

FAILURE MODES IN MEDICAL DEVICE SOFTWARE:

AN ANALYSIS OF 15 YEARS OF RECALL DATA

DOLORES R. WALLACE1 and D. RICHARD KUHN
Information Technology Laboratory

National Institute of Standards and Technology
Gaithersburg, MD 20899 USA

dwallace@nist.gov, kuhn@nist.gov

1 This author performed the work while an employee of NIST and is now working for Unisys at the NASA Goddard Space Flight Center.

Most complex systems today contain software, and systems failures activated by software faults can
provide lessons for software development practices and software quality assurance. This paper
presents an analysis of software-related failures of medical devices that caused no death or injury
but led to recalls by the manufacturers. The analysis categorizes the failures by their symptoms
and faults, and discusses methods of preventing and detecting faults in each category. The nature
of the faults provides lessons about the value of generally accepted quality practices for prevention
and detection methods applied prior to system release. It also provides some insight into the need
for formal requirements specification and for improved testing of complex hardware-software
systems.

1 Introduction

Henry Petroski devotes an entire book to failures in engineering and lessons to be learned
[1]. In his preface, he states "the concept of failure - mechanical and structural failure in
the context of this discussion - is central to understanding engineering, for engineering
design has as its first and foremost objective the obviation of failure." He further states
"the lessons learned from … disasters can do more to advance engineering knowledge
than all the successful machines and structures in the world."

We take license in extending Petroski's views from mechanical and structural engineering
into the domain of software system failures. Many software assurance techniques,
including inspections, failure modes and effects analysis, flaw hypothesis penetration
testing, and some specification-based test methods, benefit from knowledge of the types
of faults that typically occur in a given class of software. Lessons learned from failure
analysis can either affirm proposed software engineering principles or help define new
ones.

Several industries, including telecommunications, space, finance, and defense, were early
drivers of computer technology. Within these industries, more and more systems are
controlled by, or dependent on, software today than in the early years. We find a great
need to examine software-based failures from many domains to gain insight about
possible common causes of failures and the means to prevent them in the next system or,
at the very least, to detect them before the system is released. The purpose is to reduce
costs by finding and detecting problems before systems are recalled from multiple users.
Loss of revenue from the customer and additional costs for fixing a faulty system after
release can become exorbitant.

Systems in all industries can fail for many reasons, including acts of nature, hardware
failures, human error, vandalism and software. While the distribution of failures due to
specific causes may differ by industry, most experience failures attributable to these
causes at some time or another. Our long-term objective is to study failure data from
several industries individually and then in the aggregate, to identify the relationships to
software problems. We have previously examined failures of the public switched
telephone network. [2].

We focus our current study on medical devices that have been voluntarily recalled by the
manufacturers due to computer software problems. Any findings may well apply to other
application domains. Like most industries, the health care industry depends on computer
technology to perform many of its functions, ranging from financial management and
patient information to patient treatment. The use of software in some kinds of medical
devices has become widespread only in the last two decades or so. Their developers had
limited software experience and had to develop the expertise for avoiding preventable
problems2 The Federal Food Drug & Cosmetic Act defines a medical device as:

"an instrument, apparatus, implement, machine, contrivance, implant, in vitro,
reagent, or other similar or related article, including a component part, or
accessory which is:
• recognized in the official Formulary, or the United States Pharmacopoeia, or
any supplement to them,
• intended for use in the diagnosis of disease or other conditions, or in the
cure, mitigation, treatment, or prevention of disease, in man, or other animals, or
• intended to affect the structure or any function of the body of man or other
animals, and which does not achieve any of its primary intended purposes
through chemical action within or on the body of man or other animals and
which is not dependent upon being metabolized for the achievement of any of its
primary intended purposes."

The problems cited in this study were found in medical devices recalled by their
manufacturers either in final testing, installation, or actual use from 1983 to 1997. It is
important to note that there were no deaths or serious injuries caused by these failures,
nor was there sufficient information to guess at potential consequences had the systems
remained in service.

Using the Food and Drug Administration (FDA) database of medical device failures, we
have examined the symptoms that indicated there were problems, identified the software
faults that may have caused the problems, provided some generic guidance, and assessed
what could have been done to prevent or detect the classes of faults. Section 2 contains a
characterization of the system failure data, while Section 3 provides an analysis of the
software faults. Section 4 contains a synopsis of the lessons learned with Section 5
providing conclusions about this study and recommendations for additional work.

2 From the lecture by Lynn Elliott, "When Safe Patients Means Dependable Software," in the Lecture Series on
High Integrity Systems, U.S. National Institute Standards and Technology, October 1995.

2 Characterization of the Data

A medical device may be as simple as a tongue depressor, but this paper is concerned
only with those containing software. The study includes only those devices in the
categories of anesthesiology, cardiology, diagnostics, radiology, general hospital use, and
surgery. Examples of these devices are insulin pumps, cardiac monitors, ultrasound
imaging systems, chemistry analyzers, pacemakers, electrosurgical devices, and
anesthesia gas machines. The following highly simplified description is provided only to
enable understanding of the classes selected for observed symptoms of malfunctions. A
device is a system providing a service, involving one or more components. Some
components may contain computer software, executing functions that produce an output
either to the next function within a component or to another component of the system
(e.g., a display device). The system behaves according to the values or messages it
receives from the functions’ output. An alarm may sound and / or the device may cease
operation. A dosage rate or volume may change. Equipment may move. Measurements
of various specimens or human reactions may be taken, and data may be recorded and
associated with a patient's name. The failures have been observed as a response of the
physical system and usually not as an obvious software fault.

2.1 General features of the recall data

The FDA recall data consists of the recall number, the product name, a problem
description, and a cause description. The code for the recall number yields the year of the
recall and the general type of device. To protect the privacy of the manufacturers, we do
not publish either the recall number or the product name. Our purpose is to understand the
types of software problems and to abstract generic guidance about preventing and
detecting the software faults before systems are released. Over time, manufacturers may
have improved their software development processes and eliminated many factors
contributing to these failures. This study reinforces the need for software quality practices
and provides specific guidance on how to prevent and detect faults.

For the Fiscal Years 1983-1991, there were 2,792 quality problems that resulted in recalls
of medical devices, including devices that do not contain software. Of those, 165, or 6%,
were related to computer software. While the second group of data from 1992-1997 is not
quite complete, the results are within the same ranges. We base our study on only the
software recalls. The total number of software recalls from 1983-1997 is 383. The years
1994, 1995, 1996 have 11%, 10%, and 9% of the software recalls. One possibility for this
higher percentage in later years may be the rapid increase of software in medical devices.
The amount of software in general consumer products is doubling every two to three
years [3].

10%

21%

19%10%

7%

30%

3%

Anesthesiology -10%
Cardiology - 21%
Diagnostic - 19%
General Hospital -10%
Other - 7%
Radiology - 30%
Surgery - 3%

Fig. 1. Failure distribution by device panel

The medical devices can be grouped into classification panels according to the primary
function of the medical device. The medical devices fit into 7 panels: anesthesiology,
cardiology, general hospital, diagnostic, radiology, general & plastic surgery, or other.
Diagnostic includes chemistry, hematology, immunology, microbiology, pathology, and
toxicology. The label “other” includes anything else such as obstetrics & gynecology or
ophthalmology for which there were not enough recalls to be grouped into their own
panels. The distribution of recalls by classification panel is shown in Figure 1. The pie
wedges match the legend going clockwise, starting with anesthesiology, near the top, at
10%.

Some systems are more difficult to develop than earlier similar devices, such as in
radiology where ultrasound and tomography are highly complex. The added complexity
in algorithms and system interactions may have affected the failure rates for radiology.

2.2 Observed behavior signifying recall

The problem and cause descriptions contain information on which we base our analysis.
They provide observations about the system or a feature as shown in the following
examples:
• An alarm failed to sound.
• Dosages were too fast, too slow or were stopped inconsistent with the data on the
 display unit.
• Display unit values were inconsistent with other visual outputs of the device, for
 example, name of patient on screen not correct.
• The system simply stopped.

• The device performed in a manner completely unplanned, when several conditions

 occurred simultaneously.
• Data were lost or corrupted.
• A calculation or other function was missing, or an instruction was omitted from the
 user manual.

For each recall, we reduced the problem description to a symptom of the failure (e.g.,
behavior–alarm did not sound; output – incorrect relationship with display). We next
reduced the list to only the key attribute and one description, such as behavior alarm and
ended with thirteen primary symptoms shown in Figure 2. The pie wedges match the
legend going clockwise, starting with behavior, near the top, at 22%.

Definitions for the thirteen primary symptoms are the following:
• Behavior: the system performs an action due to some output of some function. The
action is a physical action, e.g., movement of the gantry.
• Data: a consequence to the data, usually corruption or loss of input data.
• Display: the visual display on a screen –numbers, text, or images in various formats.
• Function: usually a single calculation or activity; a software function in one module.
• General: not enough information to assign to a category.
• Input: the initial input (typed, sampled, read off equipment, database, file or tape,
etc.) on which some operation is performed.
• Output: result of some function; generally an output to be used by the next function.
• Quality: user observations stated that “quality requirement was not met".
• Response: something has happened that should not, e.g., power emitted above
allowed amount; manifested in some hardware function.
• Service: an identifiable system service involving multiple functions such as
pumping, ventilating, giving medication; generally involves more than one component
(module, subsystem).
• System: the total system.
• Timing: timing of the instrument or a service of the device
• User instruction: manual, or other descriptions for the operator/ user.

22%

1%

8%

29%0%

4%

19%

1% 1%

10%

3%

1%

1%

Behavior -22%

Data - 1%

Display - 8%

Function -29%

General - 0%

Input -4%

Output - 19%

Quality -1%

Response -
3%
Service -10%

System -1%

Timing -1%

User instruct -
1%

Fig. 2. Distribution of 383 failures by symptom

3 Analyses of the Data

While the observed symptoms provide some insight about the nature of the failures of the
medical devices, the vendors’ determination of the software fault is important information.
In many cases, the vendors did not provide this information. We were limited in
determining the fault by the problem and description data; there was no mechanism for
getting any further details. We want to understand the nature and reason for occurrence of
the software fault and to develop lessons regarding software quality practice. We selected
the final fault class terminology from several published taxonomies and reasoned how the
various problems best fit, based on the problem and description as provided in the FDA
database. We had no access to the manufacturers or to any other data. From this limited
information, we could discern the fault type for only 342 failures. Only these 342 failures
are discussed in the rest of this study.

3.1 Fault distributions

In many cases there could have been 2 or 3 fault types contributing to a failure. Often
study of the symptom revealed the generic nature of the fault. For example, the observed
behavior may indicate that two or more events had occurred at their boundary values
simultaneously, resulting in an incorrect or unexpected response. Possibly, the
developers had not specified in the requirements that these events could occur, or the
logic of the design failed to account for these simultaneous events, or the code logic was
incorrect. If the first situation had been true, then the problem would have been classified
as a requirements problem (e.g., omission, ambiguity, conditions not considered). While

recognizing the value of better specification methods, specifically formal methods in
some of these situations, we classified most of these as logic problems at the point of
failure. Without additional information we could not classify some of these problems as
requirements. In Table 1 the primary fault type is shown first, followed by one or more
specific problems related to it, for example, "rate" following "algorithm" indicates a
function performed at wrong rate in an algorithm.

Table 1. Partial list of detailed fault categories

We reduced the number of fault categories to the final list in Figure 3.1, placing the
detailed fault type into the class it best fit. For example, “incorrect change to counting”
was placed under “calculation” because the error occurred in the counting algorithm and
did not cause additional problems that would have fit under “change impact.” In figure
3.1, the pie wedges match the legend going clockwise, starting with calculation, near the
top, at 24%.

Among the fault types, logic appears very high at 43%; with further details, some of these
faults might fit into other classes. This class includes possible errors such as incorrect
logic in the requirement specification, unexpected behavior of two or more conditions
occurring simultaneously, and improper limits. The group “data” includes units, assigned
values, or problems with the actual input data. The group “other” includes problems in
COTS, EPROM, hardware, resources (e.g., memory), configuration management, typos,
mistakes in translating requirements into code, and quality assurance. For quality
assurance, either the processes were not sufficient, or a new version was not validated.

For 1996-7, calculation faults occur 9 times in radiology compared with 13 faults in all
the panels. For 1996, logic has 4 faults in cardiology and 3 in radiology out of 11. For
1997, logic has 5 in diagnostics, but only 1 in radiology. The other fault classes are
smaller and vary over the years. For the other years, also, the higher percentages are
generally for calculation and logic. The obvious questions are "Why are logic and
calculation the prevalent types?" and "What can prevent or detect them before product
release?”

Accuracy; rounding Logic; initialization

Algorithm; logic Memory; dead code

Algorithm; rate Missing code

Assignment Missing information in user manual

Calculation; factor Not enough information

Calculation; fault
tolerance

Not validated; QA

Change impact; QA Reinitialization

COTS; memory lost; size Requirement - wrong formula

Data passing; QA Scaling

Improper impact of
change

Sequence of operations; QA

Incorrect change to
counting

Transposition

Initialization; data
passing

Typo

Input; data passing Units, calculation
Interface; parameter value Volume

24%

6%

1%

5%

1%

2%

43%

3%

3%

3%

4% 3%

2%

calculation -24%

change impact -6%

CM - 1%

data - 5%

fault tolerance-1%

initialization -2%

interface -2%

logic - 43%

omission -3%

other -3%

quality assurance -
3%
requirements -4%

timing - 3%

 Fig. 3. Fault class distribution

3.2 Prevention and detection of faults

These software recalls were distributed over 342 devices built by different vendors. What
could have been done, individually, to prevent or detect each fault before the release of
the device? We examined each fault in each of the thirteen classes and attempted to
determine an answer to this question. By prevent, we mean some method applied by the
development group before testing. By detect, we mean some method applied during
testing or by quality assurance staff.

Obviously we cannot ascertain whether these methods were used or not. We have no
evidence that more experienced companies used these more than inexperienced
companies. Rather, we can indicate perhaps an affirmation that these are best practices,
consistent with today’s focus on process and need to be utilized [4]. Thirteen fault classes
contain 342 faults. First, by each class, for each fault, we considered various techniques/
methods for prevention, and then for detection. Next we reduced the results to a smaller,
generic set for each fault class. While we provide descriptions of typical problems, only
one problem per class is shown below with prevention or detection approaches. The
complete tables are available at Error! Bookmark not defined..

Certain methods appear frequently in the complete synopses as well as in the few
examples provided in this paper. We include inspection as both a prevention and
detection technique, where inspection as prevention is used in a broader sense than the
original Fagan inspection [5]. Glass explains this broader view which is based on
practitioners’ presentations in workshops and conferences [6]. In the prevention

approach, then, inspection may include code reading and various static analyses.
Sometimes we were specific, because the fault description warranted more specificity.
When inspection appears as a detection technique, it generally means the traditional
Fagan-type inspection.

While these faults occurred in medical devices, same faults occur in many other types of
system. For example, truncation or rounding problems may occur in almost any software.
The intent of providing details in the tables is to provide understanding of problems that
may occur. Each system that may possibly have that type of error can benefit from the
prevention and detection techniques.

The class Calculation includes many types of algorithmic problems. Attention to
algorithms and computations includes such details as verifying units, operators, intervals,
limits, ranges, transformations from mathematical expressions into their implementation,
and others. Sometimes even verifying that the original algorithm requirement is the
correct version may require significant effort. Understanding how the specific computer
will handle registers and floating point values is mandatory. Verifying all the issues for a
calculation may require expertise outside computer science or software engineering.
Often someone must verify that the algorithm is adequate for its intended use, e.g.,
increments used in the algorithm will be useful in the displayed output (neither too large
nor too small to be meaningful). Examples for calculation appear in Table 2.

Table 2. Some examples for calculation
Generic Problem Prevention Detection
Constants or table of constants
incorrectly coded.

Design, code reading to ensure
correct relationship between the
specified constant or table and the
code.

Code reading, inspection. Unit
test.

Improper handling of boundary
conditions (e.g. circumstances
close to limitation of the operating
environment).

Assertions -- Fault tolerance. Focused inspections, code
reading or walkthrough. Unit
test.

Improper handling of data
structure (array, bitset, list, queue,
set, stack, vector, etc.)

Low level design review. Code
review.

Code reading or walkthrough,
review, inspection. Unit test.

Precision problem (truncation or
rounding error during I/O or
calculation).

Low level design review. Code
review.

Code review. Unit test.

Improper handling of abnormal
conditions (e.g. wire disconnect
from the device, electrical noise).

Assertion. Fault tolerance. Unit test.

Graphical output meaningless. Review requirements for
relationship of computation output
to next function.

Interface test.

Overflow. Assertion. Fault tolerance. Unit test.

While change impact is not necessarily considered a fault type, these cases indicate that
failure to examine the impact of changes hides other problems. In all cases, another
practice, performing a traceability analysis, is a prerequisite for performing change impact

analysis. The analyses identify the region the proposed change will affect. Examples for
change impact appear in Table 3.

Table 3. Some examples for change impact
Generic Problem Prevention Detection
Logic (incorrect conditions or
incompatibility with sequential
relationship)

Traceability analysis. Change
impact analysis.

Inspection of logic relative all
areas affected by change with
focus on original assumptions
(input values, selection criteria
for a function)

No verification against original
design specification

Traceability analysis. Change
impact analysis

Inspection of proposed changes.
Regression test

Loss of correct functions over
several upgrades;
Reversion to defect from at least
two version back

Configuration management.
Change impact analysis

Traceability analysis.
Verification against original
specifications. Interface test.

For configuration management (CM), that is, keeping all artifacts correctly associated
with the appropriate version of the system, several problems may have been due to the
incorrect exercise of CM procedures. Others may have been prevented simply by using
CM. The use of tools to manage the software versions would be helpful. In some cases,
the problems stem not from improper software versions, but from selecting a software
program that is not compatible with the hardware. This is also a problem of requirement
specification; once hardware and software configurations are selected, the assumptions
about each component need to be recorded as part of the CM history. Some examples for
for CM appear in Table 4.

Table 4 Example problems for CM
Generic fault Prevention Detection
Incorrect configuration for non-
domestic systems

Use of CM tools.

Verify usage of CM tools for all
changes. Verify configuration
for non-domestic use.

Software incompatible with other
components

Record assumptions about all
components, in the CM data

Inspection of requirements for
component interfaces. CM
approval for configuring system
components

Failure to upgrade accompanying
system, to match software
changes

Traceability analysis. CM tools. Verification of changes;
regression test.

Use of wrong master program
when making software revision

Use of CM tools. Verification of appropriate
master program. CM manager
releases the versions.

Problems in software programs can arise from input data. Data requirements for a
program must be specified, entered in a data dictionary, and validated before the
operation using the data is executed. The specification includes information such as units,
acceptable range of values, the expected quantity or frequency with which values will
change. The specification is published in the data dictionary of the database and in user
instructions, emphasizing values that could cause program stoppage if they are out of
range. Of course, the program itself may address some potential problems by containing

assertions for input values or input omission, with actions to take when data are incorrect
or missing. When a program is fielded, data in a database should be protected against
database corruption. The software should facilitate an error-handling package to detect
database corruption. Table 5 provides examples for data. :

Table 5. Some examples for data
Generic Problem Prevention Detection
System failed due to invalid
input data

Assertions for invalid values,
checks for ranges that imply
incorrect data. Design: set criteria
of input data validation. Code:
implementation of input data
validation.

Review for completeness of data
specification, and that all data
specifications are included in the user
instructions.
Inspection: focus on data validation.
Test against invalid data.

Inconsistency of data
retrieved from database and
that expected by the
program

Assertions on validity of data
retrieved from database.

Testing focused on data retrieval .

Database corruption

Database administration. Error handling routine in software.

The fault tolerance category relates to safety-critical systems that should include facilities
to handle abnormal or anomalous conditions. Fault tolerance examples appear in Table
6.

Table 6 Fault tolerance examples
Generic Problem Prevention Detection
Excessive use of the
program causes failure

Fault tolerance such as warnings
to operators.

Stress/ volume test. Testing against
boundary and abnormal conditions.

Incorrect action due to
external abnormal/
unexpected condition
related to power supply or
other components

Fault tolerance. Software cannot
control abnormal condition
external to it, but can provide a
procedure in that event.
Requirement needs to be written
for FT.

Test against boundary, abnormal, and
special conditions. Exception
handling routine in software.

Incorrect action due to
operator error

Fault tolerance in design through
code to protect against human
error.

Inspect, review for protection against
operator error. Test against
unacceptable data entry.

Initialization is essential for enabling programs either to begin or to perform more than
one cycle of a function. Default values for variables are a necessity, and likewise, re-
initialization of a variable must be established. Explicitly documenting initial conditions
in requirements through the code is essential. Code reviews and code reading need to
focus not on whether initialization is specified, but specified according to good
programming practices. Examples for initialization appear in Table 7

Table 7. Examples for initialization
Generic Problem Prevention Detection
Lack of initialization of the
runtime environment while the
program initially executes or
restarts

Use assertions for initialization.
For C or C++, see
http://hissa.ncsl.nist.gov/effProjec
t/handbook/c++/variables.htm

Inspections; Code review. Test
against initial conditions.

When the program executes first
time, it fails to store necessary
initialization values for the

Document initial conditions for
both initial run and consecutive
run. Design review.

Code review. Stress test (run
the program multiple times).

succeeding run.

In a system, interfaces allow software to send and receive data (that is, interface) to
physical components of the system, as well to other software modules and to users.
Clearly, the requirement specification must be accurate, complete, and consistent. A
traceability scheme provides a basis for ensuring that all interfaces are addressed and
included correctly. A well-developed test plan for integration testing must be executed to
verify the interfaces between devices or software components. Table 8 provides
examples for interface.

Table 8. Examples for interface
Generic Problem Prevention Detection
Software does not properly
interface with external device or
other software component.

Trace requirements through
design through code to ensure all
software functions have interfaces
to either another software module
or to an output device or other
system component or user.
Examine the specification for
each interface.

Inspections, reviews
Integration test.

Logic problems appear to be significant. While some failures of the devices did result
from bad logic, the "bad" logic might have resulted from incorrect, incomplete, or
inconsistent requirements or designs. Frequently, interactions among different functions
might not have been considered at all or might have been neglected at boundary
conditions of a function. Sometimes the logic might have been incorrect in the design.
All of these were classified as logic problems, but it should be understood that the source
of the problem could have been requirements, design, or code. Two examples include 1)
"When power lost and then restored, system defaults to off status, which causes false
information to operator and possible hazard to the operator " and 2) "When a second
cartridge is in the other slot and detects an artifact condition, the monitor is prevented
from alarming below set levels." Table 9 provides examples for logic.

Table 9 Examples for logic
Incomplete or incorrect control
logic

Design review. Walk through the
software implementation against
design.

Code Review. Inspection.
Testing.

Configuration scheme for
component interaction allows
incorrect behavior.

Modeling. Simulation. Formal
methods.

Code review. Interface
analysis. Integration test.
System test.

Improper handling of boundary
conditions. (e.g. limits of value
range)

Design review. Verify logic for
all conditions, esp. at boundaries.
Fault tolerance. Code review.

Code review. Inspection; Test
against boundary and
abnormal conditions.

Improperly handle abnormal or
exceptional (e.g. power lost,
multiple inoperative conditions
occurred, I/O interrupt, I/O error)

Design review. Assertion. Fault
tolerance. Review error recovery
routines. Code review.

Code review. Inspection; Test
against abnormal and
exceptional conditions.

Improper data validation. (e.g.
input or output data out of range)

Design review. Walk through the
software implementation against
design. Verify logic for data out
of limits.

Code review. Inspection; Test
against I/O boundary
conditions.

Programming error (e.g. error in
pointer, addressing, looping,
indexing, subscript, memory
management)

Low level design review. Code
review.

Code review. Unit test.

The class omission indicates a required system function that is missing from the final
implementation. Documentation provided is missing or not sufficient to install or operate
the product. Two examples for omission are shown in Table 10.

Table 10. Examples of omission faults
Vital system functions are
missing

Trace requirements through
design through code, focus on all
interfaces. Trace into user and test
documentation. Use critical path
analysis to ensure completion.
Prepare system test scenarios at
requirements specification and
examine them for relationship to
trace through code.

Inspections, reviews examining
traceability of functions.
System Test.

Lack of documentation, or
improper documentation.

Proper release procedure.
Traceability.

Verify completeness by
examining trace. Inspection.

Other faults too low in frequency to be classified separately include problems such as
performance issues, I/O problems, typographical errors. Other types of faults appear in
Table 11.

Table 11. Other types of faults
Generic Problem Prevention Detection
Out of compliance with the
performance standard.

Simulation. Design review. Code
review.

Performance test.

Calculations associated with the
"%" activity curve have been
printed incorrectly. Formatting
subroutine for screen display.

Code review: review special I/O
routine. Understand the
hardware/software requirements
of the display system.

Unit testing with focus on
verifying output against internal
calculations.

A typographic error in software
algorithm causes incompatibility
between two devices.

Code reading against algorithm
specifications.

Walkthrough focused on
algorithms. Testing.

The role of quality assurance (QA) is to ensure that quality practices are defined in
company standards and that they are used. Procedures are necessary for validation after
modifications. The problems described in the recall data often cite that process checks
were not made on the testing process and that testing was not performed after
modifications. The problem descriptions do not reveal whether procedures for testing or
other quality practices had been defined. Change impact analysis is a key task to ensure
appropriate tests after modifications. While QA is not a fault type, it is a process problem
whose use might have prevented some of the failures. For this category, prevention
techniques refer to discovering problems with QA. The responsibility for quality belongs
to everyone on the project. QA examples appear in Table 12.

Table 12. Examples for QA
Generic Problem Prevention Detection
Test plan was not implemented or Software project management Project status review.

executed appropriately. oversight. QA process checks.
Regression test was not
performed on modified software.

Software project management
oversight.
Change impact analysis.

Project status review.
QA process checks.

No validation before initial
release.

Specified procedures regarding
testing before product release.
Software project management
oversight.

Project status review.
QA process checks.

No validation on software
changes.

Software project management. Project status review.
QA process checks.

Some faults, such as omission, logic, and calculation, may have their genesis in the
requirements specification. This category demonstrates the need to develop, verify and
validate a requirement specification, in some cases uses formal methods. The document
specifying the product requirements is critical to the completeness and correctness of the
software of the final product. The review of the requirements may require experts with
different types of expertise to ensure that the requirements call for the right functions,
appropriate algorithms, correct interfaces, function interaction, and other aspects.
Examples for requirements appear in Table 13.

Table 13. Examples of requirements faults
Exceptional conditions were not
specified in the requirement
specification.

Modeling. Analysis. Traceability Interface analysis.
Requirement review. System
test.

Functions missing in the
requirement specification.

Modeling. Analysis. Traceability. Interface analysis.
Requirement review.
System test.

Requirement specification was
incorrect for its usage with other
components.

Modeling. Interface Analysis.
Traceability.

Requirement review. Interface
analysis.
Design review.
System test.

Test hooks or monitors were not
specified

Requirement review. Design
review.

Integration, system test.

Timing, or synchronization, is vital to the execution of real-time applications. Examples
for timing appear in Table 14.

Table 14. Examples for timing
Generic Problem Prevention Detection
Two inter-react processes are out
of time synch with one another

Simulation. Design review. Code
review.

Timing analysis. Integration
test.

Real time clock was not accurate.

High quality real time operating
system. Fault tolerance

Timing analysis. System test.

Scheduled event did not occur
due to timer failure.

High quality real time operating
system. Fault tolerance

Timing analysis. System test.

4 Lessons Learned

The information about the software faults that caused these system failures provides
valuable lessons and affirmation of quality practices. These concern development
procedures, assurance practices during development & maintenance activities, and testing
or assurance strategies. Methods to prevent and detect faults should focus on logic and
calculation errors. For logic, methods should address improved handling of various
conditions, assumptions, and interactions among functions. Attention must be given to the
details of calculations, such as verifying that the correct algorithm has been specified in
the first place or that the programmed operators and increments are correct. The lessons
addressed below are based on problems that were observed in this study, that is, they
stood out as prevalent problems for this set of data and are related to the faults indicated
in the fault tables in Section 3. Therefore the practices suggested in this paper will likely
vary in other domains. Studies of other domains may provide a variation of the lessons
learned here along with a roadmap for selecting the best quality strategy within a
company or domain from more general guidance on quality practices. Other guidance
discussing general good practices on software development and assurance includes the
Capability Maturity Model, and NIST documents on life cycle development and
assurance, and verification and validation [4], [7], [8].

4.1 Development & Maintenance

While software development processes are already well defined by such models as the
CMM, this study indicates particular practices which would help prevent the faults that
led to these specific failures. For example, training in the characteristics of the computer
on which the device will reside might have prevented some of the computation errors
concerning registers. Training in the application domain concerning how the outputs of
functions interact and will be used by the operator might have prevented wrong interval
size which produced unusable charts. Attention to details, that is, checking and verifying
one’s work as related to the specifications for that work, might have prevented several
problems. A member of the software team with experience in the application domain may
have caught several problems. Many logic faults stemmed from misunderstanding of how
various functions interact, that is, under certain conditions, and in some cases, that they
would interact at all. A traceability map, used regularly, can identify inconsistencies or
incompleteness. The following list highlights some of the practices recommended for
development and maintenance tasks:
• Complete specification of requirements, with emphasis on conditions and interactions
of functions. Formal methods may be considered for highly complex systems.
• Traceability of the development artifacts: requirements to design (high, low levels) to
code to user documentation and to all test documentation, especially location of source of
faults. The analysis should be conducted forward and backward.
• Traceability and configuration management of all changes to the product as result of
any assurance activities
• Software configuration management
• Change impact analysis
• Expertise in the application domain by at least one person involved with quality
practices such as requirements analysis, inspections, testing

• Daily attention to details of the current process, the mapping to results of the
previous process, and personal reviews of one’s work.
• Training.

4.2 Assurance Practices

The quality of software is the responsibility of everyone involved in its development.
Practices listed above for development and maintenance are a few enabling factors in
establishing an environment in which this responsibility is recognized. Other tasks fall
into the category of quality assurance, but may be performed by the persons engaged in
development of the software artifacts or by those separated organizationally under some
quality assurance name. Every artifact of development processes needs to be scrutinized.
The list of techniques supporting this scrutiny is long, and again, published elsewhere.
Instead we focus on the few techniques whose value is indicated by the faults causing the
failures of these devices. The inspection technique, as per Glass [6], can be perceived as
a variety of techniques that examine artifacts, ranging from requirements to design to
code to test cases. Such techniques may include code reading, formal inspection meetings,
review by programmer using various analytic techniques, and focused inspections. Porter
and Votta describe scenario-based inspections in which participants looked for certain
classes of errors [9]. To focus on a class of errors, the inspectors need to have some idea
of the prevalent classes of errors of the product they are examining. The following list
summarizes these suggestions:

• Focused review, inspection of the artifact against the types of faults characteristic of
the domain, and the vendor’s history
• Traceability analysis, especially focused on completeness
• Mental execution of potentially troublesome locations (e.g., an algorithm, a loop, an
interface)
• Code reading
• Recording of fault information from the assurance activities and better usage of this
information
• Recording, during development and quality assurance activities, of the symptoms that
indicated there are faults
• Checklists, questions, methods designed to force those symptoms to manifest
themselves
• Formal or informal proof of algorithm correctness
• Use of simulation in complex situations where several interactions may occur,
especially involving several components of the system.

4.3 Testing

How thorough was the testing applied to the devices that were recalled? One way to
study this question is to look at what conditions are required to trigger the faults that
remained after release. That is, is the fault manifested in a single condition, or two or
more conditions? Some of the failures (109 out of the complete set of 342) contained
sufficient detail to determine what level of testing would be required to detect the fault.

For example, one problem report said that “if device is used with old electrodes, an error
message will display, instead of an equipment alert.” In this case, testing the device with
old electrodes would have detected the problem. Another indicated that “upper limit
CO2 alarm can be manually set above upper limit without alarm sounding.” Again, a
single test input that exceeded the upper limit would have detected the fault.

Other problems were not so easily manifested. One noted that “if a bolus delivery is
made while pumps are operating in the body weight mode, the middle LCD fails to
display a continual update.” In this case, detection would have required a test with the
particular pair of conditions that caused the failure: bolus delivery while in body weight
mode. One vendor’s description of a failure manifested on a particular pair of conditions
was “the ventilator could fail when the altitude adjustment feature was set on 0 meters and
the total flow volume was set at a delivery rate of less than 2.2 liters per minute.”3
Only three of 109 failures indicated that more than two conditions were required to cause
the failure. The most complex of these involved four conditions and was presented as “the
error can occur when demand dose has been given, 31 days have elapsed, pump time
hasn’t been changed, and battery is charged.” The remaining 233 failures did not contain
sufficient detail to make a judgment on the number of test conditions required to
demonstrate a fault; many described the cause as simply “software error.” It is significant
however, that of the 109 reports that are detailed, 98 % showed that the problem could
have been detected by testing the device with all pairs of parameter settings.

Medical devices generally have a relatively small number of input variables, each with
either a small discrete set of possible settings, or a finite range of values. Nevertheless,
testing all possible combinations of settings may not be practical. For example, consider
a device that has 20 inputs, each with 10 settings, for a total of 1020 combinations of
settings. The few hundred test cases that can be built under most development budgets
will of course cover less than a tiny fraction of a percent of the possible combinations.
But the number of pairs of settings is in fact very small, and since each test case must
have a value for each of the ten variables, more than one pair can be included in a single
test case. Algorithms based on orthogonal latin squares are available that can generate
test data for all pairs (or higher order combinations) at a reasonable cost. One such
method makes it possible to cover all pairs of values for this example using only 180 test
cases[9]. This level of test effort should be practical for most devices in the categories
reviewed in this report.

Testing is part of the general quality practices, with unit, integration, and system testing
all conducted. The failures in this study indicated specific test strategies might have been
useful in detecting problems before the systems were delivered. Many failures were
recognized by behavior of the system, for example, a part moved unexpectedly, or
medication was provided at an incorrect rate. Most of these resulted from logic faults, so
test cases in complex systems should attempt to drive these symptoms to appear. In some
cases, the systems were updated versions, so previous test histories may also have been
helpful. The list summarizes these points:

3 The policy of the National Institute of Standards and Technology is to use metric units of measurement in all
its technical papers. In this document however, works of authors outside NIST are cited which describe
measurement values in certain non-metric units, and it is not appropriate to provide converted values.

• Test cases aimed at manifesting prevalent symptoms observed by device operators
• Stress testing
• Change impact analysis and regression testing
• SCM release of versions only with evidence of change impact analysis, regression
 testing; validation of changes
• Integration testing focused on interface values under varying conditions
• System testing under various environmental circumstances, with some conditions,
 input data incorrect or different from expected environmental conditions
• Recording of test results, with special recording of all failures and their resolution,
 by failure and symptom of the system, and by fault type of the software.

5. Conclusions

This study yielded information affirming use of quality practices and identifying
approaches for using fault and failure information to improve development and assurance
practices. The nature of several faults indicates that known practices may not be used at
all or may be misused. An important conclusion is that the use of many generally accepted
quality practices, rather than use of a "silver bullet" is significant toward reduction of
system failures. Questions remain for further research:
• If the practices were not used, what can be done to make them more readily usable?
• If the practices were used, why did they fail to prevent or detect the fault?
• What methods not yet generally accepted may help to prevent some faults and
 subsequent failures?

The analysis in this study demonstrates that different application domains may have
different prevalent fault classes and different characteristic failure symptoms. Suggestions
for improvement of assurance practices include:
• gathering failure and fault data,
• understanding the types of faults that are prevalent for a specific domain, and,
• developing prevention and detection approaches specific to these.

The subject of this study, failures of medical devices, is dealing with a relatively young
industry, often new to adding microprocessors to devices4. As experience with software
development and complexity of the software grow, the prevalent fault classes may
change. In domains with a long history of software, the classes may also differ. In newer
applications such as Electronic Commerce, which rely on newer technologies, operating
systems, and languages, we would anticipate perhaps new fault classes for the domains as
well as for the underlying software technologies. Data collection and analysis can help to
identify the most prevalent faults and the areas where better methods are needed to
prevent and detect them before system delivery.

4A medical device manufacturer adding software to a device for the first time called one author during
preparation of this paper.

This paper has shown that valuable lessons can be learned from system failures involving
software. Some lessons may apply specifically to the application domain of study while
some apply universally. It is important to continue this research on failures using modern
technologies in various domains. The authors may be contacted by anyone willing to
supply data.

6. Acknowledgments

The authors are grateful to the Food and Drug Administration (FDA) for making this data
available to us. Our analyses and conclusions do not reflect any analyses or conclusions
by the FDA. We appreciate the reviews and suggestions of Dr. Larry Reeker and the
efforts of Mark Zimmerman and Michael Koo for their technical support.

7. References

1. H. Petroski, To Engineer Is Human, Vintage Books of Random House, Inc., New York, 1992.

 2. D. R. Kuhn, "Sources of Failure in the Public Switched Telephone Network," Computer Vol.
30, No. 4 (April, 1997).

3. W. Gibbs, “Software’s Chronic Crisis,” Sci. Am. (Int.Ed.) 271, 3 (sept.1994), 72-81.

4. Paulk, et. al., "Capability Maturity Model, Version 1.1," IEEE Software, July 1993, pp. 18-27.

5. M.E. Fagan, "Design and Code Inspections to Reduce Errors in Program Development," IBM
Systems Journal, Volume 15, number 3, 1976, pp. 219-248.

6. R.L. Glass, "Inspections - Some Surprising Findings," Communications of the ACM, April 1999-
Volume 42, Number 4, pp. 17- 19.

7. D. R. Wallace, and L. M. Ippolito, "A Framework for the Development and Assurance of High
Integrity Software," NIST SP 500-223, December, 1994, National Institute of Standards and
Technology, Gaithersburg, MD 20899. http://hissa.nist.gov/publications/sp223/

8. D.R. Wallace, L. Ippolito, and B. Cuthill, “Reference Information for the Software Verification
and Validation Process,” NIST SP 500-234, National Institute of Standards and Technology,
Gaithersburg, MD 20899, April 1996. http://hissa.nist.gov/VV234/

9. A. Porter, et. al., "An Experiment to Assess the Cost-Benefit of Code Inspections in Large Scale
Software Developments," Proceedings of the Ninth Annual Software Engineering Workshop,
National Aeronautics and Space Administration Goddard Space Flight Center, Greenbelt, MD
20771, December 1994.

