
Combinatorial Methods for
Discrete Event Simulation of a

Grid Computer Network

Rick Kuhn
Computer Security Division

National Institute of Standards and Technology
Gaithersburg, MD

kuhn@nist.gov

ModSim World, 14 Oct 09

Overview
• NIST is a US Government agency

• The nation’s measurement and testing
 laboratory – 3,000 scientists, engineers,
 and support staff including 3 Nobel laureates
• Research in physics, chemistry, materials,
 manufacturing, computer science, including

• network security
• combinatorial methods and testing

Question: can combinatorial methods help
us find attacks on networks?

Experiment: find deadlock configurations with grid
computer network simulator. Compare:

• random simulation inputs
• covering arrays of 2-way, 3-way, 4-way combinations

Automated Combinatorial Testing
 Goals – reduce testing cost, improve cost-benefit ratio

 Accomplishments – huge increase in performance,
 scalability, 200+ users, most major IT firms and others

 Also non-testing applications – modelling and simulation,
 genome

Software Failure Analysis
• NIST studied software failures in a variety of
 fields including 15 years of FDA medical
 device recall data

• What triggers software failures?

• logic errors?

• calculation errors?

• inadequate input checking?

• Interactions? e.g., failure occurs if

• pressure < 10 (1-way interaction)

• pressure < 10 & volume > 300 (2-way interaction)

• pressure < 10 & volume > 300 & velocity = 5 (3-way interaction)

• The most complex failure reported required 4-way interaction to trigger

Failure-triggering Interactions
• Additional
studies
consistent

• > 4,000
failure reports
analyzed

• Conclusion:
failures
triggered by
few variables

How About Network Failure?

Can we use these ideas to induce network failure?

What we need: a Covering Array

Each row
is a test:

Each column is
a parameter:

All triples in only 13 tests

0 = effect off
1 = effect on

13 tests for all 3-way combinations

210 = 1,024 tests for all combinations

New algorithms to make it practical
• Tradeoffs to minimize calendar/staff time:

• FireEye (extended IPO) – Lei – roughly optimal, can be used for
most cases under 40 or 50 parameters

• Produces minimal number of tests at cost of run time

• Currently integrating algebraic methods

• Adaptive distance-based strategies – Bryce – dispensing one test
at a time w/ metrics to increase probability of finding flaws

• Highly optimized covering array algorithm

• Variety of distance metrics for selecting next test

• PRMI – Kuhn –for more variables or larger domains
• Randomized algorithm, generates tests w/ a few tunable parameters;
computation can be distributed

• Better results than other algorithms for larger problems

 10 15 20

 tests sec tests sec tests sec

1 proc. 46086 390 84325 16216 114050 155964

10 proc. 46109 57 84333 11224 114102 85423

20 proc. 46248 54 84350 2986 114616 20317

FireEye 51490 168 86010 9419 ** **

Jenny 48077 18953 ** ** ** **

• Smaller test sets faster, with a more advanced user interface
• First parallelized covering array algorithm
• More information per test

12600 1070048 >1 day NA 470 11625 >1 day NA 65.03 10941 6

1549 313056 >1 day NA 43.54 4580 >1 day NA 18.41 4226 5

127 64696 >21 hour 1476 3.54 1536 5400 1484 3.05 1363 4

3.07 9158 >12 hour 472 0.71 413 1020 2388 0.36 400 3

2.75 101 >1 hour 108 0.001 108 0.73 120 0.8 100 2

Time Size Time Size Time Size Time Size Time Size

TVG (Open Source) TConfig (U. of Ottawa) Jenny (Open Source) ITCH (IBM) IPOG
T-Way

New algorithms

Traffic Collision Avoidance System (TCAS): 273241102

Tab le 6 . 6 w ay, 5 k con f ig u ra t ion resu lt s com p ar ison
* * insu f f ic ient m em ory

PRMI

(Kuhn, 06)

IPOG

(Lei, 06)

Modeling & Simulation Application
• “Simured” network simulator

• Kernel of ~ 5,000 lines of C++ (not including GUI)

• Objective: detect configurations that can produce
deadlock:

• Prevent connectivity loss when changing network
• Attacks that could lock up network

• Compare effectiveness of random vs.
combinatorial inputs

• Deadlock combinations discovered
• Crashes in >6% of tests w/ valid values (Win32

version only)

Simulation Input Parameters
Parameter Values

1 DIMENSIONS 1,2,4,6,8
2 NODOSDIM 2,4,6
3 NUMVIRT 1,2,3,8
4 NUMVIRTINJ 1,2,3,8
5 NUMVIRTEJE 1,2,3,8
6 LONBUFFER 1,2,4,6
7 NUMDIR 1,2
8 FORWARDING 0,1
9 PHYSICAL true, false
10 ROUTING 0,1,2,3
11 DELFIFO 1,2,4,6
12 DELCROSS 1,2,4,6
13 DELCHANNEL 1,2,4,6
14 DELSWITCH 1,2,4,6

5x3x4x4x4x4x2x2
x2x4x4x4x4x4
= 31,457,280
configurations

Are any of them
dangerous?

If so, how many?

Which ones?

Combinatorial vs. Random
 Deadlocks Detected -

combinatorial

t Tests 500 pkts
1000
pkts

2000
pkts

4000
pkts

8000
pkts

2 28 0 0 0 0 0
3 161 2 3 2 3 3
4 752 14 14 14 14 14

Average Deadlocks Detected –
 random

t Tests 500 pkts
1000
pkts

2000
pkts

4000
pkts

8000
pkts

2 28 0.63 0.25 0.75 0. 50 0. 75
3 161 3 3 3 3 3
4 752 10.13 11.75 10.38 13 13.25

Network Deadlock Detection
Detected 14 configurations that can cause deadlock:
 14/ 31,457,280 = 4.4 x 10-7

Combinatorial testing found one that very few random
tests could find:
 1/ 31,457,280 = 3.2 x 10-8

Combinatorial testing found more deadlocks than
random, including some that might never have been
found with random testing

Risks:
• accidental deadlock configuration: low
• deadlock configuration discovered by attacker: high

How many random tests do we need
to equal combinatorial results?

2-way Tests 3-way Tests 4-way Tests

Var
Vals/
var

IPOG
Tests Ratio

IPOG
Tests Ratio

IPOG
Tests Ratio

10 2 10 1.80 20 3.05 42 3.57
10 4 30 4.83 151 6.05 657 3.43
10 6 66 5.80 532 3.73 3843 3.48
10 8 117 4.26 1214 4.46 12010 4.39
10 10 172 4.70 2367 4.94 29231 4.71
15 2 10 2.00 24 2.17 58 2.24
15 4 33 3.67 179 3.75 940 2.73
15 6 77 3.82 663 3.79 5243 3.26
15 8 125 4.41 1551 4.36 16554 3.66
15 10 199 4.72 3000 5.08 40233 3.97
20 2 12 1.92 27 2.59 66 2.12
20 4 37 3.78 209 2.98 1126 3.35
20 6 86 3.35 757 3.39 6291 2.99
20 8 142 4.44 1785 4.73 19882 3.00
20 10 215 4.78 3463 4.04 48374 3.25
25 2 12 2.83 30 2.33 74 2.35
25 4 39 3.08 233 3.39 1320 2.67
25 6 89 3.67 839 3.44 7126 2.75
25 8 148 5.71 1971 3.76 22529 2.72
25 10 229 4.50 3823 4.32 54856 3.50

Ratio Avg. 3.90 3.82 3.21

Answer: 3x to 4x as many
and still would not guarantee detection

Tools
 Covering array generator

 Coverage analysis - what is the combinatorial coverage of
existing test set?

 .Net configuration file generator

 Fault location -
currently underway Current

users

Defining a new system

Variable interaction strength

Constraints

Covering array output

Summary
 Empirical research suggests that all or nearly all software failures

caused by interaction of few parameters

 Combinatorial testing can exercise all t-way combinations of
parameter values in a very tiny fraction of the time needed for
exhaustive testing

 New algorithms and faster processors make large-scale
combinatorial testing possible

 Beta release of tools available, to be open source

 Rick Kuhn Raghu Kacker
 kuhn@nist.gov raghu.kacker@nist.gov

 http://csrc.nist.gov/acts (Or just search “combinatorial testing” !)

Please contact us if you are interested!

	Slide Number 1
	Overview
	Automated Combinatorial Testing
	Software Failure Analysis
	Failure-triggering Interactions
	How About Network Failure?
	What we need: a Covering Array
	
	New algorithms to make it practical
	Slide Number 10
	Modeling & Simulation Application
	Simulation Input Parameters
	Combinatorial vs. Random
	Network Deadlock Detection
	How many random tests do we need �to equal combinatorial results?
	Tools
	Defining a new system
	Variable interaction strength
	Constraints
	Covering array output
	Summary

