
Applying Combinatorial Testing to the Siemens Suite

Laleh Shikh Gholamhossein Ghandehari
1
, Mehra N. Bourazjany

1
, Yu Lei

1
, Raghu N. Kacker

2
, D. Richard Kuhn

2

1
Dept. of Computer Science and Engineering, University of Texas at Arlington, Arlington, Texas 76019, USA

2
Information Technology Laboratory National Institute of Standards and Technology, Gaithersburg, Maryland

20899, USA

Abstract- Combinatorial testing has attracted a lot of

attention from both industry and academia. A number of

reports suggest that combinatorial testing can be effective

for practical applications. However, there are few

systematic, controlled studies on the effectiveness of

combinatorial testing. In particular, input parameter

modeling is a key step in the combinatorial testing process.

But most studies do not report the details of the modeling

process. In this paper, we report an experiment that applies

combinatorial testing to the Siemens suite. The Siemens suite

has been used as a benchmark to evaluate the effectiveness

of many testing techniques. Each program in the suite has a

number of faulty versions. The effectiveness of

combinatorial testing is measured in terms of the number of

faulty versions that are detected. The experimental results

show that combinatorial testing is effective in terms of

detecting most of the faulty versions with a small number of

tests. In addition, we report the details of our modeling

process, which we hope to shed some lights on this critical,

yet often ignored step, in the combinatorial testing process.

Keywords- Combinatorial Testing, Input Modeling,

Software Testing.

I. INTRODUCTION

Combinatorial testing has attracted a lot of attention
from researchers. The key observation in combinatorial
testing is that most software failures are caused by
interactions of only a few input parameters. A t-way
combinatorial test set is built to cover all the t-way
interactions, where t is typically a small integer ‎[10]‎[5]. If
test parameters and values are properly modeled, a t-way
test set is able to expose all failures that involve no more
than t parameters.

A number of empirical reports suggest that
combinatorial testing can be effective for practical
applications ‎[1]‎[2]‎[6]. Most studies in these reports were
designed to show that combinatorial testing could be
applied to different types of applications. Thus, they were
not controlled studies for evaluating the effectiveness of
combinatorial testing. There are two notable exceptions.
Kuhn et al. studied several fault databases and found that
all the faults in these databases are caused by interaction
of no more than six parameters ‎[8]‎[9]. These studies did
not perform actual combinatorial testing on the subject
systems. Schroeder et al. compared the effectiveness of t-
way testing to random testing in a controlled study ‎[13].
They selected two software applications used in their
laboratory as subject programs, and manually seeded a
number of faults to measure fault detection effectiveness.

In this paper, we report an experiment that applies
combinatorial testing to the Siemens suite ‎[16]. The
Siemens suite has been used as a benchmark to evaluate
the effectiveness of many testing techniques ‎[2]‎[6] ‎[17].
Each program in the suite has a number of faulty versions.
The effectiveness of combinatorial testing is measured in
terms of the number of faulty versions that are detected.
The results show that most of the faulty versions are
detected by a small number of test cases. For example, all
32 faulty versions of replace program are detected by a 2-
way test set containing only 192 tests. Furthermore, the
results show that combinatorial testing is more effective
than random testing.

We also report the details of our modeling process,
which is a critical, yet often ignored step in the
combinatorial testing process. Our approach consists of
three main steps. First we create an abstract model for the
system. This model consists of abstract parameters and
values. On the one hand, abstraction reduces the modeling
complexity that has to be managed at one time. On the
other hand, abstraction helps to discover aspects that need
to be tested. Second we generate a combinatorial test set
based on the abstract model. Existing combinatorial test
generation tools such as ACTS ‎[1] can be used in this step.
Third, we derive concrete tests from the abstract tests.
These concrete tests are then used to perform the actual
testing.

It is important to note that whereas the programs in the
Siemens suite are relatively small, in terms of lines of
code, and have a small number of input parameters, their
input spaces are complex. For example, replace has 564
lines of code and 3 input parameters. However, its
abstract model contains 20 abstract parameters and 36
constraints. The input parameters have different features
and characteristics that must be considered for testing,
e.g. one of the input parameters is a regular expression.

The remainder of this paper is organized as follows. In
section II, we describe our approach for applying
combinatorial testing. Section III reports experimental
results that demonstrate the effectiveness of our modeling.
Section IV discusses existing work on input space
modeling. Section V provides concluding remarks.

II. APPROACH

In this section, we explain our approach to apply
combinatorial testing. The approach consists of three
major steps: (1) Create an abstract model, (2) Generate an
abstract test set, and (3) Derive concrete tests. We use the

replace program in the Siemens suite, to explain each task
in detail.

A. Create abstract model

This step has two major tasks: (1) define abstract
parameters and values, (2) define relations and constraints.

1) Define abstract parameters and values
First, we analyze the system specification and identify

factors that may affect the behavior of the system. These
factors are candidates for abstract parameters. The
equivalence partitioning approach is used to define the
values of each abstract parameter.

We use the replace program in the Siemens suite to
show how we define abstract parameters and values based
on its specification. The replace program has three inputs,
pattern, substitute and input text. The program finds every
match of the pattern in the input text and replaces it with
the substitute.

The pattern is a restricted form of regular expression.
Table I shows the metacharacters that can be used in
pattern. Note that the @ character can have different
meanings, depending on the next character. If a character
other than n and t appears after @, the program ignores it.
For example, @e matches e. But when @ appears at the
end of the pattern, the program behave as if it is a simple
character and matches with @. For example, e@ matches
e@.

The substitute is a string that allows only three
metacharacters to be used. These include two
metacharacters, @t and @n, as shown in Table I, and a
metacharacter &, which represents the string that matches
the pattern. For example, if the string that matches the
pattern is ab and the substitute is a&c, all ab strings in the
file are replaced with aabc.

Table II shows the abstract model of the replace
program for pattern and substitute. There are a total of 20
parameters in the model. The parameters with prefix pat
are identified for pattern, and the parameters with prefix
sub are identified for substitute. Note that these
parameters are abstract as they are not the actual input
parameters taken by the replace program.

The key modeling decision is twofold. First, each
metacharacter is identified to be an abstract parameter.
Our motivation is that the core logic of the replace
program is dealing with these metacharacters. Thus, we
consider each metacharacter to be an important factor that
could affect the program behavior. Special attention is
paid to metacharacters * and &. These two metacharacters
can be combined with other meta or regular characters.
An abstract parameter is identified for each possible
combination. For example, pat_question* represents the
combination where a question mark appear before *.

Second, the values of each abstract parameter (i.e.,
metacharacter) are identified based two considerations.
The first consideration is whether or not a parameter
appears in the pattern (or substitute). Two values, off and
on, can be used to represent the two cases. The second
consideration is the following: If a parameter does appear
in the pattern (or substitute), where does it appear? Thus,

the on value identified earlier is further divided into three
abstract values, begin, middle, and end. In Table II, all the
parameters but four have four values, off, begin, middle,
and end. The four exceptions, i.e., pat_BOL, pat_EOL,
pat_@n, and pat_@, only have two values, on and off,
because they can only appear in a particular position by
nature. For example, BOL (i.e., %) by definition can only
appear in the beginning of the pattern.

Now we discuss how to model the third input
parameter, i.e., the input text, of the replace program. We
consider that an input text consists of a sequence of lines.
The key observation is that a line is relevant from the
testing perspective only if it contains a match or mismatch
of the pattern. Assume that the pattern consists of k
elements. The input text is modeled such that it consists of
k + 2 lines. The first line matches the pattern. The second
line matches all the elements but the first in the pattern.
The third line matches all the elements but the second in

TABLE II THE ABSTRACT MODEL OF REPLACE

Parameters Values

pat_character1 [off, begin, middle, end]

pat_question2 [off, begin, middle, end]

pat_range3 [off, begin, middle, end]

pat_negate4 [off, begin, middle, end]

pat_@t [off, begin, middle, end]

pat_@character [off, begin, middle, end]

pat_question* [off, begin, middle, end]

pat_character* [off, begin, middle, end]

pat_range* [off, begin, middle, end]

pat_negate* [off, begin, middle, end]

pat_@t* [off, begin, middle, end]

pat_@character* [off, begin, middle, end]

pat_BOL5 [off,on]

pat_EOL6 [off,on]

pat_@n [off,on]

pat_@ [off,on]

sub_character [off, begin, middle, end]

sub_@n [off, begin, middle, end]

sub_@character [off, begin, middle, end]

sub_& [off, begin, middle, end]
1Regular character
2? metacharacter
3[-] metacharacter
4[^] metacharacter
5% metacharacter
6$ metacharacter

TABLE I PATTERN'S METACHARACTER

Metacharacter Description

? Matches every character.

* Matches the preceding pattern element zero or
more times.

[-] Matches a single character that is in the

specified range. For example [a-c]‎matches‎“a”,‎

“b”‎and‎“c”.

[^] Matches every character except the ones inside

brackets.

@t Matches a tab.

@n Matches the end of a line.

% Matches the beginning of a line. (BOL)

$ Matches the end of a line. (EOL)

the pattern, and so on. The last line does not match any
element in the pattern. Note that we do not consider cases
where a mismatch is due to multiple, but not all, of the
elements in the pattern. This is essentially a trade-off
made between test effort and test coverage.

2) Define relations and constraints
Relations are used to create parameter groups that can

be covered at different strengths. Furthermore, parameters
in different groups are independent and thus their
combinations do not have to be tested. In our
experiments, we used the default relation where all the
parameters are considered to be in the same group. In
retrospect, the parameters for pattern could be put into
one group and the parameters for substitute in a second
group. This would allow us to reduce the number of tests.

Constraints are used to exclude combinations that are
not valid from the domain semantics. For the replace
program, a total of 36 constraints are specified. All these
36 constraints are concerned with the position values of
different parameters. In particular, in each test, there shall
be only one parameter that has the value begin or end.

B. Generate abstract tests

In this step, an abstract test set is generated using an
existing combinatorial test generation tool ‎[10]. We used
the ACTS tool ‎[1]. ACTS can generate a combinatorial
test set with strength 2 through 6. Note that these tests are
abstract in that they cannot be directly executed. Instead,
concrete tests must be derived first, which is discussed
below.

C. Derive concrete tests

A scheme is needed to derive a concrete test from each
abstract test. Conceptually, such a scheme consists of two
parts. The first part is to map each abstract value to a
concrete value. An abstract value is typically identified in
a way such that it represents an equivalence group, i.e., a
group of values that are equivalent to each other in terms
of how they could affect the system behavior. Thus, it is
sufficient to map an abstract value to any value in its
equivalence group. For example, in the replace program,
the abstract value, middle, represents all the positions
those are neither at the beginning nor at the end. The
specific position is often not important.

The second step is to map an abstract test to a concrete
test. This part builds on the first step. In addition, it needs
to map abstract parameters to concrete parameters. Recall
that abstract parameters are identified to represent factors
that could affect the system behavior. There typically
does not exist a one-to-one mapping between abstract and
concrete parameters. In fact, there are often more abstract
parameters than concrete parameters. For example, for the
replace program, there exist 20 abstract parameters, which
need to be mapped to three concrete input parameters.

As an example, consider the abstract test in Figure
1(a) and the concrete test in Figure 1(b) for the replace
program. In this example, the value of pat_BOL is on, so
“%”‎is‎put‎at‎the‎beginning‎of‎the‎pattern.‎Similar,‎“@n”‎‎

is placed at the end of the pattern. Other parameters,
whose values are middle, are placed in the middle of the
pattern. For pat_character, pat_range and pat_negate a,
[a-e] and [^a] are put in pattern. Similarly, the substitute
is created based on the corresponding parameter values in
the abstract test.

The last row of Figure 1(b) shows different lines in the
input file. The first line, abef, matches the pattern, since a
matches with a, b matches with question mark, e matches
with [a-e] element, and f matches with [^a]. Also, the first
line matches % at the beginning and @n at the end.

Each line from line 2 to 7 matches all but one element
in the pattern. For example the second line has the exact
string abef which matches the pattern. However, since it
is not at the beginning of the line (i.e., there is g at the
beginning), the first element, %, in the pattern is not
matched. The third line violates a in the pattern, and so
on. The last line, i.e., line 8, does not match any element
in the pattern.

Note that the scheme used to derive concrete tests from
abstract tests is often specific to the subject application.
However, such a scheme typically can be fully automated.
This is the case for our experiments, where we wrote a
program for each subject program to automate this
process.

III. EXPERIMENT

We used the Siemens suite as our subject
programs ‎[16]. The Siemens suite contains 7 programs
and each of these programs contains a number of faulty
versions. The Siemens suite also provides an error-free
version and a test pool for each program.

Table III represents properties of subject programs.
The second column shows the number of lines of
uncommented code. The third column shows the number

a- Abstract test

Parameters Values

pat_character middle

pat_question middle

pat_range middle

pat_negate middle

pat_@t off

pat_@character off

pat_question* off

pat_character* off

pat_range* off

pat_negate* off

pat_@t* off

pat_@character* off

pat_BOL on

pat_EOL off

pat_@n on

pat_@ off

sub_character begin

sub_@n end

sub_@character off

sub_& middle

b. Concrete test

Parameters Values

Pattern %a?[a-e][^a]@n

Substitute a&@n

Input file 1. abef

2. gabef

3. bef

4. aef

5. abf

6. abe

7. abefg

8. gbfag

Figure 1 An Example of Abstract Test and its Concrete Test

of procedures. The forth column shows the number of
faulty versions for each program.

Two programs, printtokens and printtokens2, have the
same specification but different implementations. Since
the input space model is independent from the source
code, these programs share the same model. Similarly,
two programs schedule and schedule2 have the same
specification and thus share the same model. Therefore, in
this section, we present five input models for the Siemens
suite programs. Note that the input model for tcas is given
in ‎[8] and is included here for completeness.

In our experiments, we focus on interaction faults. As
a result, our models are not designed for boundary testing
or invalid testing. We believe most boundary and invalid
faults are one-way faults, and they can be detected more
efficiently using a different model where the focus is to
identify special values of individual parameters. However,
this belief needs to be validated by more experiments,
which is beyond the scope of this paper.

Specifications of the programs are not provided by the
benchmark. To understand what each program is
supposed to do, we had to inspect the source code. (A
search on the Internet did not find any such specification
either.) To avoid potential bias in developing the model,
only the source code of the error-free version was used.
That is, we were not aware of the faults during the
modeling process. Nonetheless, this is an internal threat to
validity that needs to be considered.

We start with 2-way testing, and then move to 3-way
testing, and so on, until (1) all faulty versions are
detected; or (2) testing at the current strength does not
detect any faulty versions that were not detected in testing
at the previous strength. For example, 2-way testing did
not detect 2 out of 9 faulty versions of the schedule
program. So 3-way testing was performed on these 2
versions, which did not detect any of the two versions. At
this point, we stopped testing and started to inspect the
testing results.

A. Replace

We explained the modeling details of the replace
program in the previous section. We applied 2-way
testing to this program, which had a total of 192 tests. We
detected all the 32 faulty versions of this program.

B. Schedule

Two programs, schedule and schedule2, take the
following inputs: (1) three non-negative integers

representing the number of processes in three different
priority queues, low, medium and high; and (2) a list of
commands that must be done on queues. The output of
these two programs is a list of numbers indicating the
order in which the processes exit (from the scheduling
system).

For example, consider the first three input parameters
which are 3, 2 and 1. Three processes are placed in low
priority queue, two processes in medium priority queue,
and one process is high priority queue. The id is assigned
to the processes by their priority so the 0 is in the high
priority queue, 1 and 2 are in medium priority queue and
3, 4 and 5 are in low priority queue.

There are seven commands (1) new job: this command
has one attribute, queue, and adds a new process at the
specified priority queue. (2) upgrade_prio: it has two
attributes, queue and ratio. This command promotes a
process form the specified priority queue to the next
higher priority queue. The ratio attribute is used to
determine which process to be promoted. (3) block: this
command adds the current process to the blocked queue.
(4) unblock: this command unblocks a process from the
blocked queue. It has one attribute, ratio, which is used to
determine which process must be unblocked. (5)
quantum_expire: this command puts the current process at
the end of its priority queue. (6) finish: this command
exits the current process and prints its number. (7) flush:
this command causes all processes from the priority
queues to exit in their priority order.

Two commands, upgrade_prio and unblock, operate
on the n-th process where and
 .

In our previous example, if a flush command (7) is
executed, the output is 0 1 2 3 4 5. But, assume that
before the flush command, a new job command (1 3) is
executed, where 1 indicates the new job command and 3
indicates the high priority queue. This new job command
adds a process to the high priority queue. The next
available ID, which is 6, is assigned to the new process
and the process is placed at the end of the high priority
queue, i.e. after process 0. Now, if we execute the flush
command, the output will be 0 6 1 2 3 4 5.

TABLE IV THE ABSTRACT MODEL OF SCHEDULE

Parameters Values

new_process [0, 1, >1]

new_proc_queue [low, mid, high]

upgrade_prio [0, 1, >1]

upgrade_queue [low, mid]

upgrade_ratio [0, 1, >1, {r}=0.1, {r}=0.4, {r}=0.5, {r}=0.6,

{r}=0.9]

block [0, 1, >1]

unblock [0, 1, >1]

unblock_ratio [0, 1, >1, {r}=0.1, {r}=0.4, {r}=0.5, {r}=0.6,

{r}=0.9]

quantum_expire [0, 1, >1]

finish [0, 1, >1]

flush [0, 1, >1]

TABLE III SUBJECT PROGRAMS

Program LOC Procedures #Faulty Versions

print_tokens 726 20 7

print_tokens2 570 21 10

replace 564 21 32

schedule 412 18 9

schedule2 374 16 10

tcas 173 8 41

totinfo 565 16 23

Table IV shows the input model of the two schedule
programs. Commands and their attributes are modeled as
parameters. Each command parameter has three values, 0,
1 and >1, where 0 means that this command does not
appear, 1 means that this command appears once, and >1
means that this command appears more than once. The
priority attribute of the new job command could be one of
the three possible queues. But the attribute of
upgrade_prio could be either low or mid. (Processes in
the high priority queue cannot upgrade.)

Two commands unblock and upgrade_prio are
affected by the length of the queues, they select a process
based on queue’s‎ length‎ and‎ ratio.‎For‎ these‎ commands,‎
first, we test if the ratio equals to 0, 1, or >1. Then we
check that if the number after floating point in
 is 1, 4, 5, 6 or 9. These
numbers are selected to cover upper limit (9), lower limit
(1) and middle of the range (5), and also two numbers (4
and 6) around the middle.

A C++ program was written to create the file that
contains commands based on abstract tests. For the initial
length of the queues, we randomly selected 60. We fixed
>1 values to 2, i.e. if the value of a command is >1, the
command appears twice in the file.

Performing 2-way testing detected 7 out of 9 versions
of the schedule and 3 out of 10 versions of the shedule2.
In total, 9 versions were not detected. Performing 3-way
testing did not detect any more versions. We investigated
all versions that were not detected, 8 out of 9 (version 9 of
the schedule and 7 versions, 1, 4, 5, 6, 8, 9 and 10, of the
schedule2) can be detected by invalid testing, which as
mentioned is not the focus of our study.

For example, version 10 of the schedule2 was detected
by a test case which contains new_process or
upgrade_prio commands with invalid value for the queue
attribute (new_proc_queue or upgrade_queue parameter).

Version 8 of the schedule is the only version that was
not detected and could not be detected by invalid testing.
This version could be detected only when two upgrade
commands, one block command, and one unblock
command are executed consecutively on one process.

The following example will reveal the bug:
./schedule 2 2 0 <file.txt
There are 4 processes, 0 to 3, two of which, 0 and 1,

are in the mid priority queue, and the other two, 2 and 3,
are in the low priority queue. The high priority queue is
empty. Figure 1Figure 2 shows the file that contains 5
commands. The comments explain the state of the system
after each command is executed.

In the schedule program, each process keeps the id of
the queue to which it belongs. The faulty code in the
version 8 does not change the queue id of the process
after the upgrade command (lines #1 and #2). Thus when
the process is unblocked (line #4), it is assigned to the
wrong queue.

We did not detect this version, because our approach,
at this point, does not generate test sequences.
Combinatorial test sequence generation is a subject that
we plan to study in the future.

C. tcas

This program was previously modeled by Kuhn et al.
in ‎[8] ‎[9], based on the specification in ‎[11]. The tcas
program is an aircraft collision avoidance system, and it
takes 12 numbers as input and generates as output one
number, which can be 0, 1 and 2.

Table V shows the input model of the tcas program.
Some input parameters, e.g., high_confidence,
two_of_three_reports_valid, and climb_inhibit, are
boolean values, 0 and 1. Some input parameters, like
alt_layer_value, are of enum type and have a set of
specific values. For the other parameters, the values are
identified by analyzing the code and by equivalence
partitioning. Note that the input space of this program is
not complex, and thus an abstract model is not needed.

According to ‎[8] all 41 faulty versions of tcas are
detected by the model. The maximum strength to detect
all versions is six; we also got the same results.

As discussed in Section F, all faulty versions of the
tcas program were detected by 6-way testing. However,
the degree of fault is actually more than 6 in all faulty
versions. Thus, these faulty versions were actually
detected by higher strength combinations that happen to
appear in a 6-way testing.

D. Totinfo

This program takes as input a file containing one or
more tables. The program uses the notions of chi-square
and degree of freedom to calculate whether the
distribution of the numbers in these tables is logarithm-

TABLE V THE ABSTRACT MODEL OF TCAS

Parameters Values

cur_vertical_sep [299,300, 601]

high_confidence [0, 1]

two_of_three_reports_valid [0, 1]

own_tracked_alt [1, 2]

own_tracked_alt_rate [600, 601]

other_tracked_alt [1, 2]

alt_layer_value [0,1, 2, 3]

up_separation [0, 399, 400, 499, 500, 639, 640,

739, 740, 840]

down_separation [0, 399, 400, 499, 500, 639, 640,
739, 740, 840]

other_rac [0, 1, 2]

other_capability [1, 2]

climb_inhibit [0, 1]

Figure 2 File Example to Detect v8 of schedule

gamma distribution. The output is the total degree of
freedom of rows and columns and chi-square.

We focused on the correctness of the syntax of input
parameters instead of the mathematical aspect of the
program. The reason is that the logic of the program is
very complex and is difficult to understand due to a lack
of specification.

We identified a total of 6 parameters related to the
syntax input of the program. Parameter # of tables can be
0, 1 or more than one. The maximum number of members
in a table is 1000. We set the maximum number of rows
and columns to 500 and the minimum number of rows
and columns to 1. Thus, parameters # of rows and # of
columns have three values, 1, between 2 and 499, and
500.

Parameter tbl_attr is identified to define general
attributes‎for‎tables’‎elements.‎One‎important‎attribute‎for‎
the table elements is sign, they can be positive, negative,
zero, or mix. The number of elements is another attribute
we identified for tbl_attr. The number of the elements in a
table defined by ; we added
sufficient, more than and less than enough values to check
that whether the number of elements in the table is
consistent with .

The option parameter models the position in which a
comment appears. The maxline parameter defines the
maximum number of lines in the input file.

A program was written to generate the input tables
from the abstract tests. 2-way testing detected 5 out of 23
versions. 3-way testing detected 7 more versions, but 4-
way testing did not detect any new version. So, totally 12
out of 23 versions were detected. We investigated the 11
versions which were not detected by the model. All of
these versions have faults related to the mathematical
aspects of the program, which is out of our testing
scope.

E. Printtokens Model

The goal of the two programs, printtokens and
printtokens2, is tokenizing the input file and determining
the type of each token. Token could have one of these
types: identifier, special, keyword, number, comment,
character constant or string constant.

 Keyword type includes and, or, if, xor, and lambda.
Special type includes lparen, rparen, lsquare, rsquare,
quote, bquote, comma and equalgreater. Comment is
started with semicolon and ended when a new line
character is seen. String constant is confined in two
double quotations. Character is a token started with #.

To model the system, we divided it into seven
subsystems: keyword, special, identifier, number,
comment, character and string. By this classification each
token type was tested independently from the others. We
assumed that the program analyzes each token
independent from previous and next token, i.e. the type of
the previous or next token does not affect on the
analyzing the current token.

Each subsystem has 3 parameters, value, position and
number of lines. Keyword model is shown in Table VII,
as an example. The kyw_value parameter covers all
possible values for keyword (corresponding token type in
general). An important property for each token type is
position, depends on different position of token type the
program may behave differently. So for each token type
the position property with three values, begin, middle and
end, is added to the model. The last parameter, # of lines,
checks the behavior of the system when the input file has
a single line or multiple lines.

The possible values for some token types, such as
keyword and special are explicitly defined in the program
specification. But for the others such as identifier, the
features and characteristic of its values are described in
the specification. For each token type, identifier, number,
comment, character and string, we designed an abstract
model to define their values. Then after the possible
values were defined in the next level they have the same
model as keyword. We explain the model of values for
three subsystems identifier, number and comment in more
details.

TABLE VII THE ABSTRACT MODEL OF KEYWORD

Parameters Values

kyw_value [and, or, xor, if, lambda]

position [begin, middle, end]

of lines [1, >1]

TABLE VIII THE ABSTRACT MODEL OF IDENTIFIER VALUES

Parameters Values

lowercase [off, on]

uppercase [off, on]

number [off, on]

keyword [off, on]

whitespace [Space, tab]

TABLE VI THE ABSTRACT MODEL OF TOTINFO

Parameters Values

#of tables [0, 1, >1]

#of rows [1, between 2 and 499, 500]

#of columns [1, between 2 and 499, 500]

tbl_attr

[sufficient number positive1, sufficient number
negative2, sufficient number mix3, sufficient

number equal 04, more than enough5, less than

enough6]

options [normal, row & column in 2 lines, comment at
the beginning, comment in the middle, comment

at the end]

maxline [1, Between 2and 254, 255, 256, 257]
1There are positive numbers in the input
file.
2There are negative numbers in the input

file.
3There are positive and negative number

in the input file.
4There are zero in the input file.
5There are less than numbers in the input
file.
6There are more than numbers in the
input file.

Identifier has different feature such as having

uppercase, lowercase, keyword or numbers, a model is
designed to cover all features of identifier values (Table
VIII) .These features are parameters with two values off
and on, to show weather an identifier contains the
parameter or not. The whitespace parameter determines
whether an identifier separate from next token by space or
tab. Note that we add a constraint to prevent having null
identifier. For 2-way test generation, we generate 2-way
test set for identifier values model first. The number of
tests is 7. Then, we put these seven tests as values in the
value parameter of the identifier model, and generate 2-
way test set for identifier.

For the number model, the characteristics of the
number are the number of digit and having zero at the
beginning of it. So its model has 2 parameters, Table IX.
Note that sign and decimal point do not support by the
printtokes programs.

The comment model is shown
Table X. We check the behavior of the system when

each token type appears as a comment. Also, whitespace
parameter determines if a comment separate from next
token by space or tab, what would be the behavior of the
system. The models of sting and character values are the
same as comment.

The 2-way testing detected 2 out of seven versions of
the printtokens and nine versions out of 10 versions of the
printtokens2. Note that 2-way test set has only 141 tests.

The programs were tested by 3-way testing, but no
new version was detected. So we stopped testing and
investigated versions which were not detected. Five
versions out of six can be detected by invalid testing. For
example, in versions 6 of the printtokens, the failure
happen when the number of tokens in the input file
exceeds the defined value. The second version of the
printtokens is not detected by invalid testing. The fault in
this version is adding code. The adding code is reached
when there is a i token in the input file.

F. Discussion

After testing programs using the combinatorial
technique, we investigated the faults detected by our

model to ensure that the fault is caused by the interaction
between input parameters. In order to do that we
introduce the notion of degree of fault or fault strength
which is defined to be the minimum number of
parameters that must be involved to trigger the fault.

As a t-way test set contains all t-way combinations, it
is guaranteed to detect a faulty version if the strength of
the fault does not exceed t. But it is also possible that a t-
way test set detects a version whose degree of fault is
higher than t. This is because the test set may contain the
inducing combination (in which more than t parameters
are involved) by chance.

In Table XI, we classified the degree of fault for all
detected versions. For example, in the schedule program,
the model detected a total of 7 versions. The fault strength
in five of these versions is 2. In the two remaining
versions, one of them is 3 and another one is 4.

To define the degree of fault, we used the concept of
inducing combination. An inducing combination is a
combination of parameter values such that all test cases
containing this combination fail. The length of the
minimum inducing combination shows the degree of
fault.

We used a tool called BEN ‎[3] to find minimum
inducing combinations. BEN takes a t-way test set as
input and generates a ranking of t-way combinations
based on their likelihood to be inducing combinations.
BEN has been shown very effective in identifying
inducing combinations ‎[3]. However, BEN is heuristic by
nature and thus does not guarantee to always find
minimum inducing combinations. This should be taken
into account when reading the results in Table XI. We are
not aware of any method that can precisely determine the
degree of a fault.

For example seven versions of schedule are detected
by 2-way test sets. BEN finds an inducing combination
for five of them, so the degree of fault is 2 for these
versions. For the two other versions BEN did not find an
inducing combination, we used a 3-way test set. BEN
finds an inducing combination for one of them. We then
used a 4-way test set for the last version, which found an
inducing combination.

Since there is a probability that the fault is not due to
any parameter interaction, we need to check whether only
one parameter is involved in the fault. BEN has a feature
to derive inducing combinations with smaller size than t.
We used this feature on 2-way test sets, to derive one-way
inducing combination. In ten versions of the replace the

TABLE XI FAULT CLASSIFICATION OF DETECTED VERSIONS

Program #faulty versions with degree of fault

 1 2 3 4 5 6 Beyond 6 sum

print_tokens 0 0 2 0 0 0 0 2

print_tokens2 0 6 3 0 0 0 0 9

replace 10 7 2 0 0 0 13 32

schedule 0 5 1 1 0 0 0 7

schedule2 0 3 0 0 0 0 0 3

tcas 0 0 0 0 0 0 41 41

totinfo 0 0 2 1 6 3 0 12

TABLE IX THE ABSTRACT MODEL OF NUMBER VALUES

Parameters Values
#of digits [1, >1]

begins with zero [off, on]

TABLE X THE ABSTRACT MODEL OF COMMENT VALUES

Parameters Values
identifier [off, on]

keyword [off, on]

character [off, on]

string [off, on]

special [off, on]

number [off, on]

comment [off, on]

whitespace [Space, tab]

degree of fault was 1. Table XI shows that most faults are
interaction faults.

In 13 versions of replace and 41 versions of tcas, BEN
cannot identify inducing combinations in the 6-way test
sets, so the degree of fault is more than 6 for these
versions. Note that in the replace all 13 versions and in
the tcas 9 of these versions are detected by 2-way testing.
A 2-way test set is not guaranteed to detect these versions,
since it is not guaranteed to cover all combinations for t >
2, and the versions are detected accidentally.

We show the strength of fault for detected versions in
respect to the test strength in Table XII. The second
column shows the test strength at which the faulty
versions were detected. The third one shows the number
of faulty versions that were detected by the test set, and
the combinatorial test set guarantees to detect them, since
their fault strength is equal or less than the test strength.
The forth column shows the number of detected versions
with higher fault strength than test strength, which are
detected by chance.

For example, by applying 2-way testing to all faulty
versions of the replace program, we detected not only 17
versions whose degree of fault is 1 or 2, but also 13
versions whose degree of fault is higher than 6.

Another point to note is that, in each step we excluded
detected versions in the next step. For example, in the
totinfo program 5 versions were detected by 2-way
testing. One of these 5 versions has the same degree of
fault as the test strength, i.e., 2, and the other four
versions have the degree of fault higher than the test
strength. For the next step we excluded all five versions
from testing and we applied 3-way testing only on
versions which were not detected.

G. Comparison

In this section, we show the effectiveness of
combinatorial testing by comparing it with random
testing. We generated a random test suite corresponds to
each combinatorial test set which was used in the
previous section. The random test suite and its
corresponding combinatorial test set have the same
number of tests. For example, the 2-way combinatorial
test set for printtokens program has 141 tests; thus 141
tests are generated for random testing.

For random test generation, we used the models which
were described. Since the subject programs have complex
input spaces, we cannot apply random testing without any
abstraction. For instance, the first input parameter in the
replace program is a regular expression; generating valid
random regular expressions is impractical.

Our random test generation approach is as follows. For
programs whose models do not have any constraint,
schedule, schedule2, tcas and totinfo, a random value is
selected for each parameter in a test. For printtokens, we
generate the same number of tests as a 2-way test set for
each subsystem. If the value parameter comes from the
model, such as identifier, first we randomly generate a
test for value, and then for the subsystem.

If a model has constraints, random selected values
may create invalid tests. We avoided invalid tests using
the following algorithm. In the replace program,
constraints are related to the position of elements. There
are 4 parameters related to substitution. At most one of
them can be begin and also at most one can be end. Note
that it is possible for a test case to not include begin or
end .

To generate random values for substitution related
parameters (sub_character, sub_@n, sub_@character,
sub_&), we define which parameter should appear at the
beginning and which one at the end, randomly. A number
between 0 and 4 (number of parameters, sub_character,
sub_@n, sub_@character and sub_&, plus 1) are selected
randomly. This number is used to select the parameter
whose value should be begin and appearing at the
beginning. If 0 is selected, the first parameter,
sub_character is set to begin, and so on. If 4 is selected,
none of the parameters would have begin value. Similarly,
we select the parameter that should appear at the end. For
other parameters, off or middle is selected randomly. The
same approach is used for parameters which are involved
in the pattern.

Table XIII compares the results of combinatorial and
random testing. The second column shows the number of
tests in the test sets, third and forth columns are shown the
strength and the number of detected versions in
combinatorial test set. The last column shows the number
of detected versions in random test sets. According to
the table, the result of random testing is different in
different programs. In the two schedule programs,
schedule and schedule2, combinatorial testing and
random testing have the same results, 7 versions in the
schedule and 3 versions in the schedule2 were detected.

TABLE XII FAULT CLASSIFICATION BASED ON TEST STRENGTH

p
r
o
g

ra
m

T
e
st

 s
tr

e
n

g
th

#
 o

f
d

e
te

c
te

d

v
e
rs

io
n

s
w

it
h

 t
h

e

sa
m

e
 o

r
 l

o
w

e
r

st
r
e
n

g
th

#
 o

f
d

e
te

c
te

d

v
e
rs

io
n

s
w

it
h

h
ig

h
er

 s
tr

e
n

g
th

to
ta

l

 T
o

ta
l

n
o

t
d

e
te

c
te

d

print_tokens 2 0 2 2 5

print_tokens2 2 6 3 9 1

replace 2 17 15 32 0

schedule 2 5 2 7 2

schedule2 2 3 0 3 7

tcas 2 0 9

41 0

3 0 13

4 0 14

5 0 4

6 0 1

totinfo 2 1 4
12 11

3 1 6

 If a t-way test detects a version, the version does not show in the result of

(t+1)-way test.

 All 1-way and 2-way faulty versions of replace are detected in 2-way test set.

But in the replace program, random testing detected 17
versions compared to 32 versions in combinatorial testing.

In the tcas program, combinatorial test set and random
test set detected all 41 faulty versions. But combinatorial
test can detect more versions by using fewer tests.
Combinatorial test sets, 2-way, 3-way and 4-way,
detected 36 versions, but random test set with the same
number of tests detected 27 versions.

IV. RELATED WORK

First, we review existing work on input parameter
modeling for combinatorial testing. Grindal and Offutt ‎[4]
presented a structured method for input parameter
modeling. Their method provides guidelines for defining
parameters, values, constraints and relations. We followed
this method, whereas applicable, in our experiments.

Several common patterns were reported for
combinatorial models ‎[14]‎[15]. These patterns include
optional values, multi-selection, ranges and boundaries,
order and padding, redundant interactions, and auxiliary
aggregates or commonality. We used similar ideas for
optional values, order and padding, and multiplicity
patterns in our experiments. For example, the optional
values pattern occurred in the replace program. We added
the off value for each optional parameter.

Segall et al. suggested two constructs, called counters
and properties, to model high-level constraints [17]. Some
abstract parameters, e.g., the position parameter,
identified in our experiments can be considered as
properties of a concrete parameter. However, these
parameters are not used to facilitate constraint
specification in our experiments.

Second, we review existing work on empirical studies
on combinatorial testing. We focus on these controlled
studies. Dalal et al. ‎[2] reported four relatively large
applications that are modeled for combinatorial testing.
They reported the number of failed tests and the number
of different types of failures that were detected. They
showed that combinatorial testing was more effective than
traditional testing methods. The difference between their
approach and our work is that they did not identify

abstract parameters and values. In addition, their subject
programs contain real faults, instead of seeded faults. ‎[2]

Kuhn et al. studied several fault databases and found
that all the faults in these databases are caused by
interaction of no more than six parameters ‎[8]‎[9]. This
study did not perform actual combinatorial testing on the
subject systems.

Schroeder et al. compared combinatorial testing to
random testing in a controlled study ‎[13]. They selected
two software applications used in their laboratory and
used faults that are manually seeded by a graduate
student. In contrast, the Siemens suite used in our
experiments is a third-party benchmark that has been used
to evaluate many testing techniques ‎[17]. We also used
faults that come with the Siemens suite.

In ‎[7], Kuhn et al. applied combinatorial testing to a
multicomputer network simulator. They compared
combinatorial testing to random testing in terms of the
number of deadlocks that can be detected by both
approaches. The modeling process was not explained
in ‎[7].

In ‎[11]‎[12], combinatorial testing was compared to
several prioritization techniques and random testing. The
experiments were done on two programs flex and make
from SIR ‎[16] repository. The results showed there was
no significant difference between combinatorial testing
and random testing. The details about the programs
models were, however, not, reported in the paper.

V. CONCLUSION

In this paper, we presented a three-step approach to
apply combinatorial testing. First we create an abstract
model for the system. Then, based on this model, a
combinatorial abstract test set is generated. The last step
derives a set of concrete tests from these abstract tests. We
reported our experiments in which we modeled the seven
programs in the Siemens suite and applied combinatorial
testing to these programs. The details of the abstract model
and the results of applying combinatorial testing are
presented in the paper. The results show that combinatorial
testing can detect most faulty versions of the Siemens
programs, and is more effective than random testing.

To better understand the effectiveness of combinatorial
testing, we distinguished faults guaranteed to be detected
by t-way testing from faults detected incidentally. A fault
is detected incidentally by a t-way test set if the degree t’
of the fault is higher than t, but the t-way test set happens
to‎contain‎a‎t’-way combination that can trigger this fault.
In our experiments, we observed that t-way testing often
detected some faults incidentally, i.e., the degrees of these
faults were higher than t. In particular, for the tcas
program, all the faults were detected incidentally. This
suggests that a t-way test set can be potentially more
effective if it covers more higher-strength combinations, in
addition to all the t-way combinations.

In the future, we plan to conduct more empirical
studies on larger and more complex programs. We believe
this research will provide guidance for practitioners to
apply combinatorial testing in practice.

TABLE XIII COMPARE RANDOM TESTIN AND COMBINATORIAL TESTING

Program

#tests Combinatorial Random

Strength #detected

version

#detected

version

print_tokens 141 2-way 2 1

print_tokens2 141 2-way 9 9

replace 192 2-way 32 17

schedule 64 2-way 7 7

schedule2 64 2-way 3 3

tcas 100 2-way 9 7

400 3-way 13 14

1363 4-way 14 6

4222 5-way 4 12

10843 6-way 1 2

totinfo 30 2-way 5 2

156 3-way 7 5

ACKNOWLEDGMENT

This work is supported by two grants
(70NANB9H9178 and 70NANB10H168) from
Information Technology Lab of National Institute of
Standards and Technology (NIST).

Disclaimer: NIST does not endorse or recommend any

commercial product neither referenced in this paper nor

imply that the referenced product is necessarily the best.

REFERENCES

[1] Advanced Combinatorial Testing System (ACTS), 2010.
http://csrc.nist.gov/groups/SNS/acts/documents/comparison-
report.html.

[1] M. N. Borazjany, Y. Linbin, Y. Lei, R. Kacker, and R. Kuhn.
Combinatorial Testing of ACTS: A Case Study. In Proc. of the
5th IEEE International Conference on Software Testing,
Verifcation and Validation, ICST, pages 591-600, Montreal,
Canada, 2012.

[2] S. R. Dalal, A. Jain, N. Karunanithi, J. M. Leaton, C. M. Lott,
G. C. Patton, and B. M. Horowitz. Model-based testing in
practice. In Proceedings of the 21st international conference on
Software engineering , pages 285-294, New York, USA, 1999.

[3] L. S. G. Ghandehari, Y. Lei, T. Xie, R. Kuhn, and R. Kacker.
2012. Identifying Failure-Inducing Combinations in a
Combinatorial Test Set. In Proceedings of International
Conference on Software Testing, Verification and Validation,
IEEE Computer Society, Washington, DC, USA, pages 370-
379, 2012.

[4] M. Grindal , J. Offutt, Input parameter modeling for
combination strategies, Proceedings of the 25th conference on
IASTED International Multi-Conference: Software Engineering,
pages 255-260, Innsbruck, Austria,2007.

[5] M. Grindal, J. Offutt, and S. F. Andler. 2005. Combination
Testing Strategies: A Survey. Journal of Software Testing,
Verification and Reliability vol. 15, no. 3, pp. 167-199, 2005.

[6] R. Krishnan, S. Murali Krishna, and P. Siva Nandhan.
Combinatorial testing: learnings from our experience. ACM

SIGSOFT Software Engineering Notes, v.32 n.3, May 2007.

[7] D. R. Kuhn, R. Kacker, Y. Lei. Combinatorial and Random
Testing Effectiveness for a Grid Computer Simulator. presented
at the Mod Sim World, Virginia, USA, 2009.

[8] D. R. Kuhn and V. Okum. 2006. Pseudo-Exhaustive Testing for
Software. 30th NASA/IEEE Software Engineering Workshop,
pages 153-158, April 2006.

[9] D. R. Kuhn, D. Wallace, and A. Gallo, Software Fault
Interactions and Implications for Software Testing, IEEE
Transactions on Software Engineering, 30(6): 418-421, 2004.

[10] C. Nie and H. Leung. 2011. A survey of combinatorial
testing. ACM Computing Surveys (CSUR), v.43 n.2, pages 1-
29, January 2011

[11] V. Okun, Specification Mutation for Test Generation and
Analysis, PhD Dissertation, University of Maryland, 2004

[12] X. Qu, M. Cohen, and K. Woolf, Combinatorial interaction
regression testing: A study of test case generation and
prioritization. In Proceedings of the IEEE International
Conferance on Software Maintenance (ICSM). IEEE Computer
Society, 413–418, 2007.

[13] P. J. Schroeder, P. Bolaki, and V. Gopu. Comparing the fault
detection effectiveness of n-way and random test suites.
Proceedings of International Symposium on Empirical Software
Engineering, pages 49-59, August 19-20, 2004.

[14] I. Segall, R.Tzoref-Brill, and A. Zlotnick. 2012. Common
Patterns in Combinatorial Models. In Proc. of the 5th IEEE

International Conference on Software Testing, Verifcation and
Validation, ICST, pages 624-629, Montreal, Canada, 2012.

[15] I. Segall, R. Tzoref-Brill, and A. Zlotnick. Simplified Modeling
of Combinatorial Test Spaces. In Proc. of the 5th IEEE
International Conference on Software Testing, Verifcation and
Validation, ICST, pages 573-579, Montreal, Canada, 2012.

[16] Software-artifact Infrastructure Repository,
http://sir.unl.edu/portal/index.php, 2012.

[17] E. Wong and V. Debroy, A survey on software fault
localization, Technical Report UTDCS-45-09, Department of
Computer Science, University of Texas at Dallas, Nov. 2009.

http://csrc.nist.gov/groups/SNS/acts/documents/comparison-report.html
http://csrc.nist.gov/groups/SNS/acts/documents/comparison-report.html
http://barbie.uta.edu/~mehra/3%20Combination%20Testing%20Strategies.pdf
http://barbie.uta.edu/~mehra/3%20Combination%20Testing%20Strategies.pdf
http://sir.unl.edu/portal/index.php

