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Abstract- Combinatorial testing has attracted a lot of 

attention from both industry and academia. A number of 

reports suggest that combinatorial testing can be effective 

for practical applications. However, there are few 

systematic, controlled studies on the effectiveness of 

combinatorial testing. In particular, input parameter 

modeling is a key step in the combinatorial testing process. 

But most studies do not report the details of the modeling 

process. In this paper, we report an experiment that applies 

combinatorial testing to the Siemens suite. The Siemens suite 

has been used as a benchmark to evaluate the effectiveness 

of many testing techniques. Each program in the suite has a 

number of faulty versions. The effectiveness of 

combinatorial testing is measured in terms of the number of 

faulty versions that are detected. The experimental results 

show that combinatorial testing is effective in terms of 

detecting most of the faulty versions with a small number of 

tests. In addition, we report the details of our modeling 

process, which we hope to shed some lights on this critical, 

yet often ignored step, in the combinatorial testing process.  

Keywords- Combinatorial Testing, Input Modeling, 

Software Testing. 

I. INTRODUCTION 

Combinatorial testing has attracted a lot of attention 
from researchers. The key observation in combinatorial 
testing is that most software failures are caused by 
interactions of only a few input parameters. A t-way 
combinatorial test set is built to cover all the t-way 
interactions, where t is typically a small integer ‎[10]‎[5]. If 
test parameters and values are properly modeled, a t-way 
test set is able to expose all failures that involve no more 
than t parameters. 

A number of empirical reports suggest that 
combinatorial testing can be effective for practical 
applications ‎[1]‎[2]‎[6]. Most studies in these reports were 
designed to show that combinatorial testing could be 
applied to different types of applications. Thus, they were 
not controlled studies for evaluating the effectiveness of 
combinatorial testing. There are two notable exceptions. 
Kuhn et al. studied several fault databases and found that 
all the faults in these databases are caused by interaction 
of no more than six parameters ‎[8]‎[9]. These studies did 
not perform actual combinatorial testing on the subject 
systems. Schroeder et al. compared the effectiveness of t-
way testing to random testing in a controlled study ‎[13]. 
They selected two software applications used in their 
laboratory as subject programs, and manually seeded a 
number of faults to measure fault detection effectiveness.  

In this paper, we report an experiment that applies 
combinatorial testing to the Siemens suite ‎[16]. The 
Siemens suite has been used as a benchmark to evaluate 
the effectiveness of many testing techniques ‎[2]‎[6] ‎[17]. 
Each program in the suite has a number of faulty versions. 
The effectiveness of combinatorial testing is measured in 
terms of the number of faulty versions that are detected. 
The results show that most of the faulty versions are 
detected by a small number of test cases. For example, all 
32 faulty versions of replace program are detected by a 2-
way test set containing only 192 tests. Furthermore, the 
results show that combinatorial testing is more effective 
than random testing.  

We also report the details of our modeling process, 
which is a critical, yet often ignored step in the 
combinatorial testing process. Our approach consists of 
three main steps. First we create an abstract model for the 
system. This model consists of abstract parameters and 
values. On the one hand, abstraction reduces the modeling 
complexity that has to be managed at one time. On the 
other hand, abstraction helps to discover aspects that need 
to be tested. Second we generate a combinatorial test set 
based on the abstract model. Existing combinatorial test 
generation tools such as ACTS ‎[1] can be used in this step. 
Third, we derive concrete tests from the abstract tests. 
These concrete tests are then used to perform the actual 
testing.  

It is important to note that whereas the programs in the 
Siemens suite are relatively small, in terms of lines of 
code, and have a small number of input parameters, their 
input spaces are complex. For example, replace has 564 
lines of code and 3 input parameters. However, its 
abstract model contains 20 abstract parameters and 36 
constraints. The input parameters have different features 
and characteristics that must be considered for testing, 
e.g. one of the input parameters is a regular expression.   

The remainder of this paper is organized as follows. In 
section II, we describe our approach for applying 
combinatorial testing. Section III reports experimental 
results that demonstrate the effectiveness of our modeling. 
Section IV discusses existing work on input space 
modeling. Section V provides concluding remarks. 

II. APPROACH 

In this section, we explain our approach to apply 
combinatorial testing. The approach consists of three 
major steps: (1) Create an abstract model, (2) Generate an 
abstract test set, and (3) Derive concrete tests. We use the 



replace program in the Siemens suite, to explain each task 
in detail.   

A. Create abstract model 

This step has two major tasks: (1) define abstract 
parameters and values, (2) define relations and constraints.  

1) Define abstract parameters and values 
First, we analyze the system specification and identify 

factors that may affect the behavior of the system. These 
factors are candidates for abstract parameters. The 
equivalence partitioning approach is used to define the 
values of each abstract parameter. 

We use the replace program in the Siemens suite to 
show how we define abstract parameters and values based 
on its specification. The replace program has three inputs, 
pattern, substitute and input text. The program finds every 
match of the pattern in the input text and replaces it with 
the substitute.  

The pattern is a restricted form of regular expression. 
Table I shows the metacharacters that can be used in 
pattern. Note that the @ character can have different 
meanings, depending on the next character. If a character 
other than n and t appears after @, the program ignores it. 
For example, @e matches e. But when @ appears at the 
end of the pattern, the program behave as if it is a simple 
character and matches with @. For example, e@ matches 
e@.  

The substitute is a string that allows only three 
metacharacters to be used. These include two 
metacharacters, @t and @n, as shown in Table I, and a 
metacharacter &, which represents the string that matches 
the pattern. For example, if the string that matches the 
pattern is ab and the substitute is a&c, all ab strings in the 
file are replaced with aabc. 

Table II shows the abstract model of the replace 
program for pattern and substitute. There are a total of 20 
parameters in the model. The parameters with prefix pat 
are identified for pattern, and the parameters with prefix 
sub are identified for substitute. Note that these 
parameters are abstract as they are not the actual input 
parameters taken by the replace program. 

The key modeling decision is twofold. First, each 
metacharacter is identified to be an abstract parameter. 
Our motivation is that the core logic of the replace 
program is dealing with these metacharacters. Thus, we 
consider each metacharacter to be an important factor that 
could affect the program behavior. Special attention is 
paid to metacharacters * and &. These two metacharacters 
can be combined with other meta or regular characters. 
An abstract parameter is identified for each possible 
combination. For example, pat_question* represents the 
combination where a question mark appear before *. 

Second, the values of each abstract parameter (i.e., 
metacharacter) are identified based two considerations. 
The first consideration is whether or not a parameter 
appears in the pattern (or substitute). Two values, off and 
on, can be used to represent the two cases. The second 
consideration is the following: If a parameter does appear 
in the pattern (or substitute), where does it appear? Thus, 

the on value identified earlier is further divided into three 
abstract values, begin, middle, and end. In Table II, all the 
parameters but four have four values, off, begin, middle, 
and end. The four exceptions, i.e., pat_BOL, pat_EOL, 
pat_@n, and pat_@, only have two values, on and off, 
because they can only appear in a particular position by 
nature. For example, BOL (i.e., %) by definition can only 
appear in the beginning of the pattern. 

Now we discuss how to model the third input 
parameter, i.e., the input text, of the replace program. We 
consider that an input text consists of a sequence of lines. 
The key observation is that a line is relevant from the 
testing perspective only if it contains a match or mismatch 
of the pattern. Assume that the pattern consists of k 
elements. The input text is modeled such that it consists of 
k + 2 lines. The first line matches the pattern. The second 
line matches all the elements but the first in the pattern. 
The third line matches all the elements but the second in 

TABLE II THE ABSTRACT MODEL OF REPLACE 

Parameters Values 

pat_character1 [off, begin, middle, end] 

pat_question2 [off, begin, middle, end] 

pat_range3 [off, begin, middle, end] 

pat_negate4 [off, begin, middle, end] 

pat_@t [off, begin, middle, end] 

pat_@character [off, begin, middle, end] 

pat_question* [off, begin, middle, end] 

pat_character* [off, begin, middle, end] 

pat_range* [off, begin, middle, end] 

pat_negate* [off, begin, middle, end] 

pat_@t* [off, begin, middle, end] 

pat_@character* [off, begin, middle, end] 

pat_BOL5 [off,on] 

pat_EOL6 [off,on] 

pat_@n [off,on] 

pat_@ [off,on] 

sub_character [off, begin, middle, end] 

sub_@n [off, begin, middle, end] 

sub_@character [off, begin, middle, end] 

sub_& [off, begin, middle, end] 
1Regular character 
2? metacharacter 
3[ - ] metacharacter 
4[ ^ ] metacharacter 
5% metacharacter 
6$ metacharacter 

 

TABLE I PATTERN'S METACHARACTER 

Metacharacter Description 

? Matches every character.  

* Matches the preceding pattern element zero or 
more times. 

[ -] Matches a single character that is in the 

specified range. For example [a-c]‎matches‎“a”,‎

“b”‎and‎“c”. 

[^] Matches every character except the ones inside 

brackets. 

@t Matches a tab. 

@n Matches the end of a line. 

% Matches the beginning of a line. (BOL) 

$ Matches the end of a line. (EOL) 

 



the pattern, and so on. The last line does not match any 
element in the pattern. Note that we do not consider cases 
where a mismatch is due to multiple, but not all, of the 
elements in the pattern. This is essentially a trade-off 
made between test effort and test coverage. 

2) Define relations and constraints  
Relations are used to create parameter groups that can 

be covered at different strengths. Furthermore, parameters 
in different groups are independent and thus their 
combinations do not have to be tested. In our 
experiments, we used the default relation where all the 
parameters are considered to be in the same group. In 
retrospect, the parameters for pattern could be put into 
one group and the parameters for substitute in a second 
group. This would allow us to reduce the number of tests.  

Constraints are used to exclude combinations that are 
not valid from the domain semantics. For the replace 
program, a total of 36 constraints are specified. All these 
36 constraints are concerned with the position values of 
different parameters. In particular, in each test, there shall 
be only one parameter that has the value begin or end.  

B. Generate abstract tests 

In this step, an abstract test set is generated using an 
existing combinatorial test generation tool ‎[10]. We used 
the ACTS tool ‎[1]. ACTS can generate a combinatorial 
test set with strength 2 through 6. Note that these tests are 
abstract in that they cannot be directly executed. Instead, 
concrete tests must be derived first, which is discussed 
below.   

C. Derive concrete tests 

A scheme is needed to derive a concrete test from each 
abstract test. Conceptually, such a scheme consists of two 
parts. The first part is to map each abstract value to a 
concrete value. An abstract value is typically identified in 
a way such that it represents an equivalence group, i.e., a 
group of values that are equivalent to each other in terms 
of how they could affect the system behavior. Thus, it is 
sufficient to map an abstract value to any value in its 
equivalence group. For example, in the replace program, 
the abstract value, middle, represents all the positions 
those are neither at the beginning nor at the end. The 
specific position is often not important. 

The second step is to map an abstract test to a concrete 
test. This part builds on the first step. In addition, it needs 
to map abstract parameters to concrete parameters. Recall 
that abstract parameters are identified to represent factors 
that could affect the system behavior. There typically 
does not exist a one-to-one mapping between abstract and 
concrete parameters. In fact, there are often more abstract 
parameters than concrete parameters. For example, for the 
replace program, there exist 20 abstract parameters, which 
need to be mapped to three concrete input parameters. 

As an example, consider the abstract test in Figure 
1(a) and the concrete test in Figure 1(b) for the replace 
program. In this example, the value of pat_BOL is on, so 
“%”‎is‎put‎at‎the‎beginning‎of‎the‎pattern.‎Similar,‎“@n”‎‎ 

is placed at the end of the pattern.  Other parameters, 
whose values are middle, are placed in the middle of the 
pattern. For pat_character, pat_range and pat_negate a, 
[a-e] and [^a] are put in pattern. Similarly, the substitute 
is created based on the corresponding parameter values in 
the abstract test. 

The last row of Figure 1(b) shows different lines in the 
input file. The first line, abef, matches the pattern, since a 
matches with a, b matches with question mark, e matches 
with [a-e] element, and f matches with [^a]. Also, the first 
line matches % at the beginning and @n at the end.  

Each line from line 2 to 7 matches all but one element 
in the pattern.  For example the second line has the exact 
string abef which matches the pattern. However, since it 
is not at the beginning of the line (i.e., there is g at the 
beginning), the first element, %, in the pattern is not 
matched. The third line violates a in the pattern, and so 
on. The last line, i.e., line 8, does not match any element 
in the pattern.  

Note that the scheme used to derive concrete tests from 
abstract tests is often specific to the subject application. 
However, such a scheme typically can be fully automated. 
This is the case for our experiments, where we wrote a 
program for each subject program to automate this 
process.  

III. EXPERIMENT 

We used the Siemens suite as our subject 
programs ‎[16]. The Siemens suite contains 7 programs 
and each of these programs contains a number of faulty 
versions. The Siemens suite also provides an error-free 
version and a test pool for each program. 

Table III represents properties of subject programs. 
The second column shows the number of lines of 
uncommented code. The third column shows the number 

a- Abstract test 

Parameters Values 

pat_character middle 

pat_question middle 

pat_range middle 

pat_negate middle 

pat_@t off 

pat_@character off 

pat_question* off 

pat_character* off 

pat_range* off 

pat_negate* off 

pat_@t* off 

pat_@character* off 

pat_BOL on 

pat_EOL off 

pat_@n on 

pat_@ off 

sub_character begin 

sub_@n end 

sub_@character off 

sub_& middle 

 

b. Concrete test 

Parameters Values 

Pattern %a?[a-e][^a]@n 

Substitute a&@n 

Input file 1. abef 

2. gabef 

3. bef 

4. aef 

5. abf 

6. abe 

7. abefg 

8. gbfag 

 

Figure 1 An Example of Abstract Test and its Concrete Test 



of procedures. The forth column shows the number of 
faulty versions for each program.  

Two programs, printtokens and printtokens2, have the 
same specification but different implementations. Since 
the input space model is independent from the source 
code, these programs share the same model. Similarly, 
two programs schedule and schedule2 have the same 
specification and thus share the same model. Therefore, in 
this section, we present five input models for the Siemens 
suite programs. Note that the input model for tcas is given 
in ‎[8] and is included here for completeness.  

In our experiments, we focus on interaction faults.  As 
a result, our models are not designed for boundary testing 
or invalid testing. We believe most boundary and invalid 
faults are one-way faults, and they can be detected more 
efficiently using a different model where the focus is to 
identify special values of individual parameters. However, 
this belief needs to be validated by more experiments, 
which is beyond the scope of this paper. 

Specifications of the programs are not provided by the 
benchmark. To understand what each program is 
supposed to do, we had to inspect the source code. (A 
search on the Internet did not find any such specification 
either.) To avoid potential bias in developing the model, 
only the source code of the error-free version was used. 
That is, we were not aware of the faults during the 
modeling process. Nonetheless, this is an internal threat to 
validity that needs to be considered.  

We start with 2-way testing, and then move to 3-way 
testing, and so on, until (1) all faulty versions are 
detected; or (2) testing at the current strength does not 
detect any faulty versions that were not detected in testing 
at the previous strength. For example, 2-way testing did 
not detect 2 out of 9 faulty versions of the schedule 
program. So 3-way testing was performed on these 2 
versions, which did not detect any of the two versions. At 
this point, we stopped testing and started to inspect the 
testing results.  

A. Replace  

We explained the modeling details of the replace 
program in the previous section. We applied 2-way 
testing to this program, which had a total of 192 tests. We 
detected all the 32 faulty versions of this program.  

B. Schedule  

Two programs, schedule and schedule2, take the 
following inputs: (1) three non-negative integers 

representing the number of processes in three different 
priority queues, low, medium and high; and (2) a list of 
commands that must be done on queues. The output of 
these two programs is a list of numbers indicating the 
order in which the processes exit (from the scheduling 
system). 

For example, consider the first three input parameters 
which are 3, 2 and 1. Three processes are placed in low 
priority queue, two processes in medium priority queue, 
and one process is high priority queue.  The id is assigned 
to the processes by their priority so the 0 is in the high 
priority queue, 1 and 2 are in medium priority queue and 
3, 4 and 5 are in low priority queue. 

There are seven commands (1) new job: this command 
has one attribute, queue, and adds a new process at the 
specified priority queue. (2) upgrade_prio: it has two 
attributes, queue and ratio. This command promotes a 
process form the specified priority queue to the next 
higher priority queue. The ratio attribute is used to 
determine which process to be promoted. (3) block: this 
command adds the current process to the blocked queue. 
(4) unblock: this command unblocks a process from the 
blocked queue. It has one attribute, ratio, which is used to 
determine which process must be unblocked. (5) 
quantum_expire: this command puts the current process at 
the end of its priority queue. (6) finish: this command 
exits the current process and prints its number. (7) flush: 
this command causes all processes from the priority 
queues to exit in their priority order.  

Two commands, upgrade_prio and unblock, operate 
on the n-th process where               and   
                        .   

In our previous example, if a flush command (7) is 
executed, the output is 0 1 2 3 4 5. But, assume that 
before the flush command, a new job command (1 3) is 
executed, where 1 indicates the new job command and 3 
indicates the high priority queue. This new job command 
adds a process to the high priority queue. The next 
available ID, which is 6, is assigned to the new process 
and the process is placed at the end of the high priority 
queue, i.e. after process 0. Now, if we execute the flush 
command, the output will be 0 6 1 2 3 4 5.  

 

TABLE IV THE ABSTRACT MODEL OF SCHEDULE 

Parameters Values 

new_process [0, 1, >1] 

new_proc_queue [low, mid, high] 

upgrade_prio [0, 1, >1] 

upgrade_queue [low, mid] 

upgrade_ratio [0, 1, >1, {r}=0.1, {r}=0.4,  {r}=0.5, {r}=0.6, 

{r}=0.9] 

block [0, 1, >1] 

unblock [0, 1, >1] 

unblock_ratio [0, 1, >1, {r}=0.1, {r}=0.4,  {r}=0.5, {r}=0.6, 

{r}=0.9] 

quantum_expire [0, 1, >1] 

finish [0, 1, >1] 

flush [0, 1, >1] 

 

TABLE III SUBJECT PROGRAMS 

Program LOC Procedures #Faulty Versions 

print_tokens 726 20 7 

print_tokens2 570 21 10 

replace 564 21 32 

schedule 412 18 9 

schedule2 374 16 10 

tcas 173 8 41 

totinfo 565 16 23 

 



Table IV shows the input model of the two schedule 
programs. Commands and their attributes are modeled as 
parameters. Each command parameter has three values, 0, 
1 and >1, where 0 means that this command does not 
appear, 1 means that this command appears once, and >1 
means that this command appears more than once. The 
priority attribute of the new job command could be one of 
the three possible queues. But the attribute of 
upgrade_prio could be either low or mid. (Processes in 
the high priority queue cannot upgrade.)  

Two commands unblock and upgrade_prio are 
affected by the length of the queues, they select a process 
based on queue’s‎ length‎ and‎ ratio.‎For‎ these‎ commands,‎
first, we test if the ratio equals to 0, 1, or >1. Then we 
check that if the number after floating point in   
                         is 1, 4, 5, 6 or 9. These 
numbers are selected to cover upper limit (9), lower limit 
(1) and middle of the range (5), and also two numbers (4 
and 6) around the middle.  

A C++ program was written to create the file that 
contains commands based on abstract tests. For the initial 
length of the queues, we randomly selected 60. We fixed 
>1 values to 2, i.e. if the value of a command is >1, the 
command appears twice in the file. 

Performing 2-way testing detected 7 out of 9 versions 
of the schedule and 3 out of 10 versions of the shedule2. 
In total, 9 versions were not detected. Performing 3-way 
testing did not detect any more versions. We investigated 
all versions that were not detected, 8 out of 9 (version 9 of 
the schedule and 7 versions, 1, 4, 5, 6, 8, 9 and 10, of the 
schedule2) can be detected by invalid testing, which as 
mentioned is not the focus of our study. 

For example, version 10 of the schedule2 was detected 
by a test case which contains new_process or 
upgrade_prio commands with invalid value for the queue 
attribute (new_proc_queue or upgrade_queue parameter).  

Version 8 of the schedule is the only version that was 
not detected and could not be detected by invalid testing. 
This version could be detected only when two upgrade 
commands, one block command, and one unblock 
command are executed consecutively on one process. 

The following example will reveal the bug:  
./schedule 2 2 0 <file.txt 
There are 4 processes, 0 to 3, two of which, 0 and 1, 

are in the mid priority queue, and the other two, 2 and 3, 
are in the low priority queue. The high priority queue is 
empty. Figure 1Figure 2 shows the file that contains 5 
commands. The comments explain the state of the system 
after each command is executed.  

In the schedule program, each process keeps the id of 
the queue to which it belongs. The faulty code in the 
version 8 does not change the queue id of the process 
after the upgrade command (lines #1 and #2). Thus when 
the process is unblocked (line #4), it is assigned to the 
wrong queue.  

We did not detect this version, because our approach, 
at this point, does not generate test sequences. 
Combinatorial test sequence generation is a subject that 
we plan to study in the future.   

 

C. tcas 

This program was previously modeled by Kuhn et al. 
in ‎[8] ‎[9], based on the specification in ‎[11]. The tcas 
program is an aircraft collision avoidance system, and it 
takes 12 numbers as input and generates as output one 
number, which can be 0, 1 and 2. 

Table V shows the input model of the tcas program. 
Some input parameters, e.g., high_confidence, 
two_of_three_reports_valid, and climb_inhibit, are 
boolean values, 0 and 1. Some input parameters, like 
alt_layer_value, are of enum type and have a set of 
specific values. For the other parameters, the values are 
identified by analyzing the code and by equivalence 
partitioning. Note that the input space of this program is 
not complex, and thus an abstract model is not needed.  

According to ‎[8] all 41 faulty versions of tcas are 
detected by the model. The maximum strength to detect 
all versions is six; we also got the same results.  

As discussed in Section F, all faulty versions of the 
tcas program were detected by 6-way testing. However, 
the degree of fault is actually more than 6 in all faulty 
versions. Thus, these faulty versions were actually 
detected by higher strength combinations that happen to 
appear in a 6-way testing. 

D. Totinfo 

This program takes as input a file containing one or 
more tables. The program uses the notions of chi-square 
and degree of freedom to calculate whether the 
distribution of the numbers in these tables is logarithm-

TABLE V THE ABSTRACT MODEL OF TCAS 

Parameters Values 

cur_vertical_sep [299,300, 601] 

high_confidence [0, 1] 

two_of_three_reports_valid [0, 1] 

own_tracked_alt [1, 2] 

own_tracked_alt_rate [600, 601] 

other_tracked_alt [1, 2] 

alt_layer_value [0,1, 2, 3] 

up_separation [0, 399, 400, 499, 500, 639, 640, 

739, 740, 840] 

down_separation [0, 399, 400, 499, 500, 639, 640, 
739, 740, 840] 

other_rac [0, 1, 2] 

other_capability [1, 2] 

climb_inhibit [0, 1] 

 

 

 

Figure 2 File Example to Detect v8 of schedule 

 



gamma distribution. The output is the total degree of 
freedom of rows and columns and chi-square. 

We focused on the correctness of the syntax of input 
parameters instead of the mathematical aspect of the 
program. The reason is that the logic of the program is 
very complex and is difficult to understand due to a lack 
of specification.  

We identified a total of 6 parameters related to the 
syntax input of the program. Parameter # of tables can be 
0, 1 or more than one. The maximum number of members 
in a table is 1000. We set the maximum number of rows 
and columns to 500 and the minimum number of rows 
and columns to 1. Thus, parameters # of rows and # of 
columns have three values, 1, between 2 and 499, and 
500. 

Parameter tbl_attr is identified to define general 
attributes‎for‎tables’‎elements.‎One‎important‎attribute‎for‎
the table elements is sign, they can be positive, negative, 
zero, or mix. The number of elements is another attribute 
we identified for tbl_attr. The number of the elements in a 
table defined by                      ; we added 
sufficient, more than and less than enough values to check 
that whether the number of elements in the table is 
consistent with                       .  

The option parameter models the position in which a 
comment appears. The maxline parameter defines the 
maximum number of lines in the input file.  

A program was written to generate the input tables 
from the abstract tests. 2-way testing detected 5 out of 23 
versions. 3-way testing detected 7 more versions, but 4-
way testing did not detect any new version. So, totally 12 
out of 23 versions were detected. We investigated the 11 
versions which were not detected by the model. All of 
these versions have faults related to the mathematical 
aspects of the program, which is out of our testing 
scope.

 

E. Printtokens Model 

The goal of the two programs, printtokens and 
printtokens2, is tokenizing the input file and determining 
the type of each token. Token could have one of these 
types: identifier, special, keyword, number, comment, 
character constant or string constant.  

 Keyword type includes and, or, if, xor, and lambda.  
Special type includes lparen, rparen, lsquare, rsquare, 
quote, bquote, comma and equalgreater. Comment is 
started with semicolon and ended when a new line 
character is seen. String constant is confined in two 
double quotations. Character is a token started with #.  

To model the system, we divided it into seven 
subsystems: keyword, special, identifier, number, 
comment, character and string. By this classification each 
token type was tested independently from the others. We 
assumed that the program analyzes each token 
independent from previous and next token, i.e. the type of 
the previous or next token does not affect on the 
analyzing the current token.     

Each subsystem has 3 parameters, value, position and 
number of lines. Keyword model is shown in Table VII, 
as an example. The kyw_value parameter covers all 
possible values for keyword (corresponding token type in 
general). An important property for each token type is 
position, depends on different position of token type the 
program may behave differently. So for each token type 
the position property with three values, begin, middle and 
end, is added to the model. The last parameter, # of lines, 
checks the behavior of the system when the input file has 
a single line or multiple lines.  

The possible values for some token types, such as 
keyword and special are explicitly defined in the program 
specification. But for the others such as identifier, the 
features and characteristic of its values are described in 
the specification. For each token type, identifier, number, 
comment, character and string, we designed an abstract 
model to define their values. Then after the possible 
values were defined in the next level they have the same 
model as keyword. We explain the model of values for 
three subsystems identifier, number and comment in more 
details. 
 

 

TABLE VII  THE ABSTRACT MODEL OF KEYWORD 

Parameters Values 

kyw_value [and, or, xor, if, lambda] 

position [ begin, middle, end] 

# of lines [1, >1] 

 

TABLE VIII THE ABSTRACT MODEL OF IDENTIFIER VALUES 

Parameters Values 

lowercase [off, on] 

uppercase [off, on] 

number [off, on] 

keyword [off, on] 

whitespace [Space, tab] 

 

TABLE VI THE ABSTRACT MODEL OF TOTINFO 

Parameters Values 

#of tables [0, 1, >1] 

#of rows [1, between 2 and 499, 500] 

#of columns [1, between 2 and 499, 500] 

tbl_attr 

[sufficient number positive1, sufficient number 
negative2, sufficient number mix3, sufficient 

number equal 04, more than enough5, less than 

enough6] 

options [normal, row & column in 2 lines, comment at 
the beginning, comment in the middle, comment 

at the end] 

maxline [1, Between 2and 254, 255, 256, 257] 
1There are                       positive numbers in the input 
file. 
2There are                       negative numbers in the input 

file. 
3There are                       positive and negative number 

in the input file. 
4There are                       zero in the input file. 
5There are less than                       numbers in the input 
file. 
6There are more than                       numbers in the 
input file. 

 

 



 
Identifier has different feature such as having 

uppercase, lowercase, keyword or numbers, a model is 
designed to cover all features of identifier values (Table 
VIII) .These features are parameters with two values off 
and on, to show weather an identifier contains the 
parameter or not.   The   whitespace parameter determines 
whether an identifier separate from next token by space or 
tab. Note that we add a constraint to prevent having null 
identifier. For 2-way test generation, we generate 2-way 
test set for identifier values model first. The number of 
tests is 7. Then, we put these seven tests as values in the 
value parameter of the identifier model, and generate 2-
way test set for identifier.  

For the number model, the characteristics of the 
number are the number of digit and having zero at the 
beginning of it. So its model has 2 parameters, Table IX. 
Note that sign and decimal point do not support by the 
printtokes programs.  

The comment model is shown  
Table X. We check the behavior of the system when 

each token type appears as a comment. Also, whitespace 
parameter determines if a comment separate from next 
token by space or tab, what would be the behavior of the 
system. The models of sting and character values are the 
same as comment.   

The 2-way testing detected 2 out of seven versions of 
the printtokens and nine versions out of 10 versions of the 
printtokens2. Note that 2-way test set has only 141 tests.  

The programs were tested by 3-way testing, but no 
new version was detected. So we stopped testing and 
investigated versions which were not detected. Five 
versions out of six can be detected by invalid testing. For 
example, in versions 6 of the printtokens, the failure 
happen when the number of tokens in the input file 
exceeds the defined value. The second version of the 
printtokens is not detected by invalid testing. The fault in 
this version is adding code. The adding code is reached 
when there is a i token in the input file.  

F. Discussion 

After testing programs using the combinatorial 
technique, we investigated the faults detected by our 

model to ensure that the fault is caused by the interaction 
between input parameters. In order to do that we 
introduce the notion of degree of fault or fault strength 
which is defined to be the minimum number of 
parameters that must be involved to trigger the fault.  

As a t-way test set contains all t-way combinations, it 
is guaranteed to detect a faulty version if the strength of 
the fault does not exceed t. But it is also possible that a t-
way test set detects a version whose degree of fault is 
higher than t. This is because the test set may contain the 
inducing combination (in which more than t parameters 
are involved) by chance.   

In Table XI, we classified the degree of fault for all 
detected versions. For example, in the schedule program, 
the model detected a total of 7 versions. The fault strength 
in five of these versions is 2. In the two remaining 
versions, one of them is 3 and another one is 4.  

To define the degree of fault, we used the concept of 
inducing combination. An inducing combination is a 
combination of parameter values such that all test cases 
containing this combination fail. The length of the 
minimum inducing combination shows the degree of 
fault. 

We used a tool called BEN ‎[3] to find minimum 
inducing combinations. BEN takes a t-way test set as 
input and generates a ranking of t-way combinations 
based on their likelihood to be inducing combinations. 
BEN has been shown very effective in identifying 
inducing combinations ‎[3]. However, BEN is heuristic by 
nature and thus does not guarantee to always find 
minimum inducing combinations. This should be taken 
into account when reading the results in Table XI. We are 
not aware of any method that can precisely determine the 
degree of a fault. 

For example seven versions of schedule are detected 
by 2-way test sets. BEN finds an inducing combination 
for five of them, so the degree of fault is 2 for these 
versions. For the two other versions BEN did not find an 
inducing combination, we used a 3-way test set. BEN 
finds an inducing combination for one of them. We then 
used a 4-way test set for the last version, which found an 
inducing combination.  

Since there is a probability that the fault is not due to 
any parameter interaction, we need to check whether only 
one parameter is involved in the fault. BEN has a feature 
to derive inducing combinations with smaller size than t. 
We used this feature on 2-way test sets, to derive one-way 
inducing combination. In ten versions of the replace the 

TABLE XI FAULT CLASSIFICATION OF DETECTED VERSIONS 

Program #faulty versions with degree of fault 

 1 2 3 4 5 6 Beyond 6 sum 

print_tokens 0 0 2 0 0 0 0 2 

print_tokens2 0 6 3 0 0 0 0 9 

replace 10 7 2 0 0 0 13 32 

schedule 0 5 1 1 0 0 0 7 

schedule2  0 3 0 0 0 0 0 3 

tcas 0 0 0 0 0 0 41 41 

totinfo 0 0 2 1 6 3 0 12 

 

TABLE IX  THE ABSTRACT MODEL OF NUMBER VALUES 

Parameters Values 
#of digits [ 1, >1] 

begins with zero [off, on] 

 

TABLE X THE ABSTRACT MODEL OF COMMENT VALUES 

Parameters Values 
identifier [off, on] 

keyword [off, on] 

character [off, on] 

string [off, on] 

special [off, on] 

number [off, on] 

comment [off, on] 

whitespace [Space, tab] 

 



degree of fault was 1. Table XI shows that most faults are 
interaction faults. 

In 13 versions of replace and 41 versions of tcas, BEN 
cannot identify inducing combinations in the 6-way test 
sets, so the degree of fault is more than 6 for these 
versions. Note that in the replace all 13 versions and in 
the tcas 9 of these versions are detected by 2-way testing. 
A 2-way test set is not guaranteed to detect these versions, 
since it is not guaranteed to cover all combinations for t > 
2, and the versions are detected accidentally. 

We show the strength of fault for detected versions in 
respect to the test strength in Table XII. The second 
column shows the test strength at which the faulty 
versions were detected. The third one shows the number 
of faulty versions that were detected by the test set, and 
the combinatorial test set guarantees to detect them, since 
their fault strength is equal or less than the test strength. 
The forth column shows the number of detected versions 
with higher fault strength than test strength, which are 
detected by chance.         

For example, by applying 2-way testing to all faulty 
versions of the replace program, we detected  not only 17 
versions whose degree of fault is 1 or 2, but also 13 
versions whose degree of fault is higher than 6.  

Another point to note is that, in each step we excluded 
detected versions in the next step. For example, in the 
totinfo program 5 versions were detected by 2-way 
testing. One of these 5 versions has the same degree of 
fault as the test strength, i.e., 2, and the other four 
versions have the degree of fault higher than the test 
strength. For the next step we excluded all five versions 
from testing and we applied 3-way testing only on 
versions which were not detected. 

G. Comparison 

In this section, we show the effectiveness of 
combinatorial testing by comparing it with random 
testing. We generated a random test suite corresponds to 
each combinatorial test set which was used in the 
previous section. The random test suite and its 
corresponding combinatorial test set have the same 
number of tests. For example, the 2-way combinatorial 
test set for printtokens program has 141 tests; thus 141 
tests are generated for random testing.  

For random test generation, we used the models which 
were described. Since the subject programs have complex 
input spaces, we cannot apply random testing without any 
abstraction. For instance, the first input parameter in the 
replace program is a regular expression; generating valid 
random regular expressions is impractical.   

Our random test generation approach is as follows. For 
programs whose models do not have any constraint, 
schedule, schedule2, tcas and totinfo, a random value is 
selected for each parameter in a test. For printtokens, we 
generate the same number of tests as a 2-way test set for 
each subsystem. If the value parameter comes from the 
model, such as identifier, first we randomly generate a 
test for value, and then for the subsystem.   

If a model has constraints, random selected values 
may create invalid tests. We avoided invalid tests using 
the following algorithm. In the replace program, 
constraints are related to the position of elements. There 
are 4 parameters related to substitution. At most one of 
them can be begin and also at most one can be end.  Note 
that it is possible for a test case to not include begin or 
end . 

To generate random values for substitution related 
parameters (sub_character, sub_@n, sub_@character, 
sub_&), we define which parameter should appear at the 
beginning and which one at the end, randomly. A number 
between 0 and 4 (number of parameters, sub_character, 
sub_@n, sub_@character and sub_&, plus 1) are selected 
randomly. This number is used to select the parameter 
whose value should be begin and appearing at the 
beginning. If 0 is selected, the first parameter, 
sub_character is set to begin, and so on. If 4 is selected, 
none of the parameters would have begin value. Similarly, 
we select the parameter that should appear at the end.  For 
other parameters, off or middle is selected randomly. The 
same approach is used for parameters which are involved 
in the pattern.   

Table XIII compares the results of combinatorial and 
random testing. The second column shows the number of 
tests in the test sets, third and forth columns are shown the 
strength and the number of detected versions in 
combinatorial test set. The last column shows the number 
of detected versions in random test sets.   According to 
the table, the result of random testing is different in 
different programs. In the two schedule programs, 
schedule and schedule2, combinatorial testing and 
random testing have the same results, 7 versions in the 
schedule and 3 versions in the schedule2 were detected. 

TABLE XII FAULT CLASSIFICATION BASED ON TEST STRENGTH 

p
r
o
g

ra
m

 

T
e
st

 s
tr

e
n

g
th

 

#
 o

f 
d

e
te

c
te

d
 

v
e
rs

io
n

s 
w

it
h

 t
h

e 

sa
m

e
 o

r
 l

o
w

e
r
 

st
r
e
n

g
th

 

#
 o

f 
d

e
te

c
te

d
 

v
e
rs

io
n

s 
w

it
h

 

h
ig

h
er

 s
tr

e
n

g
th

 

to
ta

l 

 T
o

ta
l 

n
o

t 
d

e
te

c
te

d
 

 

print_tokens 2 0 2 2 5 

print_tokens2 2 6 3 9 1 

replace 2 17 15 32 0 

schedule 2 5 2 7 2 

schedule2  2 3 0 3 7 

tcas 2 0 9 

41 0 

3 0 13 

4 0 14 

5 0 4 

6 0 1 

totinfo 2 1 4 
12 11 

3 1 6 
 

 If a t-way test detects a version, the version does not show in the result of 

(t+1)-way test. 

 All 1-way and 2-way faulty versions of replace are detected in 2-way test set.   

 



But in the replace program, random testing detected 17 
versions compared to 32 versions in combinatorial testing.  

In the tcas program, combinatorial test set and random 
test set detected all 41 faulty versions. But combinatorial 
test can detect more versions by using fewer tests. 
Combinatorial test sets, 2-way, 3-way and 4-way, 
detected 36 versions, but random test set with the same 
number of tests detected 27 versions.  

IV. RELATED WORK 

First, we review existing work on input parameter 
modeling for combinatorial testing. Grindal and Offutt ‎[4] 
presented a structured method for input parameter 
modeling. Their method provides guidelines for defining 
parameters, values, constraints and relations. We followed 
this method, whereas applicable, in our experiments.  

Several common patterns were reported for 
combinatorial models ‎[14]‎[15]. These patterns include 
optional values, multi-selection, ranges and boundaries, 
order and padding, redundant interactions, and auxiliary 
aggregates or commonality. We used similar ideas for 
optional values, order and padding, and multiplicity 
patterns in our experiments. For example, the optional 
values pattern occurred in the replace program. We added 
the off value for each optional parameter.  

Segall et al. suggested two constructs, called counters 
and properties, to model high-level constraints [17]. Some 
abstract parameters, e.g., the position parameter, 
identified in our experiments can be considered as 
properties of a concrete parameter. However, these 
parameters are not used to facilitate constraint 
specification in our experiments.  

Second, we review existing work on empirical studies 
on combinatorial testing. We focus on these controlled 
studies. Dalal et al. ‎[2] reported four relatively large 
applications that are modeled for combinatorial testing. 
They reported the number of failed tests and the number 
of different types of failures that were detected. They 
showed that combinatorial testing was more effective than 
traditional testing methods. The difference between their 
approach and our work is that they did not identify 

abstract parameters and values. In addition, their subject 
programs contain real faults, instead of seeded faults. ‎[2] 

Kuhn et al. studied several fault databases and found 
that all the faults in these databases are caused by 
interaction of no more than six parameters ‎[8]‎[9]. This 
study did not perform actual combinatorial testing on the 
subject systems.  

Schroeder et al. compared combinatorial testing to 
random testing in a controlled study ‎[13]. They selected 
two software applications used in their laboratory and 
used faults that are manually seeded by a graduate 
student. In contrast, the Siemens suite used in our 
experiments is a third-party benchmark that has been used 
to evaluate many testing techniques ‎[17]. We also used 
faults that come with the Siemens suite.  

In ‎[7], Kuhn et al. applied combinatorial testing to a 
multicomputer network simulator. They compared 
combinatorial testing to random testing in terms of the 
number of deadlocks that can be detected by both 
approaches. The modeling process was not explained 
in ‎[7].  

In ‎[11]‎[12], combinatorial testing was compared to 
several prioritization techniques and random testing. The 
experiments were done on two programs flex and make 
from SIR ‎[16] repository. The results showed there was 
no significant difference between combinatorial testing 
and random testing. The details about the programs 
models were, however, not, reported in the paper.   

V. CONCLUSION 

In this paper, we presented a three-step approach to 
apply combinatorial testing. First we create an abstract 
model for the system. Then, based on this model, a 
combinatorial abstract test set is generated. The last step 
derives a set of concrete tests from these abstract tests. We 
reported our experiments in which we modeled the seven 
programs in the Siemens suite and applied combinatorial 
testing to these programs. The details of the abstract model 
and the results of applying combinatorial testing are 
presented in the paper. The results show that combinatorial 
testing can detect most faulty versions of the Siemens 
programs, and is more effective than random testing. 

To better understand the effectiveness of combinatorial 
testing, we distinguished faults guaranteed to be detected 
by t-way testing from faults detected incidentally.  A fault 
is detected incidentally by a t-way test set if the degree t’ 
of the fault is higher than t, but the t-way test set happens 
to‎contain‎a‎t’-way combination that can trigger this fault. 
In our experiments, we observed that t-way testing often 
detected some faults incidentally, i.e., the degrees of these 
faults were higher than t.  In particular, for the tcas 
program, all the faults were detected incidentally. This 
suggests that a t-way test set can be potentially more 
effective if it covers more higher-strength combinations, in 
addition to all the t-way combinations.  

In the future, we plan to conduct more empirical 
studies on larger and more complex programs. We believe 
this research will provide guidance for practitioners to 
apply combinatorial testing in practice.  

TABLE XIII COMPARE RANDOM TESTIN AND COMBINATORIAL TESTING 

Program 

#tests Combinatorial Random 

Strength #detected 

version 

#detected 

version 

print_tokens 141 2-way 2 1 

print_tokens2 141 2-way 9 9 

replace 192 2-way 32 17 

schedule 64 2-way 7 7 

schedule2  64 2-way 3 3 

tcas 100 2-way 9 7 

400 3-way 13 14 

1363 4-way 14 6 

4222 5-way 4 12 

10843 6-way 1 2 

totinfo 30 2-way 5 2 

156 3-way 7 5 
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