
Combinatorial Testing:   
Rationale and Impact 

 Rick Kuhn 
National Institute of  

Standards and Technology 
Gaithersburg, MD 

 

IEEE Seventh International Conference on Software 
Testing, Verification, and Validation 

       April 2, 2014 



 What is NIST? 
• US Government agency, whose mission is to 
   support US industry through developing better 
   measurement and test methods   

• 3,000 scientists, engineers, and support staff 
   including 4 Nobel laureates 

• Research in physics, chemistry, materials, 
   manufacturing, computer science 

• Trivia:  NIST is one of the only 
   federal agencies chartered  
   in the Constitution 



• What is combinatorial testing? 
• Why does it work? 
• How does it work? 
• Does it work in the real world? 
• What are some research 

issues? 

Outline 



Where did these testing 
ideas come from? 

Scottish physician James Lind  
determined cure of scurvy 
Ship HM Bark Salisbury in 1747 

  
12 sailors “were as similar as I could have them” 
6 treatments 2 sailors for each – dilute sulfuric acid, seawater, 

vinegar, cider, orange/lemon juice, barley water 
Principles used (blocking, replication, randomization) 
Did not consider interactions, but otherwise used basic  

Design of Experiments principles 
 

  



Father of DOE:  
R A Fisher, 1890-1962, British geneticist 

Key features of Design of Experiments 
– Blocking 
– Replication 
– Randomization 
– Orthogonal arrays test interactions between two factors 
 Test P1 P2 P3 

1 1 1 3 
2 1 2 2 
3 1 3 1 
4 2 1 2 
5 2 2 1 
6 2 3 3 
7 3 1 1 
8 3 2 3 
9 3 3 2 

Each combination 
occurs same number 
of times, usually once. 

Example: P1, P2 = 1,2 



Four eras in evolution of DOE 

Era 1:(1920’s …): Beginning in agricultural then 
animal science, clinical trials, medicine 

Era 2:(1940’s …):  Industrial productivity – new 
field, same basics 

Era 3:(1980’s …):  Designing robust products – 
new field, same basics 
 

Then things begin to change . . .  
Era 4:(2000’s …): Combinatorial Testing of 

Software 
 



Agriculture and biological investigations 

System under investigation 
Crop growing, effectiveness of drugs or other treatments 

Variable Types 
Primary test factors (things farmer can adjust, drug dosages, etc.) 
Relatively few, held constant  

Numbers of treatments 
Generally less than 10  

Objectives: compare treatments to find better 
Treatments: qualitative or discrete levels of continuous  



Manufactured products 

Scope of investigation: 
Optimum levels of control factors at which variation from noise 

factors is minimum 
Key principles 

Variation from noise factors 
Efficiency in testing; accommodate constraints  

Designs: Based on Orthogonal arrays (OAs) 
Taguchi designs (strength 2 orthogonal arrays)  

  Sounds great. 
Let’s use it for software! 



Orthogonal Arrays for  
Software Interaction Testing 

Functional (black-box) testing 
Hardware-software systems 
Identify single and 2-way combination faults 

Early papers 
Taguchi followers (mid1980’s) 
Mandl (1985) Compiler testing 
Tatsumi et al (1987) Fujitsu 
Sacks et al (1989) Computer experiments 
Brownlie et al (1992) AT&T 

Generation of test suites using orthogonal arrays 
OATS (Phadke, AT&T-BL) 

 



  What’s different about software? 

Does this difference 
make any difference? 

Traditional DoE 
• Continuous variable results 

• Few parameters 

• Interactions typically 
increase or decrease output 

• Statistical model requires 
balance 
 

DoE for Software 
• Binary result (pass or fail) 

• Many parameters 

• Interactions  affect path 
   through program 

•Balance not needed 



  

• Pairwise, 2-factor, testing applied to software 
• Intuition: some problems only occur as the result of 

an interaction between parameters/components 
• Tests all pairs (2-way combinations) of variable 

values 
• Pairwise testing finds about 50% to 90% of flaws 

So how did testing interactions 
work in practice for software? 

90% of flaws!  
Sounds pretty good! 



  Finding 90% of flaws is pretty good, right? 

“Relax, our engineers found  
 90 percent of the flaws.” 

I don't think I 
want to get on 
that plane. 



Maybe two factors are not enough? 
• NIST studied software failures in 15 years of  
   FDA medical device recall data 
• What causes software failures? 
•  logic errors? calculation errors?  

• What testing would have detected errors? 
 
Also found interaction faults:  e.g.,  failure occurs if 
 pressure < 10 && volume > 300  (2 factors) 

Example from FDA failure analysis: Failure when “altitude 
adjustment set on 0 meters and total flow volume set at delivery 
rate of less than 2.2 liters per minute.”  

 
 
 



What does an interaction fault look like? 
How does an interaction fault manifest itself in code? 
Example:  altitude_adj == 0 && volume < 2.2   (2-way interaction)  
if (altitude_adj == 0 ) { 
 // do something 

 if (volume < 2.2)  { faulty code!  BOOM! } 
 else { good code, no problem} 

} else { 

 // do something else 

} 

A test with altitude_adj == 0 and volume = 1 would find this 

Again, ~ 90% of the FDA failures were 2-way or 1-way 

…  but some involved more than 2 factors 
 



How are interaction faults distributed? 
• Interactions   e.g.,  failure occurs if 
    pressure < 10                                                              (1-way interaction)  
    pressure < 10 & volume > 300                                 (2-way interaction)  
    pressure < 10 & volume > 300 & velocity = 5       (3-way interaction)  
• Surprisingly, no one had looked at interactions beyond 2-way before  
• The most complex medical device failure reported required 4-way 
interaction to trigger.    

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4

Interaction

%
 d

et
ec

te
d

 

Interesting, but that's  
just one kind of  
application! 

Number of factors involved in faults 



What about other applications?  
 Server (green) 

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6
Interactions

%
 d

et
ec

te
d

These faults 
more complex 
than medical 
device 
software!! 
 
Why? 

Number of factors involved in faults 



Others? 
 Browser (magenta) 

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6
Interactions

%
 d

et
ec

te
d

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6
Interactions

%
 d

et
ec

te
d

Number of factors involved in faults 



Still more? 
NASA Goddard distributed database  (light blue) 

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6
Interactions

%
 d

et
ec

te
d

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6
Interactions

%
 d

et
ec

te
d

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6
Interactions

%
 d

et
ec

te
d

Number of factors involved in faults 



Even more? 
FAA Traffic Collision Avoidance System module  

(seeded errors) (purple) 

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6
Interactions

%
 d

et
ec

te
d

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6
Interactions

%
 d

et
ec

te
d

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6
Interactions

%
 d

et
ec

te
d

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6
Interactions

%
 d

et
ec

te
d

Number of factors involved in faults 



Finally 
Network security (Bell, 2006)        (orange) 

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6
Interactions

%
 d

et
ec

te
d

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6
Interactions

%
 d

et
ec

te
d

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6
Interactions

%
 d

et
ec

te
d

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6
Interactions

%
 d

et
ec

te
d

Curves appear to 
be similar across 
a variety of 
application 
domains. 

 

Number of factors involved in faults 



 
 
 

What causes this distribution?   

One clue:  branches in avionics software. 
7,685 expressions from if and while statements 



Comparing with Failure Data 
Branch 
statements 



• Refers to how many parameters  
are involved in faults:   
Interaction rule:  most failures are triggered by one or two 
parameters, and progressively fewer by three, four, or more 
parameters, and the maximum interaction degree is small. 
 

• Maximum interactions for fault triggering was 6 
• Two-factor testing not enough  
• Reasonable evidence that maximum interaction strength for 

fault triggering is relatively small 

Interaction Rule 

How does it help 
me to know this? 



 
 

 
 

How does this knowledge help? 
If all faults are triggered by the interaction of t or fewer 
variables, then testing all t-way combinations can provide 
strong assurance. 
 
• New algorithms make it practical to test these 

combinations 
• (however:  value propagation issues, equivalence 

partitioning, timing issues, more complex interactions,…) 
 

 
Still no silver 
bullet.  Rats! 



Let’s see how to use this knowledge in 
testing.     A simple example: 



How Many Tests Would It Take? 

 There are 10 effects, each can be on or off 
 All combinations is 210 = 1,024 tests 
 What if our budget is too limited for these 

tests? 
 Instead, let’s look at all 3-way interactions 

… 



 There are              = 120 3-way interactions. 

 Naively 120 x 23 = 960 tests. 
 Since we can pack 3 triples into each test, we need 

no more than 320 tests. 
 Each test exercises many triples:   
                 

Now How Many Would It Take? 

OK, OK, what’s the smallest number of tests we need? 

10 
3 

0   1   1   0   0   0   0   1   1   0 



A covering array 

Each row is a test: 
Each column is  
a parameter: 

• Developed 1990s 
• Extends Design of Experiments concept 
• Difficult mathematically but good algorithms now  

All triples in only 13 tests, covering         23 = 960 combinations  10 
3 



Design of Experiments for Software Testing 
Not orthogonal arrays, but Covering arrays:  Fixed-value 

CA(N, vk, t) has four parameters N, k, v, t : It is a matrix 
covers every t-way combination at least once 

Early developments by  Tatsumi, Sherwood  
 

                                Key differences 
orthogonal arrays:                covering arrays: 

   
 

9/4/2014 NIST 29 

• Combinations occur 
same number of times 

• Only exist for a certain 
configurations 

• Combinations occur  
at least once 

• Always possible to find for  
any configuration 

• Always smaller than 
orthogonal array (or same) 



Suppose we have  a system with 34 on-off switches.  
Software must produce the right response for any 
combination of switch settings: 
 
 
 

A larger example 



34 switches = 234 = 1.7 x 1010 possible inputs = 1.7 x 1010 tests 
 
 

How do we test this? 



• 34 switches = 234 = 1.7 x 1010 possible inputs = 1.7 x 1010 tests 
• If only 3-way interactions, need only 33 tests 
• For 4-way interactions, need only 85 tests 
 
 
 

What if we knew no failure involves more than 
3 switch settings interacting? 



33 tests for this 
range of fault 
detection 

85 tests for this 
range of fault 
detection 

That’s way 
better than 17 
billion! 

Number of factors involved in faults 

Do we have enough tests?  



  

 
 

We can also use it on configurations 

Use combinations here or here 

 
System  
under test 
 

Test 
data 
inputs 

Test case OS CPU Protocol 

1 Windows Intel IPv4 

2 Windows AMD IPv6 

3 Linux Intel IPv6 

4 Linux AMD IPv4 

Configuration 



Testing Configurations 
• Example:  app must run on any configuration of OS, browser, 
  protocol, CPU, and DBMS 

• Very effective for interoperability testing,  
 

• But something is wrong here …  there is no Linux & IE 
configuration 

• Covering array tools can avoid such invalid combinations 



  

 
 

Testing Smartphone Configurations 

int HARDKEYBOARDHIDDEN_NO;   
int HARDKEYBOARDHIDDEN_UNDEFINED;   
int HARDKEYBOARDHIDDEN_YES; 
int KEYBOARDHIDDEN_NO; 
int KEYBOARDHIDDEN_UNDEFINED;   
int KEYBOARDHIDDEN_YES; 
int KEYBOARD_12KEY; 
int KEYBOARD_NOKEYS;   
int KEYBOARD_QWERTY;   
int KEYBOARD_UNDEFINED;   
int NAVIGATIONHIDDEN_NO;   
int NAVIGATIONHIDDEN_UNDEFINED;   
int NAVIGATIONHIDDEN_YES;   
int NAVIGATION_DPAD;  
int NAVIGATION_NONAV;   
int NAVIGATION_TRACKBALL;   
int NAVIGATION_UNDEFINED;   
int NAVIGATION_WHEEL;   

int ORIENTATION_LANDSCAPE;   
int ORIENTATION_PORTRAIT;   
int ORIENTATION_SQUARE;   
int ORIENTATION_UNDEFINED;  
int SCREENLAYOUT_LONG_MASK;   
int SCREENLAYOUT_LONG_NO;   
int SCREENLAYOUT_LONG_UNDEFINED;   
int SCREENLAYOUT_LONG_YES;   
int SCREENLAYOUT_SIZE_LARGE;   
int SCREENLAYOUT_SIZE_MASK;   
int SCREENLAYOUT_SIZE_NORMAL;   
int SCREENLAYOUT_SIZE_SMALL;   
int SCREENLAYOUT_SIZE_UNDEFINED;   
int TOUCHSCREEN_FINGER;   
int TOUCHSCREEN_NOTOUCH;   
int TOUCHSCREEN_STYLUS;   
int TOUCHSCREEN_UNDEFINED; 

Some Android configuration options: 



  

 
 

Configuration option values 
Parameter Name Values # Values 

HARDKEYBOARDHIDDEN NO, UNDEFINED, YES 3 

KEYBOARDHIDDEN NO, UNDEFINED, YES 3 

KEYBOARD 12KEY, NOKEYS, QWERTY, UNDEFINED 4 

NAVIGATIONHIDDEN NO, UNDEFINED, YES 3 

NAVIGATION DPAD, NONAV, TRACKBALL, UNDEFINED, 
WHEEL 

5 

ORIENTATION LANDSCAPE, PORTRAIT, SQUARE, UNDEFINED 4 

SCREENLAYOUT_LONG MASK, NO, UNDEFINED, YES 4 

SCREENLAYOUT_SIZE LARGE, MASK, NORMAL, SMALL, UNDEFINED 5 

TOUCHSCREEN FINGER, NOTOUCH, STYLUS, UNDEFINED 4 

Total possible configurations: 

 3 x 3 x 4 x 3 x 5 x 4 x 4 x 5 x 4 = 172,800    



  

 
 

Number of configurations generated for t-way 
interaction testing, t = 2..6 

t # Configs % of Exhaustive 

2 29 0.02 

3 137 0.08 

4 625 0.4 

5 2532 1.5 

6 9168 5.3 



  
• Number of tests:  proportional to vt log n 

for v values, n variables, t-way interactions 
• Thus: 

• Tests increase exponentially with interaction strength t  
• But logarithmically with the number of parameters 
 

• Example: suppose we want all 4-way combinations of n 
parameters, 5 values each: 
 
 

How many tests are needed? 

 

0
500

1000
1500
2000
2500
3000
3500
4000
4500
5000

10 20 30 40 50

Variables

Tests



How do we automate checking  
correctness of output?  

• Creating test data is the easy part! 

• How do we check that the code worked correctly  
   on the test input? 

• Crash testing server or other code to ensure it does not crash for any 
test input (like ‘fuzz testing’) 
   - Easy but limited value 

• Built-in self test with embedded assertions – incorporate assertions in 
code to check critical states at different points in the code, or print out 
important values during execution 

• Full scale model-checking using mathematical model of system and 
model checker to generate expected results for each input - expensive 
but tractable 



Crash Testing 
• Like “fuzz testing” - send packets or other input  
  to application, watch for crashes 
• Unlike fuzz testing, input is non-random;  
   cover all t-way combinations 
• May be more efficient - random input generation 
  requires several times as many tests to cover the  
  t-way combinations in a covering array 
 Limited utility, but can detect  
   high-risk problems such as: 
         - buffer overflows 
         - server crashes 



Ratio of Random/Combinatorial Test Set 
Required to Provide t-way Coverage 

2w ay 3w ay 4w ay
nval=2

nval=6

nval=10

0.00
0.50
1.00
1.50
2.00
2.50
3.00
3.50
4.00
4.50

5.00

Ratio

Interactions

V alues per 
variable

4.50-5.00

4.00-4.50

3.50-4.00

3.00-3.50

2.50-3.00

2.00-2.50

1.50-2.00

1.00-1.50

0.50-1.00

0.00-0.50



Embedded Assertions 
Assertions check properties of expected result: 
     ensures balance  == \old(balance) - amount  
       &&  \result == balance; 
 
•Reasonable assurance that code works correctly across 
the range of expected inputs 
 
•May identify problems with handling unanticipated inputs 
 
•Example:   Smart card testing 

• Used Java Modeling Language (JML) assertions 
• Detected 80% to 90% of flaws 

 
 



Using model checking to produce tests 

The system can never 
get in this state! 

Yes it can, and 
here’s how … 

 Model-checker test 
production:   
if assertion is not true, 
then a counterexample 
is generated.   
 
 This can be 
converted to a test 
case. 

 Black & Ammann, 1999 



Testing inputs 
 Traffic Collision Avoidance  

System (TCAS) module 
• Used in previous testing research 
• 41 versions seeded with errors 
• 12 variables: 7 boolean, two 3-value, one 4-

value, two 10-value 
• All flaws found with 5-way coverage 
• Thousands of tests - generated by model 

checker in a few minutes 



Tests generated 
    t 
2-way:      
3-way:        
4-way:      
5-way:      
6-way: 
 
 

0

2000

4000

6000

8000

10000

12000

2-way 3-way 4-way 5-way 6-way

T
e

s
ts

Test cases 
156 
461 

1,450 
4,309 

11,094 



Results 

Detection Rate for TCAS Seeded 
Errors

0%

20%

40%

60%

80%

100%

2 way 3 way 4 way 5 way 6 way

Fault Interaction level  

Detection
rate

• Roughly consistent with data on large systems 

• But errors harder to detect than real-world examples 

Tests per error

0.0

50.0

100.0

150.0

200.0

250.0

300.0

350.0

2 w ay 3 w ay 4 w ay 5 w ay 6 w ay

Fault Interaction level
T

es
ts Tests per error

Bottom line for model checking based combinatorial testing: 
Requires more technical skill but can be highly effective 



Is this stuff 
useful in the 
real world ?? 



What good is combinatorial testing? 
• 2.5 year Lockheed Martin study,  8 pilot projects in 

aerospace software 
• Results: “Lockheed Martin’s initial estimate is that 

this method supported by the technology can save 
up to 20% of test planning/design costs if done 
early on a program while increasing test coverage 
by 20% to 50%.”  
 

 
 
 
 



Example 1:  Document Object Model Events 

• DOM is a World Wide Web 
Consortium standard for 
representing and interacting 
with browser objects 

• NIST developed conformance 
tests for DOM 

• Tests covered all possible 
combinations of discretized 
values, >36,000 tests 
 

• Question: can we use the 
Interaction Rule to increase 
test effectiveness the way we 
claim?  



Document Object Model Events 
Original test set: 

Event Name Param. 

 
     

Tests 
Abort   3 12 
Blur 5         24 
Click 15 4352 
Change 3 12 
dblClick 15 4352 
DOMActivate 5 24 
DOMAttrModified 8 16 
DOMCharacterDataMo
dified 

8 64 

DOMElementNameCha
nged 

6 8 

DOMFocusIn 5 24 
DOMFocusOut 5 24 
DOMNodeInserted 8 128 
DOMNodeInsertedIntoD
ocument 

8 128 

DOMNodeRemoved 8 128 
DOMNodeRemovedFrom
Document 

       8 128 

DOMSubTreeModified 8 64 
Error 3 12 
Focus 5 24 
KeyDown 1 17 
KeyUp 1 17 

Load 3 24 
MouseDown 15 4352 
MouseMove 15 4352 
MouseOut 15 4352 
MouseOver 15 4352 
MouseUp 15 4352 
MouseWheel 14 1024 
Reset 3 12 
Resize 5 48 
Scroll 5 48 
Select 3 12 
Submit 3 12 
TextInput 5 8 
Unload 3 24 
Wheel 15 4096 
Total Tests   36626 

Exhaustive testing of 
equivalence class values 



Document Object Model Events 
Combinatorial test set: 

t Tests % of  
Orig. 

Test Results 

Pass Fail Not 
Run 

2 702 1.92% 202 27 473 
3 1342 3.67% 786 27 529 
4 1818 4.96% 437 72 1309 
5 2742 7.49% 908 72 1762 

6 4227 11.54
% 1803 72 2352 

All failures found using < 5% of 
original exhaustive test set 



Example 2:  Laptop application testing 

Problem:  connect many 
peripherals, order of 
connection  may affect 
application  



Connection Sequences 

1 Boot 
P-1 (USB-
RIGHT) 

P-2 (USB-
BACK) 

P-3 (USB-
LEFT) P-4 P-5 App Scan 

2 Boot App Scan P-5 P-4 
P-3 (USB-
RIGHT) 

P-2 (USB-
BACK) 

P-1 (USB-
LEFT) 

3 Boot 
P-3 (USB-
RIGHT) 

P-2 (USB-
LEFT) 

P-1 (USB-
BACK) App Scan P-5 P-4 

etc... 

3-way sequence covering 
of connection events 



 Event Sequence Testing  
 

Event Description 
a connect  video 
b connect range finder 
c connect satellite link 
d connect navigation 
e start comm link 
f boot system 

• Suppose we want to see if a system works correctly regardless  
  of the order of events.  How can this be done efficiently? 

• Failure reports often say something like:  'failure occurred 
when A started if B is not already connected'. 

• Can we produce compact tests such that all t-way sequences 
covered (possibly with interleaving events)?   



Sequence Covering Array 
 • With 6 events, all sequences = 6! = 720 tests 

• Only 10 tests needed for all 3-way sequences,  
   results even better for larger numbers of events 

• Example:  .*c.*f.*b.* covered.  Any such 3-way seq covered. 
Test Sequence 

1 a b c d e f 
2 f e d c b a 
3 d e f a b c 
4 c b a f e d 
5 b f a d c e 
6 e c d a f b 
7 a e f c b d 
8 d b c f e a 
9 c e a d b f 

10 f b d a e c 



Sequence Covering Array Properties 
• 2-way sequences require only 2 tests  
            (write events in any order, then reverse) 

• For > 2-way, number of tests grows with log n, for n events 

• Simple greedy algorithm produces compact test set 

• Not previously described in CS literature (but pure math paper 1970s!) 

0

50

100

150

200

250

300

5 10 20 30 40 50 60 70 80

2-way

3-way

4-way

Number of events 

Tests 



Example 3:  Existing Test Sets  

3-way sequence covering 
of connection events 

• Will this method disrupt my test process? 
• What if I already have a large set of tests?  

Does this approach add anything? 
 

• NASA spacecraft software test set, approx 
7,500 tests 

• Does it already provide 2-way, 3-way, 4-way 
coverage? 
 



Measuring Combinatorial Coverage 
 

Tests Variables 

a b c d 

1 0 0 0 0 

2 0 1 1 0 

3 1 0 0 1 

4 0 1 1 1 

Variable pairs Variable-value 
combinations 
covered 

Coverage 

ab 00, 01, 10                 .75 

ac 00, 01, 10          .75 

ad 00, 01, 11          .75 

bc 00, 11                .50 

bd 00, 01, 10, 11     1.0 

cd 00, 01, 10, 11      1.0 

100% coverage of 33% of combinations 
75% coverage of half of combinations 
50% coverage of 16% of combinations  



Graphing Coverage Measurement  
 

100% coverage of 33% of combinations 
75% coverage of half of combinations 
50% coverage of 16% of combinations  

Bottom line: 
All combinations 
covered to at least 50% 



Adding a test 

Coverage after adding test [1,1,0,1]  



Adding another test 

Coverage after adding test [1,0,1,1] 



Additional test completes coverage 

Coverage after adding test [1,0,1,0] 
All combinations covered to 100% level,  
so this is a covering array.   



Combinatorial Coverage Measurement  
 



USAF test plan coverage 

All 5-way combinations 
covered to at least 

50% 



Where do we go next? 
• “Internet of things” – testing problem enormous 

• Vast number of interacting components 
• Combinatorial testing is a natural fit 

• Cyber-physical systems 
• Safety aspects 
• Another natural fit with combinatorial methods 

• Test development environment 
• Define the data model – critical for testing 
• Classification tree tool project at CMU 

• Many research questions 



Algorithms 
• Highly effective now, but room for improvements 
• Algebraic 

• Very compact arrays, but some configurations can’t 
be computed, problems with constraints 

• Computational – (greedy, simulated annealing, 
hill climbing, genetic) 

• May produce more tests, but always possible, good 
constraint handling 

• Post optimization and array reduction 
advances announced at this conference! (CAS, Nanjing)  

• Current best known sizes: 
http://www.public.asu.edu/~ccolbou/src/tabby/catable.html 
 
 



Test Prioritization 
Given a set of tests, what permutation finds faults 

fastest? 
Tests can be ordered by various criteria: 
• Combination coverage (equiv to greedy algo) 
• Hamming distance 
• Random 
• Application-specific criterion 
Especially important for GUI testing 
 



Fault location 

Given:  a set of tests that the SUT fails, which 
combinations of variables/values triggered the failure? 

variable/value combinations 
in passing tests 

variable/value combinations 
in failing tests 

These are the ones we want 



Fault location – what's the problem? 

If they're in failing set but not in 
passing set: 
1. which ones triggered the failure? 
2. which ones don't matter? 

out of vt( ) combinations 
n 
t 

Example: 
30 variables, 5 values each 
 = 445,331,250  
    5-way combinations 
 
142,506 combinations  
in each test 



Users and Tech Transfer  

Information 
Technology 

Defense 

Finance 

Telecom 



Lessons Learned and Needs 
• Education and training materials – tutorial, textbook             
• Greater availability of tools to support combinatorial 

testing – see pairwise.org 
• Modify approaches to using combinatorial testing – 

integrating combinatorial testing with other test 
practices; ability to adopt CT partially or gradually  
– measurement tool  

• Incorporate combinatorial methods into DoD guidance 
and industry standards; develop a community of 
practice  



Review 
video by  

Tyler Mesch, Bose Corp. 



Thank you for 
listening! 



BACKUP SLIDES FOR 
ADDITIONAL 
DISCUSSION 



Examples from the  
National Vulnerability Database 

Single variable, 1-way interaction 
example:   Heap-based buffer overflow in the SFTP protocol 
handler for Panic Transmit … allows remote attackers to 
execute arbitrary code via a long  ftps://  URL.  

2-way interaction 
example: single character search string in conjunction with a 
single character replacement string, which causes an "off by 
one overflow"  

3-way interaction 
example:  Directory traversal vulnerability when 
register_globals is enabled and magic_quotes is disabled  
and .. (dot dot) in the page parameter 

 

12/22/2
 

● Computer Security Division ● 
76 



Example 2:  Problem:  unknown factors  
causing failures of F-16 ventral fin 

LANTIRN = 
Low Altitude 
Navigation & 
Targeting 
Infrared for 
Night 



It’s not supposed to look like this: 



Can the problem factors be found efficiently? 

Original solution:  Lockheed Martin engineers spent many months with 
wind tunnel tests and expert analysis to consider interactions that could 
cause the problem 
Combinatorial testing solution:  modeling and simulation using ACTS  

Parameter Values 
Aircraft 15, 40 
Altitude 5k, 10k, 15k, 20k, 30k, 40k, 50k 

Maneuver 

hi-speed throttle, slow accel/dwell, L/R 5 deg 
side slip, L/R 360 roll, R/L 5 deg side slip, Med 
accel/dwell, R-L-R-L banking, Hi-speed to Low, 
360 nose roll 

Mach (100th) 40, 50, 60, 70, 80, 90, 100, 110, 120 



Results 
• Interactions causing problem included Mach points .95 

and .97; multiple side-slip and rolling maneuvers 
• Solution analysis tested interactions of Mach points, 

maneuvers, and multiple fin designs 
• Problem could have been found much more efficiently 

and quickly 
• Less expert time required 

 
• Spreading use of combinatorial testing in the 

corporation: 
• Community of practice of 200 engineers 
• Tutorials and guidebooks 
• Internal web site and information forum 



What tools are available? 
• Covering array generator – basic tool for test input or 

configurations;  
 

• Sequence covering array generator – new concept; applies 
combinatorial methods to event sequence testing  
 

• Combinatorial coverage measurement – detailed analysis of 
combination coverage; automated generation of supplemental 
tests; helpful for integrating c/t with existing test methods 
 

• Domain/application specific tools: 
• Access control policy tester 
• .NET config file generator 

  



ACTS - Defining a new system 



Variable interaction strength  



Constraints 



Covering array output 



Output options 
Mappable values 

 
Degree of interaction 
coverage: 2 
Number of parameters: 12 
Number of tests: 100 
 
----------------------------- 
 
0 0 0 0 0 0 0 0 0 0 0 0  
1 1 1 1 1 1 1 0 1 1 1 1  
2 0 1 0 1 0 2 0 2 2 1 0  
0 1 0 1 0 1 3 0 3 1 0 1  
1 1 0 0 0 1 0 0 4 2 1 0  
2 1 0 1 1 0 1 0 5 0 0 1  
0 1 1 1 0 1 2 0 6 0 0 0  
1 0 1 0 1 0 3 0 7 0 1 1  
2 0 1 1 0 1 0 0 8 1 0 0  
0 0 0 0 1 0 1 0 9 2 1 1  
1 1 0 0 1 0 2 1 0 1 0 1  
Etc.  
 
 

Human readable 
 
Degree of interaction coverage: 2 
Number of parameters: 12 
Maximum number of values per 
parameter: 10 
Number of configurations: 100 
----------------------------------- 
Configuration #1: 
 
1 = Cur_Vertical_Sep=299 
2 = High_Confidence=true 
3 = Two_of_Three_Reports=true 
4 = Own_Tracked_Alt=1 
5 = Other_Tracked_Alt=1 
6 = Own_Tracked_Alt_Rate=600 
7 = Alt_Layer_Value=0 
8 = Up_Separation=0 
9 = Down_Separation=0 
10 = Other_RAC=NO_INTENT 
11 = Other_Capability=TCAS_CA 
12 = Climb_Inhibit=true 



Model checking example 
-- specification for a portion of tcas - altitude separation. 
-- The corresponding C code is originally from Siemens Corp. Research 
-- Vadim Okun 02/2002 
MODULE main 
VAR 
  Cur_Vertical_Sep : { 299, 300, 601 }; 
  High_Confidence : boolean; 
... 
init(alt_sep) := START_; 
  next(alt_sep) := case 
    enabled & (intent_not_known | !tcas_equipped) : case 
      need_upward_RA & need_downward_RA : UNRESOLVED; 
      need_upward_RA : UPWARD_RA; 
      need_downward_RA : DOWNWARD_RA; 
      1 : UNRESOLVED; 
    esac; 
    1 : UNRESOLVED; 
  esac; 
... 
SPEC AG ((enabled & (intent_not_known | !tcas_equipped) & 
!need_downward_RA & need_upward_RA) -> AX (alt_sep = UPWARD_RA))  
-- “FOR ALL executions,  
-- IF enabled & (intent_not_known ....  
-- THEN in the next state alt_sep = UPWARD_RA” 
 



Computation Tree Logic 
The usual logic operators,plus temporal: 

  A φ - All: φ holds on all paths starting from the 
current state. 
  E φ - Exists: φ holds on some paths starting from 
the current state. 
  G φ - Globally: φ has to hold on the entire 
subsequent path. 
  F φ - Finally: φ eventually has to hold  
  X φ - Next: φ has to hold at the next state 

      [others not listed] 
 
     execution paths 
            states on the execution paths 
 

SPEC AG ((enabled & (intent_not_known | 
!tcas_equipped) & !need_downward_RA & need_upward_RA)  
-> AX (alt_sep = UPWARD_RA)) 

 
“FOR ALL executions,  

IF enabled & (intent_not_known ....  
THEN in the next state alt_sep = UPWARD_RA” 



What is the most effective way to integrate 
combinatorial testing with model checking? 

•  Given AG(P -> AX(R))   
“for all paths, in every state,  
          if P then in the next state, R holds” 

•  For k-way variable combinations, v1 & v2 & ... & 
vk  

• vi abbreviates “var1 = val1” 

• Now combine this constraint with assertion to produce 
counterexamples.  Some possibilities: 

1. AG(v1 & v2 & ... & vk & P -> AX !(R))  
2. AG(v1 & v2 & ... & vk -> AX !(1))  
3. AG(v1 & v2 & ... & vk -> AX !(R)) 

 

 

 



What happens with these assertions? 
1. AG(v1 & v2 & ... & vk & P -> AX !(R)) 

  P may have a negation of one of the vi, so we get  
  0 -> AX !(R)) 
always true, so no counterexample, no test. 
This is too restrictive! 

1. AG(v1 & v2 & ... & vk -> AX !(1)) 
The model checker makes non-deterministic choices for 
variables not in v1..vk, so all R values may not be covered 
by a counterexample. 
This is too loose!  

2. AG(v1 & v2 & ... & vk -> AX !(R)) 
Forces production of a counterexample for each R. 
This is just right! 

 

 

 



Modeling & Simulation  

1. Aerospace - Lockheed Martin – 
analyze structural failures for 
aircraft design 
 

2. Network defense/offense 
operations - NIST – analyze 
network configuration for 
vulnerability to deadlock 

 



Example 3:  Network Simulation 

• “Simured” network simulator 
• Kernel of ~ 5,000 lines of C++ (not including GUI) 

• Objective:  detect configurations that can 
produce deadlock: 

• Prevent connectivity loss when changing network 
• Attacks that could lock up network 

• Compare effectiveness of random vs. 
combinatorial inputs 

• Deadlock combinations discovered 
• Crashes in >6% of tests w/ valid values (Win32 

version only) 
 



Simulation Input Parameters 
Parameter Values 

1 DIMENSIONS             1,2,4,6,8 
2 NODOSDIM  2,4,6 
3 NUMVIRT  1,2,3,8 
4 NUMVIRTINJ  1,2,3,8 
5 NUMVIRTEJE   1,2,3,8 
6 LONBUFFER   1,2,4,6 
7 NUMDIR  1,2 
8 FORWARDING   0,1 
9 PHYSICAL  true, false 
10 ROUTING  0,1,2,3 
11 DELFIFO    1,2,4,6 
12 DELCROSS    1,2,4,6 
13 DELCHANNEL    1,2,4,6 
14 DELSWITCH  1,2,4,6 

5x3x4x4x4x4x2x2
x2x4x4x4x4x4 
= 31,457,280 
configurations 

Are any of them 
dangerous? 
 
If so, how many? 
 
Which ones? 



Network Deadlock Detection 
  Deadlocks 
Detected: 

combinatorial 

t Tests 500 pkts 
1000 
pkts 

2000 
pkts 

4000 
pkts 

8000 
pkts 

2 28 0 0 0 0 0 
3 161 2 3 2 3 3 
4 752 14 14 14 14 14 

Average Deadlocks Detected: 
 random 

t Tests 500 pkts 
1000 
pkts 

2000 
pkts 

4000 
pkts 

8000 
pkts 

2 28 0.63 0.25 0.75 0. 50 0. 75 
3 161 3 3 3 3 3 
4 752 10.13 11.75 10.38 13 13.25 



Network Deadlock Detection 
Detected 14 configurations that can cause deadlock: 
       14/ 31,457,280 = 4.4 x 10-7 

 
Combinatorial testing found more deadlocks than 
random, including some that might never have been 
found with random testing 
         

Why do this testing?  Risks: 
• accidental deadlock configuration:  low 
• deadlock config discovered by attacker:  much higher 
                               (because they are looking for it) 
 



Example 4:  Buffer Overflows 
• Empirical data from the National Vulnerability Database  

• Investigated > 3,000 denial-of-service vulnerabilities reported in 
the NIST NVD for period of 10/06 – 3/07 

• Vulnerabilities triggered by: 
• Single variable – 94.7% 

example:   Heap-based buffer overflow in the SFTP protocol 
handler for Panic Transmit … allows remote attackers to execute 
arbitrary code via a long  ftps://  URL.  

• 2-way interaction – 4.9% 
example: single character search string in conjunction with a single 
character replacement string, which causes an "off by one 
overflow"  

• 3-way interaction – 0.4% 
example:  Directory traversal vulnerability when register_globals is 
enabled and magic_quotes is disabled  
and .. (dot dot) in the page parameter 



Finding Buffer Overflows 
1.   if (strcmp(conn[sid].dat->in_RequestMethod, "POST")==0) { 

2.     if (conn[sid].dat->in_ContentLength<MAX_POSTSIZE) { 

  …… 

3.   conn[sid].PostData=calloc(conn[sid].dat->in_ContentLength+1024, 
sizeof(char)); 

             …… 

4.         pPostData=conn[sid].PostData;  

5.         do { 

6.            rc=recv(conn[sid].socket, pPostData, 1024, 0); 

           …… 

7.            pPostData+=rc; 

8.            x+=rc; 

9.         } while ((rc==1024)||(x<conn[sid].dat->in_ContentLength)); 

10.  conn[sid].PostData[conn[sid].dat->in_ContentLength]='\0'; 

11.   } 

 



Interaction: request-method=”POST”, content-
length = -1000, data= a string > 24 bytes 
1.   if (strcmp(conn[sid].dat->in_RequestMethod, "POST")==0) { 

2.     if (conn[sid].dat->in_ContentLength<MAX_POSTSIZE) { 

  …… 

3.   conn[sid].PostData=calloc(conn[sid].dat->in_ContentLength+1024, 
sizeof(char)); 

             …… 

4.         pPostData=conn[sid].PostData;  

5.         do { 

6.            rc=recv(conn[sid].socket, pPostData, 1024, 0); 

           …… 

7.            pPostData+=rc; 

8.            x+=rc; 

9.         } while ((rc==1024)||(x<conn[sid].dat->in_ContentLength)); 

10.  conn[sid].PostData[conn[sid].dat->in_ContentLength]='\0'; 

11.   } 

 



Interaction: request-method=”POST”, content-
length = -1000, data= a string > 24 bytes 
1.   if (strcmp(conn[sid].dat->in_RequestMethod, "POST")==0) { 

2.     if (conn[sid].dat->in_ContentLength<MAX_POSTSIZE) { 

  …… 

3.   conn[sid].PostData=calloc(conn[sid].dat->in_ContentLength+1024, 
sizeof(char)); 

             …… 

4.         pPostData=conn[sid].PostData;  

5.         do { 

6.            rc=recv(conn[sid].socket, pPostData, 1024, 0); 

           …… 

7.            pPostData+=rc; 

8.            x+=rc; 

9.         } while ((rc==1024)||(x<conn[sid].dat->in_ContentLength)); 

10.  conn[sid].PostData[conn[sid].dat->in_ContentLength]='\0'; 

11.   } 

 

true branch 



Interaction: request-method=”POST”, content-
length = -1000, data= a string > 24 bytes 
1.   if (strcmp(conn[sid].dat->in_RequestMethod, "POST")==0) { 

2.     if (conn[sid].dat->in_ContentLength<MAX_POSTSIZE) { 

  …… 

3.     conn[sid].PostData=calloc(conn[sid].dat->in_ContentLength+1024, 
sizeof(char)); 

             …… 

4.         pPostData=conn[sid].PostData;  

5.         do { 

6.            rc=recv(conn[sid].socket, pPostData, 1024, 0); 

           …… 

7.            pPostData+=rc; 

8.            x+=rc; 

9.         } while ((rc==1024)||(x<conn[sid].dat->in_ContentLength)); 

10.  conn[sid].PostData[conn[sid].dat->in_ContentLength]='\0'; 

11.   } 

 

true branch 



Interaction: request-method=”POST”, content-
length = -1000, data= a string > 24 bytes 
1.   if (strcmp(conn[sid].dat->in_RequestMethod, "POST")==0) { 

2.     if (conn[sid].dat->in_ContentLength<MAX_POSTSIZE) { 

  …… 

3.     conn[sid].PostData=calloc(conn[sid].dat->in_ContentLength+1024, 
sizeof(char)); 

             …… 

4.         pPostData=conn[sid].PostData;  

5.         do { 

6.            rc=recv(conn[sid].socket, pPostData, 1024, 0); 

           …… 

7.            pPostData+=rc; 

8.            x+=rc; 

9.         } while ((rc==1024)||(x<conn[sid].dat->in_ContentLength)); 

10.  conn[sid].PostData[conn[sid].dat->in_ContentLength]='\0'; 

11.   } 

 

true branch 

Allocate  -1000 + 1024 bytes = 24 bytes 



Interaction: request-method=”POST”, content-
length = -1000, data= a string > 24 bytes 
1.   if (strcmp(conn[sid].dat->in_RequestMethod, "POST")==0) { 

2.     if (conn[sid].dat->in_ContentLength<MAX_POSTSIZE) { 

  …… 

3.     conn[sid].PostData=calloc(conn[sid].dat->in_ContentLength+1024, 
sizeof(char)); 

             …… 

4.         pPostData=conn[sid].PostData;  

5.         do { 

6.            rc=recv(conn[sid].socket, pPostData, 1024, 0); 

           …… 

7.            pPostData+=rc; 

8.            x+=rc; 

9.         } while ((rc==1024)||(x<conn[sid].dat->in_ContentLength)); 

10.  conn[sid].PostData[conn[sid].dat->in_ContentLength]='\0'; 

11.   } 

 

true branch 

Allocate  -1000 + 1024 bytes = 24 bytes 

Boom! 



Tutorial Overview 
 

1. Why are we doing this? 
2. What is combinatorial testing? 
3. What tools are available? 
4. Is this stuff really useful in the real world? 

5.What's next? 



Fault location 

Given:  a set of tests that the SUT fails, which 
combinations of variables/values triggered the failure? 

variable/value combinations 
in passing tests 

variable/value combinations 
in failing tests 

These are the ones we want 



Fault location – what's the problem? 

If they're in failing set but not in 
passing set: 
1. which ones triggered the failure? 
2. which ones don't matter? 

out of vt( ) combinations 
n 
t 

Example: 
30 variables, 5 values each 
 = 445,331,250  
    5-way combinations 
 
142,506 combinations  
in each test 



Tutorial Overview 
 

1. Why are we doing this? 
2. What is combinatorial testing? 
3. What tools are available? 
4. Is this stuff really useful in the real world? 
5. What's next? 



Tutorial Overview 
 

1. Why are we doing this? 

2.What is combinatorial 
testing? 

3. What tools are available? 
4. Is this stuff really useful in the real world? 
5. What's next? 



Tutorial Overview 
 

1. Why are we doing this? 
2. What is combinatorial testing? 

3.What tools are available? 
4. Is this stuff really useful in the real world? 
5. What's next? 



Tradeoffs 
 Advantages 

− Tests rare conditions 
− Produces high code coverage 
− Finds faults faster 
− May be lower overall testing cost 

 Disadvantages 
− Expensive at higher strength interactions (>4-way) 
− May require high skill level in some cases (if formal 

models are being used) 


	Slide Number 1
	Slide Number 2
	Slide Number 3
	Where did these testing ideas come from?
	Father of DOE: �R A Fisher, 1890-1962, British geneticist
	Four eras in evolution of DOE
	Agriculture and biological investigations
	Manufactured products
	Orthogonal Arrays for �Software Interaction Testing
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Design of Experiments for Software Testing
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Slide Number 34
	Slide Number 35
	Slide Number 36
	Slide Number 37
	Slide Number 38
	Slide Number 39
	Slide Number 40
	Slide Number 41
	Slide Number 42
	Slide Number 43
	Slide Number 44
	Slide Number 45
	Slide Number 46
	Slide Number 47
	Slide Number 48
	What good is combinatorial testing?
	Slide Number 50
	Slide Number 51
	Slide Number 52
	Example 2:  Laptop application testing
	Connection Sequences
	 Event Sequence Testing �
	Sequence Covering Array�
	Sequence Covering Array Properties
	Example 3:  Existing Test Sets 
	Measuring Combinatorial Coverage�
	Graphing Coverage Measurement �
	Adding a test
	Adding another test
	Additional test completes coverage
	Combinatorial Coverage Measurement �
	USAF test plan coverage
	Where do we go next?
	Slide Number 67
	Test Prioritization
	Fault location
	Fault location – what's the problem?
	Slide Number 71
	Lessons Learned and Needs
	Review�video by �Tyler Mesch, Bose Corp.
	Slide Number 74
	BACKUP SLIDES FOR ADDITIONAL DISCUSSION
	Examples from the �National Vulnerability Database
	Slide Number 77
	Slide Number 78
	Slide Number 79
	Slide Number 80
	Slide Number 81
	Slide Number 82
	Slide Number 83
	Slide Number 84
	Slide Number 85
	Slide Number 86
	Slide Number 87
	Computation Tree Logic
	What is the most effective way to integrate combinatorial testing with model checking?
	What happens with these assertions?
	Slide Number 91
	Slide Number 92
	Slide Number 93
	Slide Number 94
	Slide Number 95
	Slide Number 96
	Slide Number 97
	Slide Number 98
	Slide Number 99
	Slide Number 100
	Slide Number 101
	Slide Number 102
	Slide Number 103
	Fault location
	Fault location – what's the problem?
	Slide Number 106
	Slide Number 107
	Slide Number 108
	Slide Number 109

