 0.55 0.65

Combinations

100% coverage of 33% of combinations
75% coverage of half of combinations
50% coverage of 16% of combinations

0.80

0.85

0.80 1.00
0.35

Bottom line:
All combinations
covered to at least 50%

NIST

Haotienal Institute of
Standards and Technoelogy

Coverane

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

Adding a test

2.00

0.05

0.1a

0.15

0.20 0.30 0.40 0.30 2.60 0.70 0.80 2.80
0.25 0.35 0.45 0.55 0.65 0.75 0.85

Combinations

Coverage after adding test [1,1,0,1]

0.85

1.00

i

3
;
3

Cov>==0.
Cov>=0.
Cov ==0.
Cov>=0.
Cov==0
Cov =0
Cov ==0.
Cov ==0.
Cov >=0.
Cov >=0.
Cov >==0.
Cov >=0.
Cov==0.
Cov>=0.
Cov ==0.
Cov ==0.
Cov ==0.
Cov ==0.
Cov==0.
Cov>==09
Cov>=1.00=3%6

— Zway
Jway

RNF2RS

o &
EEEEEEEEREEEEEEEEEED

&8

BREASRDRG

O OOOO stk b b b
LEELLEEESEEEEEEEEEEEE

NIST

Haotienal Institute of
Standards and Technoelogy

Coverage

Adding another test

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

.00 .10 0.20 0.30 0.40 0.50 1.60 .70
2,05 015 0.25 (.35 0.45 0.55 0.65 2.75

Combinations

Coverage after adding test [1,0,1,1]

0.85

0.80

1.00

|

3
s
&

Cov ==0.
Cov>=0.
Cov ==0.
Cov ==0.
Cov==0
Cov>==0
Cov >=0.
Cov==10.
Cov==10_
Cov ==
Cov==0.
Cov==0.
Cov >=10.
Cov >=10.
Cov ==0.
Cowv >=0.
Cowv >=10.
Cov>=085

BREIRS

W nmwuwnnn ?%?%II nnnnu

BASRDRA
HEREEREEEREEEEEEEREEEE R

COOO bk b b
BHRREESEEEEEEEEEEE8E8Es

o0
22
'H’V
[=]=]
?E

Cov>=1.00=56=083
— 2'\.‘!'3}'
Jway

NIST

Haotienal Institute of
Standards and Technoelogy

Additional test completes coverage

Coverage

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

0.00

Coverage after adding test [1,0,1,0]

0.05

.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45 J.55
Combinations

All combinations covered to 100% level,
so this Is a covering array.

Coverage for fie
Total 2-way =1.000
Cov>=000=6%=1.00
Cov>=005=6%=1.00
Cov >=0.10=6%6=1.00
Cov>=015=6%6=1.00
Cov>=020=6%=1.00
Cov>=025=6%6=1.00
Cov >=030=6%6=1.00
Cov>=035=6%=1.00
Cov >=040=6%6=1.00
Cov>=045=6%6=1.00
Cov >=050=6%=1.00
Cov>=055=6%=1.00
Cov >=060=6%=1.00
Cov >=065=6%6=1.00
Cov>=070=6%=1.00
Cov>=075=6%6=1.00
Cov >=080=6%6=1.00
Cov>=085=6%6=1.00
Cov>=090=6%6=1.00
Cov>=095=6%6=1.00
Cov:>=1.00=6%6=1.00
— Zway

Iway

NIST

Haotienal Institute of

Standards and Technoelogy

Combinatorial Coverage Measurement

s e
NIST Combinatorial Coverage Measurement

Auto-detect N tests, N parms

Number of tests 7489 = I

Number of parameters -E @ Detect all values automatically Set boundaries for equivalence classes
Set number oftests and parameters | pesemaer 10 = HPrev l [blewd] Nclasses | set | Hie |D :| = | ||SE"*"'= bound |

Values for this parameter:

[Load inputfile] [Showinputﬁle] Iﬂ'-1

7489 tests, 82 parameters loaded

Stereo7485dE? cv
l Compute 2-way coverage l Tolal 3-way =0.000
0.5 Cov >=0.00= 8856088560 = 1.000
Cov >=0_05= 8856028560 = 1.000
L Compute 3-way coverage J 08 L Cov >=0.10= 82560/28560 = 1.000
'l Cov >=0.15=88560'E8560 = 1.000
Cov >=0.20= 8856088560 = 1.000
| Clearchan | | Savechan | 07 Cov >= 025~ BBSEY/BE560 — 1.000
Cov >=0.30= 83547788560 = 1.000
Cov »>=0_35=88505/88560 = 0999
[Exit] 06 Cov >=0.40=88380/88560 = 0998
o Cov >=0.45= 83041788560 = 0 994
Chart = 05 Cov >=0.50=87762/88560 = 0.991
. . . o =] =mmm’=
X = proporion of combinations z ch:i:g:g:m:g:%
Y = combination variable-value coverage O Cov >=0.65=73116/28560 = 0.826
04 Cov >=0_70=T1208"88560 = 0804
2 way stats: % >=g'g=mmm =E‘$
" >=0.80= =0
Combinations: 3.321 03 Cov >=0.85=53154/88560 = 0.668
Varjval coms: 14,761 Cov 2095 463808560 - 0529
Total coverage: 0.940 02 Cov >=1.00= 4686988560 = 0529
— Zway
01 — Jway
3way stats: 0
Somb|r|13hons:§»§é5iﬁ% 0.00 0.10 020 030 0.40 0.50 0.60 0.70 0.80 080 1.00
arfval coms: gl 0.05 015 0.25 0.35 045 0.55 0.65 075 0.85 0.85
Total coverage: 0.831 Combinations

NIST

MNotional Institute of
Standards and Technoelogy

Outline

Why we are doing this?

Number of variables involved in actual software failures
What is combinatorial testing (CT)?

Design of expts (DoE) vs CT based on covering arrays (CA)
Number of tests in t-way testing based on CAs

Tool to generate combinatorial test suites based on CAs
Determining expected output for each test run

Applications (Modeling and simulation, Security vulnerability)

© 0 N U bk Wb

Fault localization

10. Combinatorial coverage measurement
11. Sequence covering arrays

12. Conclusion

Combinatorial Sequence Testing

e Suppose we want to see If a system works correctly regardless
of the order of events. How can this be done efficiently?

« Failure reports often say something like:
'failure occurred when A started if B is not already connected'.

« Can we produce compact tests such that all t-way sequences
covered (possibly with interleaving events)?

Event | Description 1
a connect flow meter

connect pressure gauge

connect satellite link

connect pressure readout

start comm link

—~| D | Q| O | T

boot system

Sequence Covering Array
» With 6 events, all sequences = 6! = 720 tests

* Only 10 tests needed for all 3-way sequences,
results even better for larger numbers of events

 Example: .*c.*f.*b.* covered. Any such 3-way seq covered.

a b c d e f
f e d C b a
d e f a b C
C b a f e d
b f a d C e
“ e C d a f b
a e f C b d
“ d b C f e a
“ C e a d b f NIST
f b d a e C o o

Seguence Covering Array Properties

e 2-way sequences require only 2 tests
(write events in any order, then reverse)

e For > 2-way, number of tests grows with log n, for n events

e Simple greedy algorithm produces compact test set

300

250 /
200 /
—f=—2-way
Te S t S 150 == 3-way
= 4-Way
100
50 //

A/ = ——a—_a

0 ———,——————y——— e ——
5 10 20 30 40 50 60 70 80

Number of events
NIST

Maotional Institute of
Stondords ond Technology

Outline

Why we are doing this?

Number of variables involved in actual software failures
What is combinatorial testing (CT)?

Design of expts (DoE) vs CT based on covering arrays (CA)
Number of tests in t-way testing based on CAs

Tool to generate combinatorial test suites based on CAs
Determining expected output for each test run

Applications (Modeling and simulation, Security vulnerability)

© 0 N U bk Wb

Fault localization

10. Combinatorial coverage measurement
11. Sequence covering arrays

12. Conclusion

Industrial Usage Reports

Work with US Air Force on sequence covering arrays,
submitted for publication

World Wide Web Consortium DOM Level 3 events
conformance test suite

Cooperative Research & Development Agreement

with Lockheed Martin Aerospace - report to be released 3rd
or 4th quarter 2011

NIST

MNotional Institute of
Standards and Technoelogy

Technology Transfer

Tools obtained by 700+ organizations;
NIST “textbook” on combinatorial testing
downloaded 8,000+ times since Oct. 2010

Collaborations: USAF 46™ Test Wing,
Lockheed Martin, George Mason Univ.,
UMBC, JHU/APL, Carnegie Mellon Univ.

Please contact us
If you are interested!

k ﬁ
Rick Kuhn Raghu Kacker
kuhn@nist.gov raghu.kacker@nist.gov

http://csrc.nist.gov/acts
(Or just search “combinatorial testing”. We're #1!)

NIST

MNational Institute of
Standards ond Technology

	Slide Number 1
	Outline
	Automated Combinatorial Testing
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Outline
	What is Combinatorial Testing?
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Slide Number 34
	Slide Number 35
	Slide Number 36
	Slide Number 37
	Outline
	Evolution of �design of experiments (DOE) �to �combinatorial testing of software and systems using covering arrays
	Design of Experiments (DOE)
	Early history
	Four eras of evolution of DOE
	Features of DOE
	Agriculture and biological investigations-1
	Agriculture and biological investigations-2
	Agriculture and biological investigations-3
	Industrial productivity-1
	Industrial productivity-2
	Industrial productivity-3
	Robust products-1
	Robust products-2
	Use of OAs for software testing
	Combinatorial Testing of Software and Systems -1
	Combinatorial Testing of Software and Systems -2
	Combinatorial Testing of Software and Systems -3
	Components of combinatorial testing
	Generating test suites based on CAs
	Mathematics underlying DOE/CAs
	Concluding remarks
	Outline
	Slide Number 61
	Slide Number 62
	Slide Number 63
	Slide Number 64
	Slide Number 65
	Slide Number 66
	Slide Number 67
	Slide Number 68
	Slide Number 69
	Slide Number 70
	Eclipse Plugin for ACTS
	Eclipse Plugin for ACTS
	Slide Number 73
	Outline
	Slide Number 75
	Slide Number 76
	Slide Number 77
	Slide Number 78
	Slide Number 79
	Slide Number 80
	Slide Number 81
	Slide Number 82
	Slide Number 83
	Slide Number 84
	Outline
	Slide Number 86
	Slide Number 87
	Slide Number 88
	Slide Number 89
	Slide Number 90
	Slide Number 91
	Slide Number 92
	Slide Number 93
	Slide Number 94
	Slide Number 95
	Slide Number 96
	Slide Number 97
	Slide Number 98
	Outline
	Fault location
	Fault location – what's the problem?
	Outline
	Combinatorial Coverage Measurement �
	Graphing Coverage Measurement �
	Adding a test
	Adding another test
	Additional test completes coverage
	Combinatorial Coverage Measurement �
	Outline
	Combinatorial Sequence Testing �
	Sequence Covering Array�
	Sequence Covering Array Properties
	Outline
	Industrial Usage Reports
	Technology Transfer
	Slide Number 116

