NIST

MNational Institute of
Standords ond Technology

Introducing Combinatorial Testing
in Large Organizations

Rick Kuhn

National Institute of
Standards and Technology
Gaithersburg, MD

ASTQB Software Testing Conference
March 26, 2014

What is NIST and why are we doing this?

e US Government agency, whose mission is to support US industry
through developing better measurement and test methods

e 3,000 scientists, engineers, and staff including 4 Nobel l[aureates

* Project goals — reduce testing cost, improve cost-
benefit ratio for testing

PAIERAS L, - STATE

N
/4' 5 u.‘

n 1 GEGRGNE'

UNIVERSITY

UN IVERSITY
--QF NDFJH TEXAS

8. AR EORE '
MB The Johns Hopkins University
.l.ﬂl.'-lll.l'l' .'.lll'.ll
[] Applied Physics Laboratory e e sortie o

What good Is combinatorial testing?

Joint project w/ Lockheed Martin

2.5 year study, 8 Lockheed Martin pilot projects in
aerospace software

Results: “Our Initial estimate Is that this method
supported by the technology can save up to 20%
of test planning/design costs if done early on a
program while increasing test coverage by 20% to
50%.”

We will discuss this and other examples

NIST

Motional Institute of
Standords and Technoelogy

How did we get here?

e NIST studied software failures in 15 years of
FDA medical device recall data

* What causes software failures?
* logic errors? calculation errors? inadequate -
input checking? interaction faults? Etc.

Interaction faults: e.g., failure occurs if
pressure < 10 && volume>300
(interaction between 2 factors)

Example from FDA failure analysis:

Failure when “altitude adjustment set on 0 meters
and total flow volume set at delivery rate of less than 2.2 liters per
minute.”

What does a 2-way fault look like in code?

How does an interaction fault manifest itself in code?
Example: altitude adj == 0 && volume < 2.2 (2-way interaction)

1T (altitude adj==0) {
// do something
iIT (volume<22) { faulty code! BOOM! }
else { good code, no problem}
} else {
// do something else

}
A test with altitude ad] == 0 and volume = 1 would find this

Again, ~ 90% of the FDA failures were 2-way or 1-way

NIST

Haotienal Institute of
Shandords and Technology

How are interaction faults distributed?

* Interactions e.g., failure occurs if
pressure < 10 (1-way interaction)
pressure < 10 & volume > 300 (2-way interaction)
pressure < 10 & volume > 300 & velocity =5 (3-way interaction)
e Surprisingly, no one had looked at interactions beyond 2-way before
e The most complex medical device failure reported required 4-way
interaction to trigger.

100

90

80

70

© .

L o Interesting, but that's
S % just one kind of

T\g 2 application!

30

20

10

0
1 2 3 4

Number of factors involved in faults

NS -

Matienal Institute of
Standords and Technalogy

Examples from the
National Vulnerability Database

Single variable, 1-way interaction
example: Heap-based buffer overflow in the SFTP protocol
handler for Panic Transmit ... allows remote attackers to
execute arbitrary code via a long ftps:// URL.

2-way Interaction
example: single character search string in conjunction with a
single character replacement string, which causes an "off by
one overflow"

3-way interaction
example: Directory traversal vulnerability when
register_globals is enabled and magic guotes is disabled
and .. (dot dot) in the page parameter

What about other applications?

Server (green)

% detected

100

90

80

70

60

50

40

30

20

10

0

Ay

L~

1

2 3 4
Number of factors involved in faults

These faults more
complex than medical
device software!!

Why?

NIST

MNational Institute of
Stendards ond Technology

Others?

Browser (magenta)

100

90

/

/

o

60

NS
a4

]

% detected

40

Y/

30

20

™S

10

0
1

2 3

4

Number of factors involved in faults

NIST

MNational Institute of
Stendards ond Technology

NASA Goddard distributed database (light blue)

Still more?

100

: —

e

90

v

80

70 17

o

60

% detected

N4

40 /
30

20

10

0
1

2 3

4

Number of factors involved in faults

NIST

Haotlonal Institute of

Stendards ond Technology

Even more?

FAA Traffic Collision Avoidance System module
(seeded errors) (purple)

% detected

100

90

80

70

60

50

40

30

20

10

0

Wz

iy

//// P

YA

//

/

1 2 3 4 5 6
Number of factors involved in faults

NIST

MNational Institute of
Stendards ond Technology

Finally

Network security (Bell, 2006) (orange)

. —
90 = | Curves appear to
80 // ///// be similar across
0 by | a variety of
/ application
60 .
L7 domains.

50 1

40
30 /

20 3

% detected

10

0
1 2 3 4 5 B

Number of factors involved in faults

NIST

MNational Institute of
Stendards ond Technology

70
60

/ Devices

- Browser

Sener
— NASA

— Network
Security

50
40
30

T ——
. / 7
/ / ___ Medical
7
I/

20
10

Cumulative percent of software failures

1 2 3 e 5 6

Number of factors involved in faults

* Number of factors involved in failures is small

 New algorithms make it practical to test these combinations
 We test large number of combinations with very few tests

: T
Interaction Rule e Z =
E;g--/f:’/ =1
Refers to how many parameters - |

are involved in faults: L LI S

Interaction rule: most failures are triggered by one or two
parameters, and progressively fewer by three, four, or more
parameters, and the maximum interaction degree is small.

Maximum interactions for fault triggering was 6

Popular “pairwise testing” not enough

More empirical work needed

Reasonable evidence that maximum interaction strength for

fault triggering is relatively small :
How does it help
me to know this?

How does this knowledge help?

If all faults are triggered by the interaction of t or fewer
variables, then testing all t-way combinations can
provide strong assurance.

(taking into account: value propagation issues, equivalence
partitioning, timing issues, more complex interactions, .. .)

Still no silver
bullet. Rats!

ﬂ

Natienal Institute of
Standards ond Technology

Let’s see how to use this knowledge In
testing. A simple example:

-~

[]
Font Bx
Fonk “haracter Spacing | Texk Effects
Fonk: Font style: Size:
Times Reqgular 12
Times [ﬁ] Fegular g [ﬁ]
Times Mew Roman Italic 9
Trebuchet M35 Bold 10
Tw Cen MT] 12 (]
Font color: Underling skyle:
Automatic | | (none W
[] strikethrough [] shadow [] small caps
[] Double strikethrough [] all caps
[] superscript [] Emboss [] Hidden
[] subscript [] Engrave
M /
Timnes
This iz a scalable printer Fant, The screen irage ray not ratch prnted autput,

Defaulk, ..

x|

Cancel

NIST

Motienal Institute of
Standords and Technelogy

How Many Tests Would It Take?

o There are 10 effects, each can be on or off
« All combinations is 210 = 1,024 tests
o What if our budget is too limited for these tests?

« Instead, let’s look at all 3-way interactions ...

NIST

Matienal Institute of
Standords and Technelogy

Now How Many Would It Take?

o There are [13]= 120 3-way interactions.

o Naively 120 x 23 = 960 tests.

o Since we can pack 3 triples into each test, we need
no more than 320 tests.

o Each test exercises many triples:

A
r \

0110000110
\ J

J \

Yo \

y
[OK, OK, what’s the smallest number of tests we need?}ﬂ

A covering array

All triples in only 13 tests, covering [1??] 23 =960 combinations

, A R Vo ~ . Each column is
Eachrowisatest {0]0]0J0]0[0]0FO]| O] 0] a parameter:
1 (1|31 1)1 1}111} o
L1110l rOporn |0 13 e — (T
1|01 |01 |01 |00y s - .
; 0 Q' O|1r1(1|lo]l0O]|oO = .
O/1/1I30|0|1]|0¢0 1|0y "
N =
ool 4o |1|o|1¢T 10 (e \)
1 |1|0x1|o0 b0 |(1)]0]1]0 E o o
olojof1]|1)1|00|1]|1] ==
D O 1 1 O D 1 O D 1 This is a scalable printer font, The screen imajj:jy not rnatch printed output,
0O/1/0x1|1|0|0¢l1|0]| 0>) o
1lolo|lo|lo|lOo|O|1|1]1
O|1|o|0]Ooj1|1]1]|0]1
e Developed 1990s
e Extends Designh of Experiments concept
e Difficult mathematically but good algorithms now NIST

MNational Institute of
Standards ond Technology

A larger example

Suppose we have a system with on-off switches. Software

must produce the right response for any combination of
switch settings:

Mational Insfitute of
Standards and Technelogy

How do we test this?

34 switches = 234 = 1.7 x 109 possible inputs = 1.7 x 10'° tests

Mational Insfitute of
Standards and Technelogy

What if we knew no failure involves more than
3 switch settings interacting?

34 switches = 234 = 1.7 x 109 possible inputs = 1.7 x 10° tests
If only 3-way interactions, need only 33 tests
For 4-way interactions, need only 85 tests

Mational Insfitute of
Standards and Technelogy

Cumulative percent of software failures

100
90
80
70

60 -

50
40
30
20
10

33 tests for this

range of fault
/ detection

V. — __
/ / \V
/ ____Medical
/ Devices
— Browser
Server
// / —— NASA
_/ / — Network
/ Security
1 2 3 4 5 6

Number of factors involved in faults

— 85 tests for this
range of fault
detection

That’s way
better than 17
billion!

Two ways of using combinatorial testing

Use combinations here

A== e e e __

FFFFF

or here
‘|
|
\
\J
Test case 0s CPU | Protocol C f ti
1 Windows | Intel | IPv4 ontiguration
2 Windows | AMD | IPv6
3 Linux | Intel | IPvé
4 Linux | AMD | IPv4
System
"| under test

MNaotional Institute of
Standards and Technology

Testing Configurations

e Example: app must run on any configuration of OS, browser,
protocol, CPU, and DBMS

 Very effective for interoperability testing,
being used by NIST for DoD Android phone testing

Browser Protocol
IE MySQL
Firefox Sybase
IE Oracle
Firefox MySQL
IE Sybase
Firefox Oracle
IE MySQL

Firefox Sybase

—

2
3
4
o
6
7
8
9

Firefox Oracle

Y
=

Firefox Oracle

Motienal Institute of
Standords and Technelogy

Testing Smartphone Configurations

Some Android configuration options:

int HARDKEYBOARDHIDDEN_NO;

int HARDKEYBOARDHIDDEN_UNDEFINED;
int HARDKEYBOARDHIDDEN_YES;

int KEYBOARDHIDDEN_NO;

int KEYBOARDHIDDEN_UNDEFINED;
int KEYBOARDHIDDEN_YES;

int KEYBOARD_12KEY;

int KEYBOARD_NOKEYS;

int KEYBOARD_QWERTY,;

int KEYBOARD_UNDEFINED;

int NAVIGATIONHIDDEN_NO;

int NAVIGATIONHIDDEN_UNDEFINED;
int NAVIGATIONHIDDEN_YES;

int NAVIGATION_DPAD;

int NAVIGATION_NONAY;

int NAVIGATION_TRACKBALL;

int NAVIGATION_UNDEFINED;

int NAVIGATION_WHEEL,;

int ORIENTATION_LANDSCAPE;

int ORIENTATION_PORTRAIT;

int ORIENTATION_SQUARE;

int ORIENTATION_UNDEFINED;

int SCREENLAYOUT_LONG_MASK;

int SCREENLAYOUT_LONG_NO;

int SCREENLAYOUT_LONG_UNDEFINED;
int SCREENLAYOUT_LONG_YES;

int SCREENLAYOUT_SIZE_LARGE;

int SCREENLAYOUT_SIZE_MASK;

int SCREENLAYOUT_SIZE_NORMAL;
int SCREENLAYOUT_SIZE_SMALL;

int SCREENLAYOUT_SIZE_UNDEFINED;
int TOUCHSCREEN_FINGER,;

int TOUCHSCREEN_NOTOUCH;

int TOUCHSCREEN_STYLUS;

int TOUCHSCREEN_UNDEFINED;

NIST

Naotienal Institute of
Standards ond Technology

Configuration option values

Parameter Name Values # Values
HARDKEYBOARDHIDDEN | NO, UNDEFINED, YES 3
KEYBOARDHIDDEN NO, UNDEFINED, YES 3
KEYBOARD 12KEY, NOKEYS, QWERTY, UNDEFINED 4
NAVIGATIONHIDDEN NO, UNDEFINED, YES 3
NAVIGATION DPAD, NONAV, TRACKBALL, UNDEFINED, 5
WHEEL
ORIENTATION LANDSCAPE, PORTRAIT, SQUARE, UNDEFINED 4
SCREENLAYOUT_LONG MASK, NO, UNDEFINED, YES 4
SCREENLAYOUT _SIZE LARGE, MASK, NORMAL, SMALL, UNDEFINED 5
TOUCHSCREEN FINGER, NOTOUCH, STYLUS, UNDEFINED 4

Total possible configurations:

3Xx3x4x3x5x4x4x5x4=172,800 ':‘"Sf

Standards ond Technology

Number of configurations generated for t-way

Interaction testing, t = 2..6

t # Configs |% of Exhaustive

2 29 0.02
3 137 0.08
4 625 0.4
5 2532 1.5
6 9168 5.3

NIST

Natienal Institute of
Standards ond Technology

What tools are available?

Covering array generator — basic tool for test input or
configurations;

Sequence covering array generator — new concept; applies
combinatorial methods to event sequence testing

Combinatorial coverage measurement — detailed analysis of
combination coverage; automated generation of supplemental
tests; helpful for integrating ¢/t with existing test methods

Domain/application specific tools:
e Access control policy tester
 .NET config file generator

NIST

Naotienal Institute of
Standards ond Technology

New algorithms

Smaller test sets faster, with a more advanced user interface
First parallelized covering array algorithm
More information per test

IPOG ITCH (IBM) Jenny (Open Source) TConfig (U. of Ottawa) TVG (Open Source)
T-Way
Size Time Size Time Size Time Size Time Size Time
2 100 0.8 120 0.73 108 0.001 108 >1 hour 101 2.75
3 400 0.36 2388 1020 413 0.71 472 >12 hour 9158 3.07
4 136 — 3.0 1484 400 1536 3.54 1476 >21 hour 64696 127
7 >1)
5 (42260 | 18s NA > 4580 43.54 NA >1 day 313056 1549
N d ay P
6 m%m NA——>1 day 11625 470 NA >1 day 1070048 12600

Traffic Collision Avoidance System (TCAS): 273241102

Times in seconds

NIST

HNaotional Institute of
Stendards and Technology

ACTS - Defining a new system

New System Form

| Parameters iReIatiDns Constrainks

System Mame TCAS

Systern Parameker

Farameter Mame |

Parameter Type |Elnn:|lean

Parameter Yalues

Selected Parameter Boolean |

simple Value |

i)

Fange Yalue |

| AddtoTable |

Saved Parameters

Paramater Name

Cur_Mertical_Sep
High_Confidence
Twio_of _Three_Reports
Cuwn_Tracked_alk
Okher_Track_AlE
Cwwn_Tracked_Alk_Rate
alk_Layer Malue
Up_Separation
Daown_Separation
Qther_RAC
Cther_Capabiliky:
lirnb_Inhibit

Parameter Yalus
[299,300,601]
[true,False]
[true,false]

[1,2]
[1,2]
[600,601]
[0,1,2,3]

[0,399,400,499,500,639,640, 7.
[0,399,400,499,500,639,640,7. ..
[MO_INTENT,DO_MOT_CLIME, ...

[TCAS CA,Other]
[true,fFalse]

Add Syskem H Cancel

Remove ” Meladify

NIST

Haotlonal Institute of

Standards ond Technology

Variable interaction strength

New System Form

]

Parameters

Strength

DEher Track Al
Owan_Tracked_Alk_Rate
Alk_Layer_Valus

Lp_ Separation

Down . Separation
Other _RAC
Cther_Capability
Clirmb_Inhibit

Cur_Mertical_Sep |4

Twio_of _Three_Reports
Cuwn_Tracked_alk

Pararmaker Mames

Curertical Sep High Caonfidence; Twoof
Alk_Layer_Walue,Up_Separation, Down_Sepa... 3

Strength

NIST

MNational Institute of
Standards ond Technology

Constraints

Meadify Lo

|'|-l-:|l|:I.n-| Rokibares | Conabonis |

“abbie dbdes Corslracks
F“E‘}I_!_bﬂd_ ?_Iﬁﬁ LF =R 0S4 Lornssanrs
Toretrai Frkbor
-_"b"'- [NET I.-.:';:-';"'"-"

Laed Ao T

| iz | | Taned |

NIST

Hatlonal Institute of
Standards ond Technology

Covering array output

FireEye 1.0- FireEye Main Window

System Edit Operations Help
& - | [1o : A ;
E e H._ &, Algorithm | IPCIG v| strength 2 v Q
s ‘ Test Result | 1 & statistics| —
L B R s e e L e e T e O e o) e e e T SR R
. adl| cur_v... | HiGH_... | Two_... | own_... [otrer... | own_.. | AT [e se.. | pown... | oTHE... |otHER.. | cume.
B-i ur i T TE true true 1 1 £00 0 0 0 NO_INT... TCAS_TA true
e 7 i false False 2 2 £01 1 0 399 DO_MO... OTHER False
g T B true fake |1 2 600 z D 400 DO_MNO... OTHER true
i 4 |zo9 False true 2 1 601 3 0 499 DO_ND... TCAS TA False
&2 Hih Confidence 5 |00 falke true 1 1 &0l D 0 500 DO_NO... OTHER true
g 6 |ent False true 2 2 £00 1 0 63 NO_INT... TCAS_TA False
& False T 2 false false 2 1 601 2 0 640 NO_INT... TCAS_TA true
&£ Two, of Three_Reports 8 |ao0 true False 1 2 £00 3 0 739 NO_INT... OTHER False
e e 3 |80t true fake |2 1 601 0 0 740 DO_ND... TCAS TA true
& Fale 10 |z99 true true 1 2 600 1 0 540 DO_MO... OTHER False
1.2 On_Tracked_al 11 300 False true 1 2 £00 2 399 0 DO_ND... TCAS TA False
el - 1z__|ent true falke 2 1 601 3 399 399 DO_NO... TCAS TA true
e 13__|799 False true 2 1 601 0 399 400 NO_INT... OTHER False
&£ ther_Tracked_Ak 14 |300 true False 1 2 £00 1 399 499 DO_MO... OTHER true
el - 15 |60 true iy 2 600 2 399 500 DO_MO... TCAS TA False
N 165|799 true Fale 1 1 &0l 3 399 63 DO_MNO... OTHER true
B2 Own,_Tracked_at_Rate | |——l?%8 true true 1 2 600 D 399 £40 DO_MD... OTHER False
e 15|61 False true 2 1 &01 1 399 73 DO_ND... TCAS TA true
e 0l 19 |799 False true 1 2 600 2 399 740 NO_INT... OTHER False
e 20300 False False 2 1 601 3 399 840 NO_INT... TCAS_TA true
e 21 |50 true ke 2 1 &01 1 400 0 DO_MD... OTHER true
e 1 22299 False true 1 2 600 0 400 399 NO_INT... TCAS TA False
e 23|30 * * * * * 3 400 400 DO_MO... TCAS TA *
e ® 3 24 |80 N N N N B 2 400 499 MO_INT... * *
£ Un_Separation —II__zs__|Jz95 * * * * * 1 400 500 NO_INT... * *
]"__._._,;, 26 {300 N N i 5 5 0 400 539 DO_NO.., * *
@ 399 27 |e0l i . 4 x ’ 3 400 &40 DO_ND,,, * *
P 28|29 * * * * * 2 400 739 DO_MD... * *
iepees 23 |30 * * * * * 1 400 740 DO_MD... * -
% 500 30 Js01 i i B * * 0 400 540 DO_NO. ., * * F
g [31 [eo9 true true 1 1 600 3 422 0 NO_INT... OTHER true
S i 32 lz00 False false 2 2 B0l Z 499 399 DO NO... TCAS TA false ™
| ? £ | 3

NIST

Haotlonal Institute of

Standards ond Technology

Output options

Mappable values Human readable
Degree of interaction Degree of interaction coverage: 2
coverage: 2 Number of parameters: 12
Number of parameters: 12 Maximum number of values per
Number of tests: 100 parameter: 10

Number of configurations: 100

Configuration #1:

0O00000O0OO0O0O0OO0OOO0OO
111111101111 1 = Cur_Vertical_Sep=299
201010202210 2 = High_Confidence=true
010101303101 3 = Two_of_Three_Reports=true
110001004210 4 = Own_Tracked Alt=1
210110105001 5 = Other_Tracked Alt=1
011101206000 6 = Own_Tracked_Alt_Rate=600
101010307011 7 = Alt_Layer_ Value=0
201101008100 8 = Up_Separation=0
000010109211 9 = Down_Separation=0
110010210101 10 = Other RAC=NO_INTENT
Etc 11 = Other_Capability=TCAS CA
12 =

Cllmb_lnhlblt:true ng

Naotienal Institute of
Standards ond Technology

ACTS Users

Defense

3 Airlines
H Defenzel/govt
O Electronics

O Finance
W \ideo games

O HVALC
T
=g S O Language
. e W liedipharma
e
Information S B

Technology Aok

O Tranzportation

NIST

murenal Institute of
Standords ond Technology

How many tests are needed?

Number of tests: proportional to vt log n
for v values, n variables, t-way interactions
Thus:

- Tests increase exponentially with interaction strength t
 But logarithmically with the number of parameters

Example: suppose we want all 4-way combinations of n
parameters, 5 values each:

5000
4500 //0
4000
3000
-
2000 r g
1500
1000
500
° | | | | NIST
10 20 30 40 50
) Mational Institute of
Variables Standords and Technelegy

How do we automate checking
correctness of output?

* Creating test data is the easy part!

 How do we check that the code worked correctly
on the test input?

 Crash testing server or other code to ensure it does not crash for any
test input (like ‘fuzz testing’)
- Easy but limited value

* Built-in self test with embedded assertions — incorporate assertions in
code to check critical states at different points in the code, or print out
important values during execution

* Full scale model-checking using mathematical model of system and

model checker to generate expected results for each input - expensive
but tractable

NIST

Mational Institute of
Shandords and Technelogy

Crash Testing

- Like “fuzz testing” - send packets or other input
to application, watch for crashes

- Unlike fuzz testing, input Is non-random;
cover all t-way combinations

- May be more efficient - random input generation
requires several times as many tests to cover the
t-way combinations in a covering array

Limited utility, but can detect
high-risk problems such as:
- buffer overflows

- server crashes
NIST

Mational Institute of
Shandords and Technelogy

Ratio of Random/Combinatorial Test Set
Required to Provide t-way Coverage

@ 4.50-5.00
W 4.00-4.50
0 3.50-4.00
@ 3.00-3.50
0 2.50-3.00
W 2.00-2.50
0 1.50-2.00
0 1.00-1.50
@ 0.50-1.00
0 0.00-0.50

Ratio

5.00 1/

4.50-
4.00-
3.50
3.00
2.50
2.00-
1.50 1
1.00
0.501
0.00-

- nval=10

nva=6 yajues per

variable

2w ay 3way vay nval=2

Interactions

NIST

Motional Institute of
Shandords and Technelogy

Embedded Assertions

Simple example:
assert(x '=0); // ensure divisor Is not zero

Or pre and post-conditions:
[requires amount >= 0O;

/ensures balance == \old(balance) - amount &&
\result == balance;

NIST

Mational Institute of
Shandords and Technelogy

Embedded Assertions

Assertions check properties of expected result:

ensures balance == \old(balance) - amount
&& \result == balance;

*Reasonable assurance that code works correctly across
the range of expected inputs

May identify problems with handling unanticipated inputs

Example: Smart card testing
« Used Java Modeling Language (JML) assertions
e Detected 80% to 90% of flaws

NIST

Mational Institute of
Shandords and Technelogy

NIST

Notional Institute of
Standards and Technoelogy

Using model checking to produce tests

-~

he system can nev
get in this statel

8L

g

2l

1‘

here's how ...

Yes it can, ancﬂ\

J

System
source

mufavt
nacs

I

generate
mutants

model

\ checker

conrfer-

examples

Complete
i Tests

Run

o Tests

i Cmnbine .scencm‘:’oi

scenarios

test

" results

generate
test input

fesf cases -
TDA -

Black & Ammann, 1999

® Model-checker test
production:

If assertion is not true,
then a counterexample
IS generated.

® This can be
converted to a test
case.

Testing Inputs .

o 1raffic Collision Avoidance
System (TCAS) module

« Used In previous testing research
« 41 versions seeded with errors

o 12 variables: 7 boolean, two 3-value, one 4-
value, two 10-value

« All flaws found with 5-way coverage

« Thousands of tests - generated by model
checker in a few minutes

A R

NIST

MNational Institute of
Standards ond Technology

2-way:
3-way:.
4-way:.
S-way:
6-way:

Tests generated

Test cases
156

461

1,450
4,309
11,094

|
i

Tests

12000

10000

8000

6000

4000

2000

2-way

3-way

4-way

S-way

6-way

NIST

Results i gl &

* Roughly consistent with data on large systems

« But errors harder to detect than real-world examples

100%
80%
60%
40%
20%

0%

Detection Rate for TCAS Seeded

Errors

/

%

i

y

—o— Detection
rate

Fault Interaction level

2way 3way 4 way 5way 6 way

Tests

Tests per error

350.0
300.0
250.0 /
200.0

150.0 / —&— Tests per error
100.0 //
500 /

0.0 9//T

2way 3way 4way 5Sway 6way

Fault Interaction level

Bottom line for model checking based combinatorial testing:
Requires more technical skill but can be highly effective

/I—Iow IS this A
stuff useful In
the real world

Ch
£

Example 1. Document Object Model Events

DOCUMENT

LINK ANCHOR

FORM

TEXT
SELECT
RADIO OPTIONS

CHECKBOX BUTTON
TEXTAREA RESET

PASSWORD SUBMIT

DOM is a World Wide Web
Consortium standard for
representing and interacting
with browser objects

NIST developed conformance
tests for DOM

Tests covered all possible
combinations of discretized
values, >36,000 tests

Question: can we use the
Interaction Rule to increase
test effectiveness the way we
claim?

NIST

Maotional Institute of
Standards and Technoelogy

Document Object Model Events
Original test set:

Event Name Param. Tests
Abort 3 12 Load 3 24
Blur 5 24 MouseDown 15 4352
Click 15 4352 MouseMove 15 4352
MouseOut 15 4352
Change 3 12
: MouseOver 15 4352
dbliClick 15 4352
: MouseUp 15 4352
DOMACctivate 5 24 M Wheel 14 1024
DOMAttrModified 8 16 Rouste ee 5 s
DOMCharacterDataMo 8 64 es_e
g Resize 5 48
dified scroll 5 48
DOMElementNameCha 6 8 cro
Select 3 12
nged Submit 3 12
DOMFocusin 5 24 T“ :“' . .
DOMFocusOut 5 24 Ue’l(t ”SUt > o
DOMNodelnserted 8 128 Wr;]oal 15 4096
DOMNodelnsertedintoD 8 128 T teleT - 36626
ocument otal fests
DOMNodeRemoved 8 128
DOMNodeRemovedFrom 8 128
Document
DOMSubTreeModified 8 64 . .
Error 3 12 Exhaustive testing of
Focus 5 24 . ng
KeyDown 117 equivalence class values _
Hotlonal Instifute of
KeyUp 1 17 Stondards and Technology

Document Object Model Events

Combinatorial test set:

Test Results

t Tests %0 0 Not
Orig. Pass Fail 0

Run

2 702 1.92% 202 27 473

3 1342 3.6/% 786 27 529

1818 4.96% 437 72 1309

S 2742 7.49 908 72 1762

6 4227 1{)'/054 1803 72 2352

All failures found using < 5% of
original exhaustive test set

M < — 0 —CE J E O

~ 3O 0 3 = =2

100

0

&0

70

60

20

40

30

20 &

1 2 3 4 5 6
Interaction strength
Wed. Dev. Broveer
_____ SEF-EF TTTIITIIL] N_ﬂ:lE.A
e NW Sec ———-DON

Hatienal Institute of
Standards and Technoelogy

Example 2: Problem: unknown factors
causing failures of F-16 ventral fin

Low Altitude
Navigation &
Targeting
Infrared for
Night

LANTIRN Pod
Location

Ventral Fin Ao04-14639006
Figure 1. LANTIRN pod carriage on the F-16.

It’s not supposed to look like this:

A04-14639001
Figure 2. F-16 ventral fin damage on flight with LANTIRN

Can the problem factors be found efficiently?

Original solution: Lockheed Martin engineers spent many months with
wind tunnel tests and expert analysis to consider interactions that could

cause the problem
Combinatorial testing solution: modeling and simulation using ACTS

Parameter Values

Aircraft 15, 40

Altitude 5k, 10k, 15k, 20k, 30k, 40k, 50k

hi-speed throttle, slow accel/dwell, L/R 5 deg
side slip, L/R 360 roll, R/L 5 deg side slip, Med
accel/dwell, R-L-R-L banking, Hi-speed to Low,

Maneuver 360 nose roll

Mach (100t") 40, 50, 60, 70, 80, 90, 100, 110, 120

Results

Interactions causing problem included Mach points .95
and .97; multiple side-slip and rolling maneuvers
Solution analysis tested interactions of Mach points,
maneuvers, and multiple fin designs

Problem could have been found much more efficiently
and quickly

Less expert time required

Spreading use of combinatorial testing in the
corporation:
e Community of practice of 200 engineers
e Tutorials and guidebooks
* |nternal web site and information forum

Example 3: Laptop application testing

Connection Sequences

P-1 (USB- P-2 (USB- P-3 (USB-

1 Boot RIGHT) BACK) LEFT) P-4 P-5 App Scan
P-3 (USB- P-2 (USB- P-1 (USB-
2 Boot App Scan P-5 P-4 RIGHT) BACK) LEFT)
P-3 (USB- P-2 (USB- P-1 (USB-
3 Boot RIGHT) LEFT) BACK) App Scan P-5 P-4

etc...

Event Sequence Testing

e Suppose we want to see if a system works correctly regardless
of the order of events. How can this be done efficiently?

e Failure reports often say something like: 'failure occurred
when A started if B is not already connected'.

e Can we produce compact tests such that all t-way sequences
covered (possibly with interleaving events)?

Event | Description 1
a connect flow meter

connect pressure gauge

connect satellite link

connect pressure readout

start comm link

-~ (D [Q O | T

boot system

Sequence Covering Array

e With 6 events, all sequences = 6! = 720 tests

* Only 10 tests needed for all 3-way sequences,
results even better for larger numbers of events

e Example: .*c.*f.*b.* covered. Any such 3-way seq covered.

a b C d e f
f e d C b a
d e f a b C
C b a f e d
b f a d C e
“ e C d a f b
a e f C b d
“ d b C f e a
“ C e a d b f NIST
f b d a e C o el e

Sequence Covering Array Properties

e 2-way sequences require only 2 tests
(write events in any order, then reverse)

e For > 2-way, number of tests grows with log n, for n events
e Simple greedy algorithm produces compact test set

* Not previously described in CS or math literature

300

250 p—""
200 //
2-wa
Tests = iy
/ = wA4-Way
100 /

>0 A/ = — ——_

O-M

5 10 20 30 40 50 60 70 80

Number of events

NIST

Maotional Institute of
Stondords ond Technology

Example 4. EXxisting Test Sets

e Will this method disrupt my test process?
* What if | already have a large set of tests?
Does this approach add anything?

 NASA spacecraft software test set, approx
7,500 tests

e Does it already provide 2-way, 3-way, 4-way
coverage?

Measuring Combinatorial Coverage

JCSISRREYET S Variable pairs | Variable-value Coverage
combinations

covered

00, 01, 10

bc

00, 11 .50

cd 00, 01, 10, 11 1.0

100% coverage of 33% of combinations
75% coverage of half of combinations
50% coverage of 16% of combinations

NIST

MNotional Institute of
Standards and Technoelogy

Graphing Coverage

Coverage

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

Measurement

Coverage for fie

figl.cev
Total 2-way =0.792

Cov>=0.00=
Cov>==005
Cov==01

=k

no

Cov>=01
Cov==0
Cov==0

Cov >=0.
Cov >=10.
Cov >=0.

Cov ==10.

/A

— Cov >=0.
> Cov >=10.
— Cov ==

N Cov ==

\ Cov >=
Cov ==
\ Cov ==

uﬁﬁﬁﬁﬁ???%?%?¥?§"""

ﬂﬂﬂﬂﬂﬂ

3% 0% 51 1 5 08 01 o B 8 3 o R 6 8 OB R 1

\ Emr}
Cov >= EI' 95

BRBERBEBRBEE38888383888

=R =l =l =R === === ettt el

Cov>=100=2%

— Zway

Jway

0.00 0.10 0.20 0.30 0.40 0.50 0.60
0.05 0.15 0.25 0.35 0.45 0.55 0.65

Combinations

100% coverage of 33% of combinations
75% coverage of half of combinations
50% coverage of 16% of combinations

0.80

0.85

0.80 1.00
0.35

Bottom line:
All combinations
covered to at least 50%

NIST

Haotienal Institute of
Standards and Technoelogy

Coverane

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

Adding a test

2.00

0.05

0.1a

0.15

0.20 0.30 0.40 0.30 2.60 0.70 0.80 2.80
0.25 0.35 0.45 0.55 0.65 0.75 0.85

Combinations

Coverage after adding test [1,1,0,1]

0.85

1.00

i

3
;
3

Cov>==0.
Cov>=0.
Cov ==0.
Cov>=0.
Cov==0
Cov =0
Cov ==0.
Cov ==0.
Cov >=0.
Cov >=0.
Cov >==0.
Cov >=0.
Cov==0.
Cov>=0.
Cov ==0.
Cov ==0.
Cov ==0.
Cov ==0.
Cov==0.
Cov>==09
Cov>=1.00=3%6

— Zway
Jway

RNF2RS

o &
EEEEEEEEREEEEEEEEEED

&8

BREASRDRG

O OOOO stk b b b
LEELLEEESEEEEEEEEEEEE

NIST

Haotienal Institute of
Standards and Technoelogy

Coverage

Adding another test

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

.00 .10 0.20 0.30 0.40 0.50 1.60 .70
2,05 015 0.25 (.35 0.45 0.55 0.65 2.75

Combinations

Coverage after adding test [1,0,1,1]

0.85

0.80

1.00

|

3
s
&

Cov ==0.
Cov>=0.
Cov ==0.
Cov ==0.
Cov==0
Cov>==0
Cov >=0.
Cov==10.
Cov==10_
Cov ==
Cov==0.
Cov==0.
Cov >=10.
Cov >=10.
Cov ==0.
Cowv >=0.
Cowv >=10.
Cov>=085

BREIRS

W nmwuwnnn ?%?%II nnnnu

BASRDRA
HEREEREEEREEEEEEEREEEE R

COOO bk b b
BHRREESEEEEEEEEEEE8E8Es

o0
22
'H’V
[=]=]
?E

Cov>=1.00=56=083
— 2'\.‘!'3}'
Jway

NIST

Haotienal Institute of
Standards and Technoelogy

Additional test completes coverage

Coverage

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

0.00

Coverage after adding test [1,0,1,0]

0.05

.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45 J.55
Combinations

All combinations covered to 100% level,
so this is a covering array.

Coverage for fie
Total 2-way =1.000
Cov>=000=6%=1.00
Cov>=005=6%=1.00
Cov >=0.10=6%6=1.00
Cov>=015=6%6=1.00
Cov>=020=6%=1.00
Cov>=025=6%6=1.00
Cov >=030=6%6=1.00
Cov>=035=6%=1.00
Cov >=040=6%6=1.00
Cov>=045=6%6=1.00
Cov >=050=6%=1.00
Cov>=055=6%=1.00
Cov >=060=6%=1.00
Cov >=065=6%6=1.00
Cov>=070=6%=1.00
Cov>=075=6%6=1.00
Cov >=080=6%6=1.00
Cov>=085=6%6=1.00
Cov>=090=6%6=1.00
Cov>=095=6%6=1.00
Cov:>=1.00=6%6=1.00
— Zway

Iway

NIST

Haotienal Institute of

Standards and Technoelogy

Combinatorial Coverage Measurement

s e
NIST Combinatorial Coverage Measurement

Auto-detect N tests, N parms

Number of tests 7489 = I

—

|

Number of parameters -E @ Detect all values automatically Set boundaries for equivalence classes
Set number oftests and parameters | pesemaer 10 = HPrev l [blewd] Nclasses | set | Hie |D :| = | ||SE"*"'= bound |

Values for this parameter:

[Load inputfile] [Showinputﬁle] Iﬂ'-1

7489 tests, 82 parameters loaded

Stereo7485dE? cv
l Compute 2-way coverage l Tolal 3-way =0.000
0.5 Cov >=0.00= 8856088560 = 1.000
Cov >=0_05= 8856028560 = 1.000
L Compute 3-way coverage J 08 L Cov >=0.10= 82560/28560 = 1.000
'l Cov >=0.15=88560'E8560 = 1.000
Cov >=0.20= 8856088560 = 1.000
| Clearchan | | Savechan | 07 Cov >= 025~ BBSEY/BE560 — 1.000
Cov >=0.30= 83547788560 = 1.000
Cov »>=0_35=88505/88560 = 0999
[Exit] 06 Cov >=0.40=88380/88560 = 0998
o Cov >=0.45= 83041788560 = 0 994
Chart = 05 Cov >=0.50=87762/88560 = 0.991
. . . o =] =mmm’=
X = proporion of combinations z ch:i:g:g:m:g:%
Y = combination variable-value coverage O Cov >=0.65=73116/28560 = 0.826
04 Cov >=0_70=T1208"88560 = 0804
2 way stats: % >=g'g=mmm =E‘$
" >=0.80= =0
Combinations: 3.321 03 Cov >=0.85=53154/88560 = 0.668
Varjval coms: 14,761 Cov 2095 463808560 - 0529
Total coverage: 0.940 02 Cov >=1.00= 4686988560 = 0529
— Zway
01 — Jway
3way stats: 0
Somb|r|13hons:§»§é5iﬁ% 0.00 0.10 020 030 0.40 0.50 0.60 0.70 0.80 080 1.00
arfval coms: gl 0.05 015 0.25 0.35 045 0.55 0.65 075 0.85 0.85
Total coverage: 0.831 Combinations

NIST

MNotional Institute of
Standards and Technoelogy

Lessons Learned and Needs

Education and training materials — tutorial, textbook

Greater availability of tools to support combinatorial
testing — open sourcing 5 tools

Modify approaches to using combinatorial testing —
integrating combinatorial testing with other test
practices; ability to adopt CT partially or gradually
— measurement tool

Incorporate combinatorial methods into DoD guidance
and industry standards; develop a community of
practice

— We would be happy to work with ASTQB and others!

Where do we go next?

e “Internet of things” — testing problem enormous
e \Vast number of interacting components
 Combinatorial testing is a natural fit

* Cyber-physical systems
e Safety aspects
* Another natural fit with combinatorial methods

e Test development environment
* Define the data model — critical for testing
* Project with CMU

* Will be open source with all other tools
NIST

Maotienal Institute of
Shandords and Technelogy

Please contact us

if you are
interested.
Rick Kuhn Raghu Kacker
kuhn@nist.gov raghu.kacker@nist.gov

http://csrc.nist.gov/acts

NIST

Institute of
Standards ond Technology

BACKUP SLIDES FOR
ADDITIONAL
DISCUSSION

Background: Interaction Testing and
Design of Experiments (DOE)

Complete sequence of steps to ensure appropriate data will be
obtained, which permit objective analysis that lead to valid
conclusions about cause-effect systems

Objectives stated ahead of time
Opposed to observational studies of nature, society ...
Minimal expense of time and cost
Multi-factor, not one-factor-at-a-time
DOE implies design and associated data analysis

Validity of inferences depends on design
A DOE plan can be expressed as matrix

Rows: tests, columns: variables, entries: test values or
treatment allocations to experimental units

NIST

Naotienal Institute of
Standards ond Technology

Where did these ideas
come from?

Scottish physician James Lind
determined cure of scurvy

Ship HM Bark Salisbury in 1747

12 sailors “were as similar as | could have them”

6 treatments 2 sailors for each — cider, sulfuric acid, vinegar,
seawater, orange/lemon juice, barley water

Principles used (blocking, replication, randomization)

Did not consider interactions, but otherwise used basic
Design of Experiments principles

NIST

Natienal Institute of
Standards ond Technology

Key features of DoE

Blocking

Replication
Randomization

Father of DOE:
R A Fisher, 1890-1962, British geneticist

Orthogonal arrays to test interactions between factors

Test

© 00 N oo g h~A W DN PP

_U
=

W W w NN DNdNDN PP R

o
N

wWw N P W NP WwWDN P

o
w

N W kP, WL, N PP N W

Each combination
occurs same number
of times, usually once.

Example: P1, P2=1,2

NIST

Naotienal Institute of
Standards ond Technology

Four eras of evolution of DOE

Era 1:(1920’s ...): Beginning in agricultural then animal science,
clinical trials, medicine

Era 2:(1940’s ...): Industrial productivity — new field, same basics

Era 3:(1980’s ...): Designing robust products — new field, same
basics

Then things begin to change . ..
Era 4:(2000’s ...): Combinatorial Testing of Software

NIST

Naotienal Institute of
Standards ond Technology

Agriculture and biological investigations-1

System under investigation

Crop growing, effectiveness of drugs or other treatments
Mechanistic (cause-effect) process; predictability limited
Variable Types

Primary test factors (farmer can adjust, drugs)

Held constant

Background factors (controlled in experiment, not in field)

Uncontrolled factors (Fisher’'s genius idea; randomization)
Numbers of treatments

Generally less than 10
Objectives: compare treatments to find better

Treatments: qualitative or discrete levels of continuous NIST

Naotienal Institute of
Standards ond Technology

Agriculture and biological investigations-2

Scope of investigation:

Treatments actually tested, direction for improvement
Key principles

Replication: minimize experimental error (which may be large)
replicate each test run; averages less variable than raw data

Randomization: allocate treatments to experimental units at
random; then error treated as draws from normal distribution

Blocking (homogeneous grouping of units): systematic effects
of background factors eliminated from comparisons

Designs: Allocate treatments to experimental units

Randomized Block designs, Balanced Incomplete Block
Designs, Partially balanced Incomplete Block Designs

NIST

Naotienal Institute of
Standards ond Technology

Robust products-1

System under investigation

Design of product (or design of manufacturing process)
Variable Types

Control Factors: levels can be adjusted

Noise factors: surrogates for down stream conditions

AT&T-BL 1985 experiment with 17 factors was large
Objectives:

Find settings for robust product performance: product lifespan
under different operating conditions across different units

Environmental variable, deterioration, manufacturing variation

NIST

Naotienal Institute of
Standards ond Technology

Robust products-2

Scope of investigation:

Optimum levels of control factors at which variation from noise
factors is minimum

Key principles

Variation from noise factors

Efficiency in testing; accommodate constraints
Designs: Based on Orthogonal arrays (OAS)

Taguchi designs (balanced 2-way covering arrays)

[This stuff is great!

Let's use it for softwarel

Orthogonal Arrays for
Software Interaction Testing
Functional (black-box) testing
Hardware-software systems

|dentify single and 2-way combination faults
Early papers

Taguchi followers (mid1980’s)
Mandl (1985) Compiler testing
Tatsumi et al (1987) Fujitsu
Sacks et al (1989) Computer experiments
Brownlie et al (1992) AT&T
Generation of test suites using OAs

OATS (Phadke, AT&T-BL)

NIST

Naotienal Institute of
Standards ond Technology

Interaction Failure Internals

How does an interaction fault manifest itself in code?

Example: altitude adj == 0 && volume < 2.2 (2-way interaction)

1T (altitude adj==0) {
// do something
iIT (volume<22) { faulty code! BOOM! }
else { good code, no problem}

} else {

// do something else

}
A test that included altitude adj == 0 and volume =1

would trigger this failure NIST

Haotienal Institute of
Shandords and Technology

NIST

Matienal Institute of

What's different about software? s

Traditional DoE

e Continuous variable results
e Small number of parameters

e [nteractions typically increase
or decrease output variable

DoE for Software

e Binary result (pass or fail)
e Large number of parameters

e Interactions affect path
through program

Does this difference
make any difference?

: : : : NIST
So how did testing interactions e

work in practice for software?

. Pairwise testing commonly applied to software

. Intuition: some problems only occur as the result of
an interaction between parameters/components

. Tests all pairs (2-way combinations) of variable
values

. Pairwise testing finds about 50% to 90% of flaws

Sounds pretty good!

ﬂ

[90% of flaws!

: NIST
Model checking example i

—— specification for a portion of tcas - altitude separation.
—— The corresponding C code i1s originally from Siemens Corp. Research
—- Vadim Okun 02/2002
MODULE main
VAR
Cur_Vertical Sep : { 299, 300, 601 };
High_Confidence : boolean;

init(alt_sep) := START_;
next(alt_sep) := case
enabled & (intent_not known | !tcas equipped) : case
need upward RA & need downward RA : UNRESOLVED;
need upward RA : UPWARD_RA;
need downward RA : DOWNWARD RA;
1 - UNRESOLVED;

esac;
1 - UNRESOLVED;
esac;

SPEC AG ((enabled & (intent _not known | 'tcas equipped) &
'need _downward RA & need upward RA) -> AX (alt_sep = UPWARD RA))
-- “FOR ALL executions,

-— IF enabled & (intent_not known
-— THEN 1n the next state alt _sep = UPWARD RA”

The usual logic operators,plus temporal:

Computation Tree Logic NIST

Shumsdards and Tachmsiogy

A ¢ — All: ¢ holds on all paths starting from the
current state.

E ¢ — Exists: ¢ holds on some paths starting from
the current state.

G ¢ — Globally: ¢ has to hold on the entire
subsequent path.

F ¢ - Finally: ¢ eventually has to hold

X ¢ - Next: ¢ has to hold at the next state

[others not listed]

execution paths
tates on the execution paths

SPEC AG ((enabled & (intent_not known |
Itcas _equipped) & 'need downward RA & need _upward RA)
-> AX (alt_sep = UPWARD RA))

“FOR ALL executions,

IF enabled & (intent_not _known
THEN 1n the next state alt sep = UPWARD RA”

What is the most effective way to integrate
combinatorial testing with model checking?

Given AG(P -> AX(R))
“for all paths, in every state,
If P then in the next state, R holds”

For k-way variable combinations, vl & v2 & ... &
vk

vi abbreviates “varl = vall”

Now combine this constraint with assertion to produce
counterexamples. Some possibilities:

1.AG(vl & v2 & ... & vk & P -> AX T(R))
2.AG(vl & v2 & ... & vk -=> AX 1(1))
3.AG(vl & v2 & ... & vk -> AX 1(R))

NIST

Maotional Institute of
Stendards and Technology

What happens with these assertions?

1. AG(vl & Vv2 & ... & vk & P -> AX 1(R))

P may have a negation of one of the v,, so we get
0 -> AX I(R))

always true, so no counterexample, no test.

This Is too restrictive!

1. AG(vl & v2 & ... & vk -> AX 1(1))

The model checker makes non-deterministic choices for
variables not in v1..vk, so all R values may not be covered
by a counterexample.

This Is too loose!

2.AG(V1 & V2 & ... & vk -> AX 1(R))

Forces production of a counterexample for each R.
This is just right!

NIST

Maotional Institute of
Standords and Technelogy

Modeling & Simulation

1. Aerospace - Lockheed Martin —
analyze structural failures for
alrcraft design

2. Network defense/offense
operations - NIST — analyze
network configuration for
vulnerability to deadlock

Hatienal Institute of

Example 3: Network Simulation

. “Simured” network simulator
. Kernel of ~ 5,000 lines of C++ (not including GUI)

- Objective: detect configurations that can
produce deadlock:
. Prevent connectivity loss when changing network
. Attacks that could lock up network

- Compare effectiveness of random vs.
combinatorial Inputs

. Deadlock combinations discovered

. Crashes In >6% of tests w/ valid values (WIn32

version only) NIST

Hatienal Institute of
Standards and Technoelogy

Parameter Values
1 DIMENSIONS 1,2,4,6,8
2 NODOSDIM 2,4,6
3 NUMVIRT 1,2,3,8
4 NUMVIRTINJ 1,2,3,8
5 NUMVIRTEJE 1,2,3,8
6 LONBUFFER 1,2,4,6
7 NUMDIR 1,2
8 FORWARDING 0,1
9 PHYSICAL true, false
10 ROUTING 0,1,2,3
11 DELFIFO 1,2,4,6
12 DELCROSS 1,2,4,6
13 DELCHANNEL 1,2,4,6
14 DELSWITCH 1,2,4,6

Simulation Input Parameters

S5X3XAXAXAXAX2X2
X2XAXAX4Ax4x4

= 31,457,280
configurations

Are any of them
dangerous?

If so, how many?

Which ones?

NIST

Hatienal Institute of
Standards and Technoelogy

Network Deadlock Detection

Deadlocks
Detected:
combinatorial

1000 2000 4000 3000

t Tests 500 pkts pkts pkts pkts pkts
2 28 0) 0) 0) 0) 0)
3 161 2 3 2 3 3
4 752 14 14 14 14 14

Average Deadlocks Detected:
random

1000 2000 4000 8000
Tests 500 pkts pkts pkts pkts pkts
28 0.63 0.25 0.75 0. 50 0.75
161 3 3 3 3 3
752 10.13 11.75 10.38 13 13.25

D W N ~+

NIST

Maotional Institute of
Standards and Technoelogy

NIST

Matienal Institute of
Standords and Technelogy

Network Deadlock Detection

Detected 14 configurations that can cause deadlock:
14/ 31,457,280 = 4.4 x 10/

Combinatorial testing found more deadlocks than
random, including some that might never have been
found with random testing

Why do this testing? Risks:

 accidental deadlock configuration: low

» deadlock config discovered by attacker: much higher
(because they are looking for it)

Example 4. Buffer Overflows

Empirical data from the National Vulnerability Database

. Investigated > 3,000 denial-of-service vulnerabilities reported in
the NIST NVD for period of 10/06 — 3/07

- Vulnerabilities triggered by:

. Single variable — 94.7%
example: Heap-based buffer overflow in the SFTP protocol
handler for Panic Transmit ... allows remote attackers to execute
arbitrary code via a long ftps:// URL.

. 2-way Interaction — 4.9%
example: single character search string in conjunction with a single
character replacement string, which causes an "off by one
overflow"

. 3-way interaction — 0.4%
example: Directory traversal vulnerability when register globals is
enabled and magic_quotes is disabled
and .. (dot dot) in the page parameter NIST

Hatienal Institute of
Standards and Technoelogy

. NIST
Finding Buffer Overflows e

1. IT (strcmp(conn[sid].dat->i1n_RequestMethod, "POST'")==0) {
2. IT (conn[sid].dat->i1n_ContentLength<MAX POSTSIZE) {

3. conn[sid].PostData=calloc(conn[sid].dat->in_ContentLength+1024,
sizeof(char));

4. pPostData=conn[sid].PostData;

5. do {

6. rc=recv(conn[sid].socket, pPostData, 1024, 0);

7. pPostData+=rc;

8. X+=rc;

9. } while ((rc==1024)]](x<conn[sid].dat->in_ContentLength));

10. conn[sid].PostDatafconn[sid].dat->in_ContentLength]="\0";
11. }

NIST

Hotienal Instifute of

Interaction: request-method="POST"”, content- Stondards and Technelegy
length = -1000, data= a string > 24 bytes

1. IT (strcmp(conn[sid].dat->i1n_RequestMethod, "POST'")==0) {

2. IT (conn[sid].dat->i1n_ContentLength<MAX POSTSIZE) {

3. conn[sid].PostData=calloc(conn[sid].dat->in_ContentLength+1024,
sizeof(char));

4. pPostData=conn[sid].PostData;

5. do {

6. rc=recv(conn[sid].socket, pPostData, 1024, 0);

7. pPostData+=rc;

8. X+=rc;

9. } while ((rc==1024)]](x<conn[sid].dat->in_ContentLength));

10. conn[sid].PostDatafconn[sid].dat->in_ContentLength]="\0";
11. }

NIST

Mational Institute of

Interaction: request-method="POST", content- Standards and Tochnology
length = -1000, data= a string > 24 bytes

1. IT (strcmp(conn[sid].dat->i1n_RequestMethod, "POST'")==0) { Tr'ue branch

2. IT (conn[sid].dat->i1n_ContentLength<MAX POSTSIZE) {

3. conn[sid].PostData=calloc(conn[sid].dat->in_ContentLength+1024,
sizeof(char));

4. pPostData=conn[sid].PostData;

5. do {

6. rc=recv(conn[sid].socket, pPostData, 1024, 0);

7. pPostData+=rc;

8. X+=rc;

9. } while ((rc==1024)]](x<conn[sid].dat->in_ContentLength));

10. conn[sid].PostDatafconn[sid].dat->in_ContentLength]="\0";
11. }

NIST

Mational Institute of

Interaction: request-method="POST", content- Standards and Tochnology
length = -1000, data= a string > 24 bytes

1. IT (strcmp(conn[sid].dat->i1n_RequestMethod, "POST'")==0) {

2. IT (conn[sid].dat->in_ContentLength<MAX POSTSIZE) { true br'anch

3. conn[sid].PostData=calloc(conn[sid].dat->in_ContentLength+1024,
sizeof(char));

4. pPostData=conn[sid].PostData;

5. do {

6. rc=recv(conn[sid].socket, pPostData, 1024, 0);

7. pPostData+=rc;

8. X+=rc;

9. } while ((rc==1024)]](x<conn[sid].dat->in_ContentLength));

10. conn[sid].PostDatafconn[sid].dat->in_ContentLength]="\0";
11. }

NIST

Mational Institute of

Interaction: request-method="POST", content- Standards and Tochnology
length = -1000, data= a string > 24 bytes

1. IT (strcmp(conn[sid].dat->i1n_RequestMethod, "POST'")==0) {

2. IT (conn[sid].dat->in_ContentLength<MAX POSTSIZE) { true bI"ClHCh

3 conn[sid].PostData=calloc(conn[sid].dat->in_ ContentLength+1024,

sizeof(char)); Allocate -1000 + 1024 bYTeS =24 byTeS

4. pPostData=conn[sid].PostData;

5. do {

6. rc=recv(conn[sid].socket, pPostData, 1024, 0);

7. pPostData+=rc;

8. X+=rc;

9. } while ((rc==1024)]](x<conn[sid].dat->in_ContentLength));

10. conn[sid].PostDatafconn|[sid].dat->in_ContentLength]="\0";
11. }

Interaction: request-method="POST", content-
length = -1000, data= a string > 24 bytes

1. IT (strcmp(conn[sid].dat->i1n_RequestMethod, "POST'")==0) {

NIST

Notional Institute of
Standards and Technoelogy

2. iIT (conn[sid].dat->i1n_ContentLength<MAX POSTSIZE) {

true branch

3 conn[sid].PostData=calloc(conn[sid].dat->in_ ContentLength+1024,

sizeof(char));

Allocate -1000 + 1024 bytes = 24 bytes

4. pPostData=conn[sid].PostData;

5. do { /\

6. rc=recv(conn[sid].socket, pPostData, 1024, O) Boom!
7. pPostData+=rc;

8. X+=rc;

9. } while ((rc==1024)]](x<conn[sid].dat->in_ContentLength));

10. conn[sid].PostDatafconn|[sid].dat->in_ContentLength]="\0";
11. }

NIST

Matienal Institute of

Tutorial Overview e

1. Why are we doing this?
2. What is combinatorial testing?

3. What tools are available?
4. Is this stuff really useful in the real world?

5.What's next?

| NIST
Fault location Shirdsand ety

Given: a set of tests that the SUT fails, which
combinations of variables/values triggered the failure?

variable/value combinations
INn passing tests

These are the ones we want

variable/value combinations
In failing tests

Fault location —what's the problem?

If they're in failing set but not in
passing set:

1. which ones triggered the failure?
2. which ones don't matter?

n
out of Vt(t) combinations

Example:
30 variables, 5 values each
= 445,331,250

5-way combinations

142,506 combinations
In each test

NIST

Maotional Institute of
Standards and Technoelogy

NIST

Matienal Institute of

Tutorial Overview e

1. Why are we doing this?
2. What is combinatorial testing?

3. What tools are available?
4. Is this stuff really useful in the real world?
5. What's next?

Matienal Institute of

Tutorial Overview oo -

1. Why are we doing this?

2.What Is combinatorial
testing?

3. What tools are available?

4. Is this stuff really useful in the real world?

5. What's next?

Matienal Institute of

Tutorial Overview oo -

1. Why are we doing this?
2. What is combinatorial testing?

3.What tools are available?
4. Is this stuff really useful in the real world?

5. What's next?

NIST
Tradeoffs ealCERNERE

« Advantages

- Tests rare conditions

- Produces high code coverage

- Finds faults faster

- May be lower overall testing cost

« Disadvantages

- Expensive at higher strength interactions (>4-way)

- May require high skill level in some cases (if formal
models are being used)

	Slide Number 1
	 What is NIST and why are we doing this?
	What good is combinatorial testing?
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Examples from the �National Vulnerability Database
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Slide Number 34
	Slide Number 35
	Slide Number 36
	Slide Number 37
	Slide Number 38
	Slide Number 39
	Slide Number 40
	Slide Number 41
	Slide Number 42
	Slide Number 43
	Slide Number 44
	Slide Number 45
	Slide Number 46
	Slide Number 47
	Slide Number 48
	Slide Number 49
	Slide Number 50
	Slide Number 51
	Slide Number 52
	Slide Number 53
	Slide Number 54
	Example 3: Laptop application testing
	Connection Sequences
	 Event Sequence Testing �
	Sequence Covering Array�
	Sequence Covering Array Properties
	Example 4: Existing Test Sets
	Measuring Combinatorial Coverage�
	Graphing Coverage Measurement �
	Adding a test
	Adding another test
	Additional test completes coverage
	Combinatorial Coverage Measurement �
	Lessons Learned and Needs
	Where do we go next?
	Slide Number 69
	BACKUP SLIDES FOR ADDITIONAL DISCUSSION
	Background: Interaction Testing and �Design of Experiments (DOE)
	Where did these ideas come from?
	Father of DOE: �R A Fisher, 1890-1962, British geneticist
	Four eras of evolution of DOE
	Agriculture and biological investigations-1
	Agriculture and biological investigations-2
	Robust products-1
	Robust products-2
	Orthogonal Arrays for �Software Interaction Testing
	Slide Number 80
	Slide Number 81
	Slide Number 82
	Slide Number 83
	Computation Tree Logic
	What is the most effective way to integrate combinatorial testing with model checking?
	What happens with these assertions?
	Slide Number 87
	Slide Number 88
	Slide Number 89
	Slide Number 90
	Slide Number 91
	Slide Number 92
	Slide Number 93
	Slide Number 94
	Slide Number 95
	Slide Number 96
	Slide Number 97
	Slide Number 98
	Slide Number 99
	Fault location
	Fault location – what's the problem?
	Slide Number 102
	Slide Number 103
	Slide Number 104
	Slide Number 105

