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Most complex systems today contain software, and systems failures activated by software faults can 
provide lessons for software development practices and software quality assurance.  This paper 
presents an analysis of software-related failures of medical devices that caused no death or injury 
but led to recalls by the manufacturers.  The analysis categorizes the failures by their symptoms 
and faults, and discusses methods of preventing and detecting faults in each category.  The nature 
of the faults provides lessons about the value of generally accepted quality practices for prevention 
and detection methods applied prior to system release.  It also provides some insight into the need 
for formal requirements specification and for improved testing of complex hardware-software 
systems. 

 
 

1 Introduction 
 
Henry Petroski devotes an entire book to failures in engineering and lessons to be learned 
[1].  In his preface, he states "the concept of failure - mechanical and structural failure in 
the context of this discussion - is central to understanding engineering, for engineering 
design has as its first and foremost objective the obviation of failure."  He further states 
"the lessons learned from … disasters can do more to advance engineering knowledge 
than all the successful machines and structures in the world."    
 
We take license in extending Petroski's views from mechanical and structural engineering 
into the domain of software system failures. Many software assurance techniques, 
including inspections, failure modes and effects analysis, flaw hypothesis penetration 
testing, and some specification-based test methods, benefit from knowledge of the types 
of faults that typically occur in a given class of software.  Lessons learned from failure 
analysis can either affirm proposed software engineering principles or help define new 
ones.  
 
Several industries, including telecommunications, space, finance, and defense, were early 
drivers of computer technology.  Within these industries, more and more systems are 
controlled by, or dependent on, software today than in the early years. We find a great 
need to examine software-based failures from many domains to gain insight about 
possible common causes of failures and the means to prevent them in the next system or, 
at the very least, to detect them before the system is released. The purpose is to reduce 
costs by finding and detecting problems before systems are recalled from multiple users.  
Loss of revenue from the customer and additional costs for fixing a faulty system after 
release can become exorbitant. 
 



    

  

Systems in all industries can fail for many reasons, including acts of nature, hardware 
failures, human error, vandalism and software. While the distribution of failures due to 
specific causes may differ by industry, most experience failures attributable to these 
causes at some time or another. Our long-term objective is to study failure data from 
several industries individually and then in the aggregate, to identify the relationships to 
software problems. We have previously examined failures of the public switched 
telephone network. [2].  
 
We focus our current study on medical devices that have been voluntarily recalled by the 
manufacturers due to computer software problems. Any findings may well apply to other 
application domains. Like most industries, the health care industry depends on computer 
technology to perform many of its functions, ranging from financial management and 
patient information to patient treatment. The use of software in some kinds of medical 
devices has become widespread only in the last two decades or so. Their developers had 
limited software experience and had to develop the expertise for avoiding preventable 
problems2 The Federal Food Drug & Cosmetic Act defines a medical device as: 
 

"an instrument, apparatus, implement, machine, contrivance, implant, in vitro, 
reagent, or other similar or related article, including a component part, or 
accessory which is: 
• recognized in the official Formulary, or the United States Pharmacopoeia, or 
any supplement to them, 
• intended for use in the diagnosis of disease or other conditions, or in the 
cure, mitigation, treatment, or prevention of disease, in man, or other animals, or 
• intended to affect the structure or any function of the body of man or other 
animals, and which does not achieve any of its primary intended purposes 
through chemical action within or on the body of man or other animals and 
which is not dependent upon being metabolized for the achievement of any of its 
primary intended purposes." 

 
The problems cited in this study were found in medical devices recalled by their 
manufacturers either in final testing, installation, or actual use from 1983 to 1997. It is 
important to note that there were no deaths or serious injuries caused by these failures, 
nor was there sufficient information to guess at potential consequences had the systems 
remained in service.  
 
Using the Food and Drug Administration (FDA) database of medical device failures, we 
have examined the symptoms that indicated there were problems, identified the software 
faults that may have caused the problems, provided some generic guidance, and assessed 
what could have been done to prevent or detect the classes of faults.  Section 2 contains a 
characterization of the system failure data, while Section 3 provides an analysis of the 
software faults. Section 4 contains a synopsis of the lessons learned with Section 5 
providing conclusions about this study and recommendations for additional work.  

                                                 
2 From the lecture by Lynn Elliott, "When Safe Patients Means Dependable Software," in the Lecture Series on 
High Integrity Systems, U.S. National Institute Standards and Technology, October 1995. 

 



    

  

 
      
2 Characterization of the Data  
 
A medical device may be as simple as a tongue depressor, but this paper is concerned 
only with those containing software.  The study includes only those devices in the 
categories of anesthesiology, cardiology, diagnostics, radiology, general hospital use, and 
surgery. Examples of these devices are insulin pumps, cardiac monitors, ultrasound 
imaging systems, chemistry analyzers, pacemakers, electrosurgical devices, and 
anesthesia gas machines. The following highly simplified description is provided only to 
enable understanding of the classes selected for observed symptoms of malfunctions. A 
device is a system providing a service, involving one or more components.  Some 
components may contain computer software, executing functions that produce an output 
either to the next function within a component or to another component of the system 
(e.g., a display device). The system behaves according to the values or messages it 
receives from the functions’ output.  An alarm may sound and / or the device may cease 
operation.  A dosage rate or volume may change. Equipment may move.  Measurements 
of various specimens or human reactions may be taken, and data may be recorded and 
associated with a patient's name. The failures have been observed as a response of the 
physical system and usually not as an obvious software fault. 
 
 
2.1 General features of the recall data 
 
The FDA recall data consists of the recall number, the product name, a problem 
description, and a cause description.  The code for the recall number yields the year of the 
recall and the general type of device.  To protect the privacy of the manufacturers, we do 
not publish either the recall number or the product name. Our purpose is to understand the 
types of software problems and to abstract generic guidance about preventing and 
detecting the software faults before systems are released. Over time, manufacturers may 
have improved their software development processes and eliminated many factors 
contributing to these failures. This study reinforces the need for software quality practices 
and provides specific guidance on how to prevent and detect faults.  
 
For the Fiscal Years 1983-1991, there were 2,792 quality problems that resulted in recalls 
of medical devices, including devices that do not contain software.  Of those, 165, or 6%, 
were related to computer software. While the second group of data from 1992-1997 is not 
quite complete, the results are within the same ranges. We base our study on only the 
software recalls. The total number of software recalls from 1983-1997 is 383.   The years 
1994, 1995, 1996 have 11%, 10%, and 9% of the software recalls. One possibility for this 
higher percentage in later years may be the rapid increase of software in medical devices. 
The amount of software in general consumer products is doubling every two to three 
years [3].  
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Fig. 1.  Failure distribution by device panel 

 
The medical devices can be grouped into classification panels according to the primary 
function of the medical device. The medical devices fit into 7 panels: anesthesiology, 
cardiology, general hospital, diagnostic, radiology, general & plastic surgery, or other. 
Diagnostic includes chemistry, hematology, immunology, microbiology, pathology, and 
toxicology. The label “other” includes anything else such as obstetrics & gynecology or 
ophthalmology for which there were not enough recalls to be grouped into their own 
panels. The distribution of recalls by classification panel is shown in Figure 1. The pie 
wedges match the legend going clockwise, starting with anesthesiology, near the top, at 
10%. 
 
Some systems are more difficult to develop than earlier similar devices, such as in 
radiology where ultrasound and tomography are highly complex. The added complexity 
in algorithms and system interactions may have affected the failure rates for radiology.  
 
 
2.2 Observed behavior signifying recall  
 
The problem and cause descriptions contain information on which we base our analysis. 
They provide observations about the system or a feature as shown in the following 
examples:  
• An alarm failed to sound.  
• Dosages were too fast, too slow or were stopped inconsistent with the data on the  
       display unit.  
• Display unit values were inconsistent with other visual outputs of the device, for  
        example, name of patient on screen not correct.  
• The system simply stopped.  
 
• The device performed in a manner completely unplanned, when several conditions  



    

  

        occurred simultaneously.  
• Data were lost or corrupted.    
• A calculation or other function was missing, or an instruction was omitted from the 
        user manual.  
 
For each recall, we reduced the problem description to a symptom of the failure (e.g., 
behavior–alarm did not sound; output – incorrect relationship with display). We next 
reduced the list to only the key attribute and one description, such as behavior alarm and 
ended with thirteen primary symptoms shown in Figure 2. The pie wedges match the 
legend going clockwise, starting with behavior, near the top, at 22%. 
 
Definitions for the thirteen primary symptoms are the following: 
• Behavior:   the system performs an action due to some output of some function. The 
action is a physical action, e.g., movement of the gantry. 
• Data: a consequence to the data, usually corruption or loss of input data.  
• Display: the visual display on a screen –numbers, text, or images in various formats. 
• Function: usually a single calculation or activity; a software function in one module. 
• General:  not enough information to assign to a category. 
• Input:  the initial input (typed, sampled, read off equipment, database, file or tape, 
etc.) on which some operation is performed. 
• Output: result of some function; generally an output to be used by the next function. 
• Quality:  user observations stated that “quality requirement was not met".   
• Response: something has happened that should not, e.g., power emitted above 
allowed amount; manifested in some hardware function. 
• Service:  an identifiable system service involving multiple functions such as 
pumping, ventilating, giving medication; generally involves more than one component 
(module, subsystem). 
• System:  the total system.  
• Timing: timing of the instrument or a service of the device 
• User instruction: manual, or other descriptions for the operator/ user. 
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Fig. 2.  Distribution of 383 failures by symptom 

 
 
3 Analyses of the Data 
 
While the observed symptoms provide some insight about the nature of the failures of the 
medical devices, the vendors’ determination of the software fault is important information. 
In many cases, the vendors did not provide this information. We were limited in 
determining the fault by the problem and description data; there was no mechanism for 
getting any further details. We want to understand the nature and reason for occurrence of 
the software fault and to develop lessons regarding software quality practice. We selected 
the final fault class terminology from several published taxonomies and reasoned how the 
various problems best fit, based on the problem and description as provided in the FDA 
database. We had no access to the manufacturers or to any other data. From this limited 
information, we could discern the fault type for only 342 failures. Only these 342 failures 
are discussed in the rest of this study. 
 
 
3.1  Fault distributions 
 
In many cases there could have been 2 or 3 fault types contributing to a failure. Often 
study of the symptom revealed the generic nature of the fault.  For example, the observed 
behavior may indicate that two or more events had occurred at their boundary values 
simultaneously, resulting in an incorrect or unexpected response.  Possibly, the 
developers had not specified in the requirements that these events could occur, or the 
logic of the design failed to account for these simultaneous events, or the code logic was 
incorrect. If the first situation had been true, then the problem would have been classified 
as a requirements problem (e.g., omission, ambiguity, conditions not considered). While 



    

  

recognizing the value of better specification methods, specifically formal methods in 
some of these situations, we classified most of these as logic problems at the point of 
failure. Without additional information we could not classify some of these problems as 
requirements. In Table 1 the primary fault type is shown first, followed by one or more 
specific problems related to it, for example, "rate" following "algorithm" indicates a 
function performed at wrong rate in an algorithm. 
 



    

  

Table 1.  Partial list of detailed fault categories 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
 
We reduced the number of fault categories to the final list in Figure 3.1, placing the 
detailed fault type into the class it best fit. For example, “incorrect change to counting” 
was placed under “calculation” because the error occurred in the counting algorithm and 
did not cause additional problems that would have fit under “change impact.”   In figure 
3.1, the pie wedges match the legend going clockwise, starting with calculation, near the 
top, at 24%. 
 
Among the fault types, logic appears very high at 43%; with further details, some of these 
faults might fit into other classes. This class includes possible errors such as incorrect 
logic in the requirement specification, unexpected behavior of two or more conditions 
occurring simultaneously, and improper limits. The group “data” includes units, assigned 
values, or problems with the actual input data.  The group “other” includes problems in 
COTS, EPROM, hardware, resources (e.g., memory), configuration management, typos, 
mistakes in translating requirements into code, and quality assurance.  For quality 
assurance, either the processes were not sufficient, or a new version was not validated.  
 
For 1996-7, calculation faults occur 9 times in radiology compared with 13 faults in all 
the panels. For 1996, logic has 4 faults in cardiology and 3 in radiology out of 11.  For 
1997, logic has 5 in diagnostics, but only 1 in radiology. The other fault classes are 
smaller and vary over the years. For the other years, also, the higher percentages are 
generally for calculation and logic. The obvious questions are "Why are logic and 
calculation the prevalent types?" and "What can prevent or detect them before product 
release?” 

Accuracy; rounding Logic; initialization 

Algorithm; logic Memory; dead code 

Algorithm; rate Missing code 

Assignment Missing information in user manual 

Calculation; factor Not enough information 

Calculation; fault 
tolerance 

Not validated; QA 

Change impact; QA Reinitialization 

COTS; memory lost; size Requirement - wrong formula 

Data passing; QA Scaling 

Improper impact of 
change 

Sequence of operations; QA 

Incorrect change to 
counting 

Transposition 

Initialization; data 
passing 

Typo 

Input; data passing Units, calculation 
Interface; parameter value Volume 
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   Fig. 3.  Fault class distribution 

 
 

3.2 Prevention and detection of faults 
 
These software recalls were distributed over 342 devices built by different vendors. What 
could have been done, individually, to prevent or detect each fault before the release of 
the device? We examined each fault in each of the thirteen classes and attempted to 
determine an answer to this question.  By prevent, we mean some method applied by the 
development group before testing. By detect, we mean some method applied during 
testing or by quality assurance staff.  
 
Obviously we cannot ascertain whether these methods were used or not. We have no 
evidence that more experienced companies used these more than inexperienced 
companies. Rather, we can indicate perhaps an affirmation that these are best practices, 
consistent with today’s focus on process and need to be utilized [4]. Thirteen fault classes 
contain 342 faults. First, by each class, for each fault, we considered various techniques/ 
methods for prevention, and then for detection. Next we reduced the results to a smaller, 
generic set for each fault class. While we provide descriptions of typical problems, only 
one problem per class is shown below with prevention or detection approaches. The 
complete tables are available at Error! Bookmark not defined..  
 
Certain methods appear frequently in the complete synopses as well as in the few 
examples provided in this paper. We include inspection as both a prevention and 
detection technique, where inspection as prevention is used in a broader sense than the 
original Fagan inspection [5].  Glass explains this broader view which is based on 
practitioners’ presentations in workshops and conferences [6].  In the prevention 



    

  

approach, then, inspection may include code reading and various static analyses. 
Sometimes we were specific, because the fault description warranted more specificity.  
When inspection appears as a detection technique, it generally means the traditional 
Fagan-type inspection.  
 
While these faults occurred in medical devices, same faults occur in many other types of 
system. For example, truncation or rounding problems may occur in almost any software.  
The intent of providing details in the tables is to provide understanding of problems that 
may occur. Each system that may possibly have that type of error can benefit from the 
prevention and detection techniques. 
  
The class Calculation includes many types of algorithmic problems. Attention to 
algorithms and computations includes such details as verifying units, operators, intervals, 
limits, ranges, transformations from mathematical expressions into their implementation, 
and others.  Sometimes even verifying that the original algorithm requirement is the 
correct version may require significant effort. Understanding how the specific computer 
will handle registers and floating point values is mandatory. Verifying all the issues for a 
calculation may require expertise outside computer science or software engineering.  
Often someone must verify that the algorithm is adequate for its intended use, e.g., 
increments used in the algorithm will be useful in the displayed output (neither too large 
nor too small to be meaningful).  Examples for calculation appear in Table 2. 
 

Table 2. Some examples for calculation 
Generic Problem Prevention Detection 
Constants or table of constants 
incorrectly coded. 
 

Design, code reading to ensure 
correct relationship between the 
specified constant or table and the 
code. 

Code reading, inspection.  Unit 
test. 
 

Improper handling of boundary 
conditions (e.g. circumstances 
close to limitation of the operating 
environment).  
 

Assertions --  Fault tolerance.   Focused inspections, code 
reading or walkthrough. Unit 
test. 
 

Improper handling of data 
structure (array, bitset, list, queue, 
set, stack, vector, etc.) 

Low level design review.  Code 
review. 

Code reading or walkthrough, 
review, inspection.  Unit test. 

Precision problem (truncation or 
rounding error during I/O or 
calculation).   

Low level design review.  Code 
review. 

Code review.  Unit test. 

Improper handling of  abnormal 
conditions (e.g. wire disconnect 
from the device, electrical noise). 

Assertion.  Fault tolerance. Unit test. 

Graphical output meaningless. Review requirements for 
relationship of computation output 
to next function.  

Interface test. 

Overflow. Assertion.  Fault tolerance. Unit test. 

 
 
While change impact is not necessarily considered a fault type, these cases indicate that 
failure to examine the impact of changes hides other problems. In all cases, another 
practice, performing a traceability analysis, is a prerequisite for performing change impact 



    

  

analysis.  The analyses identify the region the proposed change will affect.  Examples for 
change impact appear in Table 3. 
 

Table 3.  Some examples for change impact 
Generic Problem Prevention Detection 
Logic (incorrect conditions or 
incompatibility with sequential 
relationship) 

Traceability analysis. Change 
impact analysis. 
 
 

Inspection of logic relative all 
areas affected by change with 
focus on original assumptions 
(input values, selection criteria 
for a function) 

No verification against original 
design specification 

Traceability analysis. Change 
impact analysis 

Inspection of proposed changes.  
Regression test 

Loss of correct functions over 
several upgrades;  
Reversion to defect from at least 
two version back  

Configuration management. 
Change impact analysis 

Traceability analysis. 
Verification against original 
specifications. Interface test. 

 
 
For configuration management (CM), that is, keeping all artifacts correctly associated 
with the appropriate version of the system, several problems may have been due to the 
incorrect exercise of CM procedures.  Others may have been prevented simply by using 
CM. The use of tools to manage the software versions would be helpful. In some cases, 
the problems stem not from improper software versions, but from selecting a software 
program that is not compatible with the hardware. This is also a problem of requirement 
specification; once hardware and software configurations are selected, the assumptions 
about each component need to be recorded as part of the CM history.  Some examples for 
for CM appear in Table 4. 
 

Table 4 Example problems for CM 
Generic fault Prevention Detection 
Incorrect configuration for non-
domestic systems 

Use of CM tools. 
 

Verify usage of CM tools for all 
changes. Verify configuration  
for non-domestic use. 

Software incompatible with other 
components 

Record assumptions about all 
components, in the CM data 

Inspection of requirements for 
component interfaces. CM 
approval for configuring system 
components 

Failure to upgrade accompanying 
system, to match software 
changes 

Traceability analysis. CM tools. Verification of changes; 
regression test. 

Use of wrong master program 
when making software revision 
 

Use of CM tools. Verification of appropriate 
master program. CM manager 
releases the versions. 

 
 
Problems in software programs can arise from input data. Data requirements for a 
program must be specified, entered in a data dictionary, and validated before the 
operation using the data is executed. The specification includes information such as units, 
acceptable range of values, the expected quantity or frequency with which values will 
change. The specification is published in the data dictionary of the database and in user 
instructions, emphasizing values that could cause program stoppage if they are out of 
range. Of course, the program itself may address some potential problems by containing 



    

  

assertions for input values or input omission, with actions to take when data are incorrect 
or missing.  When a program is fielded, data in a database should be protected against 
database corruption.  The software should facilitate an error-handling package to detect 
database corruption.  Table 5 provides examples for data. : 
 

Table 5. Some examples for data 
Generic Problem Prevention Detection 
System failed due to invalid 
input data 
 
 
 

Assertions for invalid values, 
checks for ranges that imply 
incorrect data. Design: set criteria 
of input data validation.  Code: 
implementation of input data 
validation. 

Review for completeness of data 
specification, and that all data 
specifications are included in the user 
instructions. 
Inspection: focus on data validation.  
Test against invalid data. 

Inconsistency of  data 
retrieved from database and 
that expected by the 
program  

Assertions on validity of data 
retrieved from database.  

Testing focused on data retrieval . 
 

Database corruption 
 

Database administration. Error handling routine in software. 

 
The fault tolerance category relates to safety-critical systems that should include facilities 
to handle abnormal or anomalous conditions.   Fault tolerance examples appear in Table 
6.  
 

Table 6 Fault tolerance examples 
Generic Problem Prevention Detection 
Excessive use of the 
program causes failure 

Fault tolerance such as warnings 
to operators. 

Stress/ volume test.  Testing against 
boundary and abnormal conditions.  

Incorrect action due to 
external abnormal/ 
unexpected condition 
related to power supply or 
other components  

Fault tolerance. Software cannot 
control abnormal condition 
external to it, but can provide a 
procedure in that event. 
Requirement needs to be written 
for FT. 

Test against boundary, abnormal, and 
special  conditions.  Exception 
handling routine in software. 

Incorrect action due to 
operator error 

Fault tolerance in design through 
code to protect against human 
error.    

Inspect, review for protection against 
operator error. Test against 
unacceptable data entry. 

 
Initialization is essential for enabling programs either to begin or to perform more than 
one cycle of a function. Default values for variables are a necessity, and likewise, re-
initialization of a variable must be established.  Explicitly documenting initial conditions 
in requirements through the code is essential. Code reviews and code reading need to 
focus not on whether initialization is specified, but specified according to good 
programming practices. Examples for initialization appear in Table 7 
 

Table 7. Examples for initialization 
Generic Problem Prevention Detection 
Lack of initialization of the 
runtime environment while the 
program initially executes or 
restarts 

Use assertions for initialization. 
For C or C++, see 
http://hissa.ncsl.nist.gov/effProjec
t/handbook/c++/variables.htm 

Inspections; Code review.  Test 
against initial conditions.  
 

When the program executes  first 
time, it fails to store necessary 
initialization values for the 

Document initial conditions for 
both initial run and consecutive 
run. Design review.    

Code review.  Stress test (run 
the program multiple times).  



    

  

succeeding run.  

 
In a system, interfaces allow software to send and receive data (that is, interface) to 
physical components of the system, as well to other software modules and to users.  
Clearly, the requirement specification must be accurate, complete, and consistent.  A 
traceability scheme provides a basis for ensuring that all interfaces are addressed and 
included correctly. A well-developed test plan for integration testing must be executed to 
verify the interfaces between devices or software components.  Table 8 provides 
examples for interface.  
 

Table 8. Examples for interface 
Generic Problem Prevention Detection 
Software does not properly 
interface with external device or 
other software component. 

Trace requirements through 
design through code to ensure all 
software functions have interfaces 
to either another software module 
or to an output device or other 
system component or user. 
Examine the specification for 
each interface.   

Inspections, reviews 
Integration test. 
 

 
Logic problems appear to be significant. While some failures of the devices did result 
from bad logic, the "bad" logic might have resulted from incorrect, incomplete, or 
inconsistent requirements or designs. Frequently, interactions among different functions 
might not have been considered at all or might have been neglected at boundary 
conditions of a function. Sometimes the logic might have been incorrect in the design.  
All of these were classified as logic problems, but it should be understood that the source 
of the problem could have been requirements, design, or code. Two examples include 1) 
"When power lost and then restored, system defaults to off status, which causes false 
information to operator and possible hazard to the operator " and 2) "When a second 
cartridge is in the other slot and detects an artifact condition, the monitor is prevented 
from alarming below set levels."  Table 9 provides examples for logic.  
 
 

Table 9 Examples for logic 
Incomplete or incorrect control 
logic 

Design review. Walk through the 
software implementation against 
design. 

Code Review. Inspection. 
Testing. 

Configuration scheme for 
component interaction allows 
incorrect behavior.  

Modeling.  Simulation. Formal 
methods. 

Code review. Interface 
analysis. Integration test. 
System test. 
 

Improper handling of boundary 
conditions. (e.g. limits of value 
range)  

Design review. Verify logic for 
all conditions, esp. at boundaries. 
Fault tolerance. Code review. 

Code review.  Inspection; Test 
against boundary and 
abnormal conditions.                  

Improperly handle abnormal or 
exceptional (e.g. power lost, 
multiple inoperative conditions 
occurred, I/O interrupt, I/O error)  

Design review.  Assertion. Fault 
tolerance.  Review error recovery 
routines.  Code review. 

Code review.  Inspection; Test 
against abnormal and 
exceptional conditions.  

Improper data validation.  (e.g. 
input or output data out of range)  
 

Design review. Walk through the 
software implementation against 
design.  Verify logic for data out 
of limits. 

Code review.  Inspection; Test 
against I/O boundary 
conditions. 



    

  

Programming error (e.g. error in 
pointer, addressing, looping, 
indexing, subscript, memory 
management) 

Low level design review.  Code 
review. 

Code review.  Unit test. 

 
 
The class omission indicates a required system function that is missing from the final 
implementation. Documentation provided is missing or not sufficient to install or operate 
the product. Two examples for omission are shown in Table 10. 
 

Table 10.  Examples of omission faults 
Vital system functions are 
missing 

Trace requirements through 
design through code, focus on all 
interfaces. Trace into user and test 
documentation.  Use critical path 
analysis to ensure completion. 
Prepare system test scenarios at 
requirements specification and 
examine them for relationship to 
trace through code.  

Inspections, reviews examining 
traceability of functions. 
System Test. 

Lack of documentation, or 
improper documentation. 

Proper release procedure.  
Traceability.  

Verify completeness by 
examining trace. Inspection. 

 
Other faults too low in frequency to be classified separately include problems such as 
performance issues, I/O problems, typographical errors. Other types of faults appear in 
Table 11.  
 

Table 11. Other types of faults 
Generic Problem Prevention Detection 
Out of compliance with the 
performance standard. 

Simulation. Design review.  Code 
review. 

Performance test. 
 

Calculations associated with the 
"%" activity curve have been 
printed incorrectly.  Formatting 
subroutine for screen display. 

Code review: review special I/O 
routine.  Understand the 
hardware/software requirements 
of the display system.  

Unit testing with focus on 
verifying output against internal 
calculations. 

A typographic error in software 
algorithm causes incompatibility 
between two devices. 

Code reading against algorithm 
specifications. 

Walkthrough focused on 
algorithms. Testing. 

 
The role of quality assurance (QA) is to ensure that quality practices are defined in 
company standards and that they are used. Procedures are necessary for validation after 
modifications. The problems described in the recall data often cite that process checks 
were not made on the testing process and that testing was not performed after 
modifications. The problem descriptions do not reveal whether procedures for testing or 
other quality practices had been defined.  Change impact analysis is a key task to ensure 
appropriate tests after modifications.  While QA is not a fault type, it is a process problem 
whose use might have prevented some of the failures.  For this category, prevention 
techniques refer to discovering problems with QA. The responsibility for quality belongs 
to everyone on the project.   QA examples appear in Table 12. 
 

Table 12. Examples for QA 
Generic Problem  Prevention Detection 
Test plan was not implemented or Software project management Project status review. 



    

  

executed appropriately.   oversight.  QA process checks. 
Regression test was not 
performed on modified software.   

Software project management 
oversight.  
Change impact analysis.  

Project status review. 
QA process checks. 
 

No validation before initial 
release.   
 

Specified procedures regarding 
testing before product release. 
Software project management 
oversight.  

Project status review. 
QA process checks. 
 

No validation on software 
changes.  

Software project management.  Project status review. 
QA process checks. 

 
Some faults, such as omission, logic, and calculation, may have their genesis in the 
requirements specification. This  category demonstrates the need to develop, verify and 
validate a requirement specification, in some cases uses formal methods. The document 
specifying the product requirements is critical to the completeness and correctness of the 
software of the final product.  The review of the requirements may require experts with 
different types of expertise to ensure that the requirements call for the right functions, 
appropriate algorithms, correct interfaces, function interaction, and other aspects.  
Examples for requirements appear in Table 13.  
 
 
 

Table 13. Examples of requirements faults 
Exceptional conditions were not 
specified in the requirement 
specification.  

Modeling. Analysis. Traceability Interface analysis. 
Requirement review. System 
test.  

Functions missing in the 
requirement specification. 
 

Modeling. Analysis. Traceability.  Interface analysis. 
Requirement review.         
System test.  

Requirement specification was 
incorrect for its usage with other 
components. 

Modeling. Interface Analysis. 
Traceability.  

Requirement review.  Interface 
analysis. 
Design review. 
System test.  

Test hooks or monitors were not 
specified 

Requirement review.  Design 
review. 

Integration, system test.              

 
Timing, or synchronization, is vital to the execution of real-time applications. Examples 
for timing appear in Table 14. 
 

Table 14. Examples for timing 
Generic Problem Prevention Detection 
Two inter-react processes are out 
of time synch with one another  

Simulation. Design review.  Code 
review.      

Timing analysis. Integration 
test. 
 

Real time clock was not accurate.   
 

High quality real time operating 
system. Fault tolerance 

Timing analysis. System test. 
 

Scheduled event did not occur 
due to timer failure.  
 

High quality real time operating 
system. Fault tolerance 

Timing analysis. System test. 
 

 
 
4 Lessons Learned  
 



    

  

The information about the software faults that caused these system failures provides 
valuable lessons and affirmation of quality practices. These concern development 
procedures, assurance practices during development & maintenance activities, and testing 
or assurance strategies. Methods to prevent and detect faults should focus on logic and 
calculation errors. For logic, methods should address improved handling of various 
conditions, assumptions, and interactions among functions. Attention must be given to the 
details of calculations, such as verifying that the correct algorithm has been specified in 
the first place or that the programmed operators and increments are correct. The lessons 
addressed below are based on problems that were observed in this study, that is, they 
stood out as prevalent problems for this set of data and are related to the faults indicated 
in the fault tables in Section 3. Therefore the practices suggested in this paper will likely 
vary in other domains. Studies of other domains may provide a variation of the lessons 
learned here along with a roadmap for selecting the best quality strategy within a 
company or domain from more general guidance on quality practices. Other guidance 
discussing general good practices on software development and assurance includes the 
Capability Maturity Model, and NIST documents on life cycle development and 
assurance, and verification and validation [4], [7],  [8]. 
 
 
4.1 Development & Maintenance 
 
While software development processes are already well defined by such models as the 
CMM, this study indicates particular practices which would help prevent the faults that 
led to these specific failures.   For example, training in the characteristics of the computer 
on which the device will reside might have prevented some of the computation errors 
concerning registers. Training in the application domain concerning how the outputs of 
functions interact and will be used by the operator might have prevented wrong interval 
size which produced unusable charts.   Attention to details, that is, checking and verifying 
one’s work as related to the specifications for that work, might have prevented several 
problems. A member of the software team with experience in the application domain may 
have caught several problems. Many logic faults stemmed from misunderstanding of how 
various functions interact, that is, under certain conditions, and in some cases, that they 
would interact at all.  A traceability map, used regularly, can identify inconsistencies or 
incompleteness.  The following list highlights some of the practices recommended for 
development and maintenance tasks:  
• Complete specification of requirements, with emphasis on conditions and interactions 
of  functions.  Formal methods may be considered for highly complex systems. 
• Traceability of the development artifacts: requirements to design (high, low levels) to 
code  to user documentation and to all test documentation, especially location of source of 
faults. The analysis should be conducted forward and backward. 
• Traceability and configuration management of all changes to the product as result of 
any assurance activities 
• Software configuration management 
• Change impact analysis 
• Expertise in the application domain by at least one person involved with quality 
practices such as requirements analysis, inspections, testing 



    

  

• Daily attention to details of the current process, the mapping to results of the 
previous process,  and personal reviews of one’s work. 
• Training. 
 
4.2 Assurance Practices 
 
The quality of software is the responsibility of everyone involved in its development.  
Practices listed above for development and maintenance are a few enabling factors in 
establishing an environment in which this responsibility is recognized.  Other tasks fall 
into the category of quality assurance, but may be performed by the persons engaged in 
development of the software artifacts or by those separated organizationally under some 
quality assurance name. Every artifact of development processes needs to be scrutinized. 
The list of techniques supporting this scrutiny is long, and again, published elsewhere.  
Instead we focus on the few techniques whose value is indicated by the faults causing the 
failures of these devices.   The inspection technique, as per Glass [6], can be perceived as 
a variety of techniques that examine artifacts, ranging from requirements to design to 
code to test cases. Such techniques may include code reading, formal inspection meetings, 
review by programmer using various analytic techniques, and focused inspections.  Porter 
and Votta describe scenario-based inspections in which participants looked for certain 
classes of errors [9].  To focus on a class of errors, the inspectors need to have some idea 
of the prevalent classes of errors of the product they are examining.  The following list 
summarizes these suggestions:  
 
• Focused review, inspection of the artifact against the types of faults characteristic of 
the domain, and the vendor’s history 
• Traceability analysis, especially focused on completeness 
• Mental execution of potentially troublesome locations (e.g., an algorithm, a loop, an 
interface) 
• Code reading 
• Recording of fault information from the assurance activities and better usage of this 
information  
• Recording, during development and quality assurance activities, of the symptoms that 
indicated there are faults  
• Checklists, questions, methods designed to force those symptoms to manifest 
themselves 
• Formal or informal proof of algorithm correctness 
• Use of simulation in complex situations where several interactions may occur, 
especially involving several components of the system.  
 
 
4.3 Testing 
 
How thorough was the testing applied to the devices that were recalled?  One way to 
study this question is to look at what conditions are required to trigger the faults that 
remained after release. That is, is the fault manifested in a single condition, or two or 
more conditions? Some of the failures (109 out of the complete set of 342) contained 
sufficient detail to determine what level of testing would be required to detect the fault.  



    

  

For example, one problem report said that “if device is used with old electrodes, an error 
message will display, instead of an equipment alert.”  In this case, testing the device with 
old electrodes would have detected the problem.   Another indicated that “upper limit 
CO2 alarm can be manually set above upper limit without alarm sounding.”  Again, a 
single test input that exceeded the upper limit would have detected the fault.   
 
Other problems were not so easily manifested.  One noted that “if a bolus delivery is 
made while pumps are operating in the body weight mode, the middle LCD fails to 
display a continual update.”  In this case, detection would have required a test with the 
particular pair of conditions that caused the failure: bolus delivery while in body weight 
mode. One vendor’s description of a failure manifested on a particular pair of conditions 
was “the ventilator could fail when the altitude adjustment feature was set on 0 meters and 
the total flow volume was set at a delivery rate of less than 2.2 liters per minute.”3 
Only three of 109 failures indicated that more than two conditions were required to cause 
the failure. The most complex of these involved four conditions and was presented as “the 
error can occur when demand dose has been given, 31 days have elapsed, pump time 
hasn’t been changed, and battery is charged.” The remaining 233 failures did not contain 
sufficient detail to make a judgment on the number of test conditions required to 
demonstrate a fault; many described the cause as simply “software error.”  It is significant 
however, that of the 109 reports that are detailed, 98 % showed that the problem could 
have been detected by testing the device with all pairs of parameter settings.   
 
Medical devices generally have a relatively small number of input variables, each with 
either a small discrete set of possible settings, or a finite range of values.  Nevertheless, 
testing all possible combinations of settings may not be practical.  For example, consider 
a device that has 20 inputs, each with 10 settings, for a total of 1020 combinations of 
settings.  The few hundred test cases that can be built under most development budgets 
will of course cover less than a tiny fraction of a percent of the possible combinations.  
But the number of pairs of settings is in fact very small, and since each test case must 
have a value for each of the ten variables, more than one pair can be included in a single 
test case.  Algorithms based on orthogonal latin squares are available that can generate 
test data for all pairs (or higher order combinations) at a reasonable cost.  One such 
method makes it possible to cover all pairs of values for this example using only 180 test 
cases[9].   This level of test effort should be practical for most devices in the categories 
reviewed in this report. 
 
Testing is part of the general quality practices, with unit, integration, and system testing 
all conducted.  The failures in this study indicated specific test strategies might have been 
useful in detecting problems before the systems were delivered.  Many failures were 
recognized by behavior of the system, for example, a part moved unexpectedly, or 
medication was provided at an incorrect rate. Most of these resulted from logic faults, so 
test cases in complex systems should attempt to drive these symptoms to appear.  In some 
cases, the systems were updated versions, so previous test histories may also have been 
helpful.  The list summarizes these points: 

                                                 
3  The policy of the National Institute of Standards and Technology is to use metric units of measurement in all 
its technical papers. In this document however, works of authors outside NIST are cited which describe 
measurement values in certain non-metric units, and it is not appropriate to provide converted values. 



    

  

 
• Test cases aimed at manifesting prevalent symptoms observed  by device operators 
• Stress testing 
• Change impact analysis and regression testing 
• SCM release of versions only with evidence of change impact analysis, regression 
        testing; validation of changes 
• Integration testing focused on interface values under varying conditions  
• System testing under various environmental circumstances, with some conditions, 
        input data incorrect or different from expected environmental conditions 
• Recording of test results, with special recording of all failures and their resolution,   
       by  failure and symptom of the system, and by fault type of the software. 
 
 
5. Conclusions 
 
This study yielded information affirming use of quality practices and identifying 
approaches for using fault and failure information to improve development and assurance 
practices. The nature of several faults indicates that known practices may not be used at 
all or may be misused. An important conclusion is that the use of many generally accepted 
quality practices, rather than use of a "silver bullet" is significant toward reduction of 
system failures.  Questions remain for further research: 
• If the practices were not used, what can be done to make them more readily usable? 
• If the practices were used, why did they fail to prevent or detect the fault?  
• What methods not yet generally accepted may help to prevent some faults and  
        subsequent failures? 
 
The analysis in this study demonstrates that different application domains may have 
different prevalent fault classes and different characteristic failure symptoms. Suggestions 
for improvement of assurance practices include: 
• gathering failure and fault data,  
• understanding the types of faults that are prevalent for a specific domain, and, 
• developing prevention and detection approaches specific to these.   
 
The subject of this study, failures of medical devices, is dealing with a relatively young 
industry, often new to adding microprocessors to devices4.  As experience with software 
development and complexity of the software grow, the prevalent fault classes may 
change. In domains with a long history of software, the classes may also differ.  In newer 
applications such as Electronic Commerce, which rely on newer technologies, operating 
systems, and languages, we would anticipate perhaps new fault classes for the domains as 
well as for the underlying software technologies.  Data collection and analysis can help to 
identify the most prevalent faults and the areas where better methods are needed to 
prevent and detect them before system delivery.  
 

                                                 
4A medical device manufacturer adding software to a device for the first time called one author during 
preparation of this paper. 



    

  

This paper has shown that valuable lessons can be learned from system failures involving 
software. Some lessons may apply specifically to the application domain of study while 
some apply universally. It is important to continue this research on failures using modern 
technologies in various domains. The authors may be contacted by anyone willing to 
supply data.  
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