NISTIR 6192

A REVISED MODEL FOR ROLE-BASED ACCESS CONTROL

W. A. Jansen
July 9, 1998

10.

Table of Contents

INtrOdUCHION e e 1
Model Elements.o 1
Mappings & Relations 2

Role Hierarchy. 5
StatiC PrOPeItIeS . . . o oot e 6
DynamicC Propertieso e 11
Other Features and Properties.ot e e 15

Core RBAC FeatUIesS.o e e e e 16
SUMMAIY . . .ottt e e e e e e e e e e e e e e e 19
RefereNnCesS. . . .o 19

1. Introduction

Role Based Access Control (RBAC) is a term used to describe security mechanisms that mediate
users’ access to computational resources based on role constructs. A role defines a set of
allowable activities for users authorized its use. It can be thought of as a job title or position
within an organization, which represents the authority needed to conduct the associated duties.
For many types of organizations, RBAC provides a more intuitive and effective way to represent
and manage authorization information than other forms of access control.

A general model for RBAC, including essential features and the rationale for them, is specified
in [1]. Since publication of the general model, a number of notational problems and
inconsistencies have been noted, ranging in degree from trivial to serious. This report reviews
the original RBAC model as defined in [1], corrects notational problems, and formulates a
revised model to address noted discrepancies. The aim is to improve understanding of
implications within the original model and to provide a firm baseline for subsequent activities
involving the use or implementation of the model.

Properties of the revised RBAC model are organized along two themes: static properties and
dynamic properties. Static properties deal mainly with constraints on role membership, while
dynamic properties deal with constraints on role activation [4]. With this perspective, several

new properties are derived from those identified in the original model, and other new properties
are proposed, taking into account aspects found in a number of related models [2, 3, 4, 8]. A list
of minimum recommended properties, requisite for a system or product to be considered as a true
instantiation of the revised model, is also proposed. Very little of the rationale given in [1] is
repeated here; therefore, the reader is assumed to be familiar with its contents.

2. Model Elements

The main components of the original model are User, Subject, Role, Function, Operation, and
Object. The complete set of relationships among those components was not specified, however.
Figure 1(a) gives a representation derived from the available information, whereby a single
headed arrow represents a one-to-many, binary relationship between model components, and a
double headed arrow represents a many-to-many, binary relationship.

One drawback of the original conceptual model is that it associates elements of Operation
directly with those of Role, but independently of Object. In practice, elements of Operation and
Object are closely coupled together when associated with an element of Role. This three-way
association illustrated in Figure 1 (b) is more accurately represented as a ternary relation (i.e.,
many-to-many-to-many relationship) in the revised model.

Another drawback in the original model is the use of the Function component to define
operational separation of duty (i.e., operations that are mutually exclusive of one another).
There, the Function component identified a set of operations associated with a critical business
function, whereby no single user was allowed to perform all elements in the set. Rather than

-1-

treating Function as a component of the model, operational separation of duty can be defined
instead as a constraint on Permission, similar to the treatment given other separation of duty
properties in the original model. This approach has the benefit of simplifying the basic model,
while unifying the form of the model specification. In summary, the components of the revised
model are User, Subject, Role, Operation, and Object, as defined below.

u: User
User = the set of people, both trusted (e.g., administrators) and untrusted, who use the
system.

X, Y : Subject
Subject = the set of active entities of the system, operating within roles on behalf of
individual users.

i, j, k:Role
Role = the set of named duties or job functions within an organization.

op : Operation
Operation = the set of access modes or types permitted on objects of the system.

0 : Object
Object = the set of passive entities within the system, protected from unauthorized use.

o) i
N~ ST

\..
Object

Figure 1(a): Original Relationships Figure 1(b): Revised Relationships

g Mappings & Relations

The mappings from the original model are shown Figure 2. They further refine the general
relationships among the components of the model given in Figure 1(a), and are used to express
properties of the model. As clearly seen in Figure 2, some redundant mappings exist between
some components, namely User and Role, and Subject and Role. While a particular mapping

2.

may be useful in expressing a specific property, only a subset of the mappings is needed to
express all the properties of the model. Moreover, redundant mappings increase the difficulty of
expressing properties unambiguously, which has led to inconsistencies. The reformulation given
in this paper eliminates the authorized-roles and role-members functions, and expresses the
original set of properties with the remaining functions.

User Subject

@ subject-user s1
s2
£

user- authorized-

authorized-
roles —
roles active-roles

>

\\\\““

role-operations

Operation j \
&>

Figure 2: Original Mappings

role-members

Eliminating authorized-roles results in a significant simplification of the property that the active-
roles of a subject must be a subset of its authorized-roles, which in turn must be a subset of the
user-authorized-roles for the user associated with the subject (i.e., active-rols{lsprized-
roles[s]c user-authorized-roles[subject-user[s]]). This property is represented in Figure 2 by the
nested ellipses within the rectangle for the Role component. The new property, that the active-
roles of a subject must be a subset of the user-authorized-roles for the user associated with the
subject (i.e., active-roles[s] user-authorized-roles[subject-user[s]]), while simpler, maintains

the critical feature of the original (i.e., a subject is constrained by the authorization of its user).

Eliminating the role-member function doesn’t have as dramatic an effect on the model as with
authorized-roles, but, in conjunction with the above changes, minimizes the number of mappings
utilized. The overall result, shown in Figure 3, can be compared with Figure 2. Other choices

for the minimal set of mappings may be selected. For example, user-authorized-roles could be
eliminated in lieu of role-member. The set selected, however, closely models the actions of an
administrator in assigning permissions to roles and roles to users. The selected mappings are
intended to be illustrative only. While they are used to define model properties precisely, the
mappings should not be considered a restriction on an actual implementation, since other equally
effective alternatives exist, including those employing redundant mappings.

Note the new model component, Permission, in Figure 3. For notational and conceptual

purposes, the ternary relationship between Role, Operation, and Object is refined into a pair of
binary relations: one between operations and objects, referred to as Permission; the other between

-3-

User Subject

subject-user s1
s2

user-
authorized-
roles /

R@
Ne—permissions

Permissionj

@b

Figure 3: Revised Mappings

active-roles

Role and Permission. The reformulation is shown in Figure 4, where Permission is used to
designate a set of Operation/Object pairs associated with Role elements. The use of Permission
conforms with the notion of privilege or permission found in present day information systems [2,
8]. The reformulation allows a permission to represent a broad range of access controls ranging
from basic read/write/execute rights on files to more extensive administrator rights on operating
systems. In Figure 3, the role-permissions function has replaced role-operations of the original
model for consistency with the new component, Permission.

Permission

Figure 4: Decomposition of Ternary
Relationship

The refined set of mappings for the basic model is given below, wherg tsed to represent
the power set of the exponent, afd tised to represent a subset of the indicated set.

user-authorized-roles: Usef 21Role
user-authorized-roles[u] = the set of roles authorized for user u.

Permission®(OperationxObject)

p, q : Permission

permission = a set of ordered operation/object pairs, <op,0>, where op is an operation that
can be applied to object o.

role-permissions: Role* 2 1Permission
role-permissions]i] = the set of permissions authorized for role i.

subject-user: Subjeet User
subject-user[x] = the user u associated with the subject x.

active-roles: Subjeet» 21Role
active-roles[x] = the set of roles in which a subject x is active.

4. Role Hierarchy

To facilitate administration of access control privileges and constraints, a role may be defined in
terms of one or more other roles, with additional characteristics added to distinguish the new role
further. A role defined this way is said to contain the roles that comprise its baseline, since it
automatically takes on or inherits their collective characteristics as the basis for the new role
being defined. Containment is similar to inheritance in object-oriented systems, whereby the
properties and constraints of a containing role are inclusive of the properties and constraints of
any contained role. Containment is also recursive; one role can contain other roles, which
contain others, etc., as illustrated in Figure 5(a). By definition, a role cannot contain itself.

contains
l e }—=[Permsson3

[Permisson1]
Role B
[pemssion|

Figure 5(a): Containment Figure 5(b): Inheritance View
Relation of Containment

is contained by

Besides facilitating role administration, containment permits the substitution of role instances.

For example, if role A contains role B, then instances of role A are treated as instances of role B
for the purpose of access control. In Figure 5(b), users active within instances of Role A have the
same capabilities as if they were active within instances of Role B, namely the access allowed
through Permission 1 and Permission 2. In addition, users active within Role A also possess an
additional capability, access allowed by Permission 3.

Containment can be characterized through the notion of effective roles. The effective roles of
any given role include that role plus the set of roles contained by that role. For any role, the
effective role set represents the capabilities afforded a user authorized the role. In the example
above, the effective roles for Role A are Role A and Role B. At times it is also useful to consider
the effective roles associated with a given user (or subject), which is the set of roles authorized
(active) for that user (subject) plus all roles contained by any authorized (active) role. For
example, assume there is a role C in addition to the roles defined above, and a user is authorized
for both Roles A and C. The effective roles for that user would be Roles A, B, C, and any roles
contained by Role C. Similarly, the effective permissions can be defined for a role or a user, as
the set of permissions authorized each member of the effective role set respectively, for that role
or that user. In the example of Figure 5(b), the effective permissions for Role A are Permission
1, Permission 2, and Permission 3.

Role Hierarchy is formally defined in terms of the following mappings and relations:

Contains:®(RolexRole)
contains = the set of ordered role pairs <i,j> having a containment relation, writtgn as i
where role i is said to contain role j, or alternatively, role j is said to be contained by i.

effective-roles: Subjeet 21Role
effective-roles[x] = the union of the set of active roles for a subject, x, together with the
set of roles contained by each active role; i.es, ffactive-roles[x]V icactive-roles[x]\

ij}.

effective-permissions: Role» 2 1Permission
effective-permissions][i] = the set of permissions authorized each of the effective roles for
role i; i.e.,Vj {p > perole-permissions[jj\ (j=i V j=i)}.

Role Hierarchy(rule 1 redefined)The containment relation defines an irreflexive and transitive
relation on Roles, forming a quasi ordering of the elements in the set. The containment relation
can also be shown to be antisymmetric. The quasi ordering of Roles is referred to as a role
hierarchy.

Vi =(ixi) (irreflexive)
VivK iz A j=k > ik (transitive)

5. Static Properties

Static properties refer to properties of the model that do not involve either the Subject component
or mappings from Subject to other basic components (vis., subject-user and active-roles). As
their name implies, static properties apply early, at role authorization time, and are upheld
throughout role activation. Hence, they are the most fundamental constraints and relationships
expressed in the model, and also the strongest. Static properties include cardinality, separation of
duty, and operational separation of duty. For each static property defined, a reference is given to

-6-

a rule number, which corresponds to that appearing in the original model description [1]. Static
properties are defined in terms of the mappings and relations below.

membership-limit: Role» N
membership-limit[i] = the maximum number of users that may be authorized a role; the
default value is the total number of system users.

authorized-members: Rote N

authorized-members[i] = the number of users authorized either a given role or a role that
contains the given role; i.e.; [fu3j ((j iV j=i) A jeuser-authorized-roles[u])}|, where

the cardinality of a set is expressed by a pair of bars “| |” delimiting the defined set.

SSD:®(RolexRole)

SSD = the symmetric set of role pairs <i,j> involved in a Static Separation of Duty (SSD)
relationship (i.e., where i and j are mutually exclusive of one another for authorization to
the same user due to an inherent conflict of interest); for a symmetric set <i,j> is a
member iff <j,i> is also a member.

Mutex-authorization®(RolexRole)
mutex-authorization = the symmetric set of role pairs <i,j> mutually exclusive of one
another for authorization to the same user.

Mutex-permissionf (PermissionxPermission)

mutex-permission = the symmetric set of permission pairs <p,g> mutually exclusive of
one another for authorization to an individual role or to the set of roles authorized any
user.

SOSD:P(RolexRole)

SOSD = the symmetric set of role pairs <i,j> involved in a Static Operational Separation
of Duty (SOSD) relationship, with respect to the permissions in Mutex-permission; i.e.,
ViVjvpvg SOSD = {<i,j>> perole-permissions[i]\ gerole-permissions[jj\
<p,g>Mutex-permission}.

Cardinality (rule 3): The number of users authorized a role at any one time cannot exceed the
capacity (i.e., membership limits) of the role. For example, a role with a capacity of one would
be used exclusively by the single user who is assigned to it. In terms of the mappings defined,
the cardinality of the set of users who are authorized the same role must be less than or equal to
the membership limit of that role.

Vi authorized-members membership-limit[i]
Cardinality Inheritance (new rule):Cardinality constraints are inherited by containing roles. A

containing role must be assigned a membership limit less than or equal to that of any contained
role.

Vivii j membership-limit[i] membership-limit[j]

Static Separation of Dutyrule 2): In many organizations, responsibilities are split among
multiple roles as a countermeasure to fraud, misappropriation of assets, and other conflict of
interest based policy deviations that require the collusion of two or more individuals. In
commercial transactions, for example, one role may have the capability to input transaction
requests, while another the capability to approve them. A group of roles may be designated
through the Static Separation of Duty (SSD) property as mutually exclusive of one another with
regard to role authorization. That is, to avoid a possible conflict of interest, a user may be
authorized to only one of the distinct roles so designated. SSD involving multiple roles is
expressed pairwise, using the SSD relation. If for example i, j, and k are such roles, then <i,j>,
<j,i>, <i,k>, <k,i>, <j,k>, <k,j> are members of SSD. This representation of SSD differs
syntactically but not semantically from the original model, which uses a function to return a
mutually exclusive set of roles for a given role.

ViVjVu ieuser-authorized-roles[u] jeuser-authorized-roles[u] <i,j>¢SSD
or alternatively
VivjVu <i,j>eSSD (ieuser-authorized-roles[u] j¢user-authorized-roles|u])

SSD Safetynew rule):The Static Separation of Duty property, when applied, asserts there is a
conflict of interest among the capabilities authorized a set of roles. Besides explicit SSD
relationships, there may also be implicit SSD relationships regarding other roles possessing
comparable capabilities. This property ensures that implicit SSD relationships, which can be
inferred from explicit SSD relationships, are upheld. If a user is authorized a role, which has an
SSD relationship with another role whose effective permissions are a subset of a third role’s, then
the user cannot be authorized the third role.

YuviVvjVvp ieuser-authorized-roles[u] <i,j>¢SSDA Jk(peeffective-permissions]j]
peeffective-permissions[k]) ke¢user-authorized-roles[u]

SSD Hierarchical Consistencgnew rule):An SSD relationship cannot exist between roles that
have a containment relation between them or are contained by another role in common. The
rationale behind this property is that, by definition, an instance of a containing role is treated the
same as an instance of any contained role (i.e., the effective roles of the containing role include
the contained role); therefore, the conflict of interest asserted by an SSD relationship cannot exist
without contradicting the capability intended by the containment relation.

Vivi(i jVv3k(k iANk) <i,j>¢SSD)
SSD Inheritance(new rule):SSD relationships are inherited by containing roles. If one role
contains another role that has an SSD relationship with a third role, then the containing role also

has an SSD relationship with the third role. This property must hold since a contradiction occurs
if the effective roles for the containing role includes, in addition to the contained role, the third

-8-

role. Through SSD Inheritance, distinct hierarchies of roles, isolated with regard to role
authorization, are asserted from SSD relationships among a basic set of roles.

Vivjvki | A <j,k>SSD <i,k>eSSD

Static Mutual Exclusion(new rule):Static Mutual Exclusion (SME) is somewhat similar to

SSD insofar as one group of roles may be completely segregated from another with regard to role
authorization. However, the motivation behind mutual exclusion is not as a countermeasure to
collusion, but rather as an administrative aid to codifying organizational policy. SME involving
multiple roles is expressed pairwise, using Mutex-authorization. Because SME is primarily an
administrative feature, and not one based on conflict of interest or other incompatibility among
the capabilities authorized a set of roles, there is no need for any associated Safety or
Hierarchical Consistency properties as with SSD. Omission of the latter property is significant,
since, unlike SSD, it allows constraints to exist within as well as among hierarchies.

For example, in a hospital system a staff member role may be inherited by an intern role, which
in turn may be inherited by physician role. If a doctor were assigned to both an intern and a
physician role through either accident or intention, there would be no inherent conflict of interest,
since a containment relationship exists between them. However, to avoid accounting
inconsistencies, the hospital policy may require that a doctor on staff be classified as either a
physician or an intern, but not both. It would be incorrect to use SSD to represent this policy,
and also contradictory because of the containment relation. However, the policy can be correctly
represented by designating the physician and intern roles mutually exclusive of one another
through the SME property. SME can be considered as simply an additional type of constraint
that can be applied among any set of roles, regardless of their fundamental capabilities.

ViVjVu ieuser-authorized-roles[u] jeuser-authorized-roles[u] <i,j>¢Mutex-
authorization

or alternatively

ViVjVvu <i,j>eMutex-authorization (ieuser-authorized-roles[u] j¢user-authorized-
roles[u])

SME Inheritance (new rule):SME relationships are inherited by containing roles, if those
relationships occur with roles outside the chain of containing roles or lower within the chain. If
one role contains another role that has an SME relationship with a third role, then the containing
role also has an SME relationship with the third role, provided that the third role does not contain
either role and is not contained directly by the first role (i.e., only indirectly through the second
role). As with SSD Inheritance, this property requires that a specific type of constraint be upheld
among any containing roles. However, the way in which the constraint is upheld within a chain
of containing roles is different in some cases. For example, for the physntean staff

member containment chain from the example above, a surgeon role is defined in terms of
physician (i.e., surgeon physician). The designated SME relationship between physician and

intern, through SME inheritance, would require an SME relationship to also exist between
surgeon and intern, but not surgeon and physician.

Vivivki jA=(k DA(G kV =@ k) A <j,k>eMutex-authorization <i,k>eMutex-
authorization

Static Operational Separation of Duffrule 8 restated)The rationale behind SOSD is that

business tasks are composed of a number of operations, only a subset of which a single user may
perform. SOSD is enforced by using permissions to represent allowable subsets of operations on
objects involved in business tasks, and designating a group of permissions as mutually exclusive
of one another with respect to the roles authorized any single user. Mutually exclusive
permissions ensure that no single user may be authorized one or more roles having permissions
involved in an SOSD relationship. One side effect of this property is that no role may be
authorized more than one permission from a group of permissions designated mutually exclusive
of one another. SOSD is expressed among multiple permissions through pairwise specification
of members in a mutual exclusion set, Mutex-permission, which in turn determines the
membership of the SOSD relation.

ViVjVYuvpVvg ieuser-authorized-roles[u] jeuser-authorized-roles[u] perole-
permissions|i}\ gerole-permissions[j] <p,q>Mutex-permission

or alternatively
ViVjVu ieuser-authorized-roles[u] jeuser-authorized-roles[u] <i,j>¢SOSD
or alternatively

ViVivuvpvg perole-permissions[i]\ gerole-permissions[j]\ <p,g>Mutex-permission
(ieuser-authorized-roles[u] je¢user-authorized-roles[u])

or alternatively
VivjVu <i,j>eSOSD (ieuser-authorized-roles[u] j¢user-authorized-roles|u])

SOSD Hierarchical Consistencfnew rule):An SOSD relationship cannot exist between roles
that have a containment relation between them or are contained by another role in common.

Vivi(i jV3k(kk iANk j) <i,j>¢SOSD)
Static Operational Separation of Duty Inheritand@ew rule):SOSD relationships are inherited
by containing roles. If one role contains another role that has an SOSD relationship with a third

role, then the containing role also has an SOSD relationship with the third role.

Vivjvki j A <j,k>eSOSD <ik>eSOSD

-10-

6. Dynamic Properties

Dynamic properties are used in conjunction with static properties to maintain additional
constraints and relationships on the activities that can occur when a role is active (i.e., a subject is
active in an authorized role on behalf of a user). Dynamic properties refer to properties of the
model that involve either the Subject component or mappings from Subject to other basic
components (i.e., subject-user and active-roles). For every static property, a corresponding
dynamic property may be defined. Dynamic properties are in a sense weaker than their static
property counterparts, since they come into play at role activation time rather than at role
authentication time. Weaker doesn’t necessarily mean undesirable. Instead, they offer an
additional degree of flexibility desirable in many contexts as either a substitute for, or
complement to, static properties. Dynamic properties include role activation, cardinality,
separation of duty, and operational separation of duty, and utilize the mappings and relations
below.

exec: SubjectxOperationxObjeet{True, False}
exec[x,op,0] = True iff subject x can perform an operation op on object o; otherwise,
False.

active-membership-limit: Role N
active-membership-limit[i] = the maximum number of users that may be active in a role.

active-members: Role N

active-members[i] = the number of users active either in a given role or in a role that
contains the given role; i.e.; [fuvxdj ((j 1V j=1) N\ jeactive-roles[x]\ u=active-
user[x)}

DSD: P(RolexRole)

DSD = the symmetric set of role pairs <i,j> involved in a Dynamic Separation of Duty
(DSD) relationship (i.e., where i and j mutually exclusive of one another for activation by
the same user, due to an inherent conflict of interest).

Mutex-activation: §RolexRole)
mutex-activation = the symmetric set of role pairs <i,j> mutually exclusive of one another
for activation by the same user.

Mutex-perm:®(PermissionxPermission)
mutex-perm = the symmetric set of permission pairs <p,g> mutually exclusive of one
another for activation by the same user, simultaneously within different roles.

DOSD: ARolexRole)

DOSD = the symmetric set of role pairs <i,j>, involved in a Dynamic Operational
Separation of Duty (DOSD) relationship with respect to the permissions in Mutex-perm;
i.e.,VivjVpvq DOSD = {<i,j> > perole-permissions[i]\ gerole-permissions[jj\
<p,q>Mutex-perm}.

-11-

Role Authorization(rule 4, subsumes assumption 1 in original model, Consistent Subject):
subject cannot be active in a role that is not authorized for its associated user. Note, this rule
should be renamed Role Activation for accuracy, since it only comes into play after
authorization.

VXV ieactive-roles[x] ieuser-authorized-roles[subject-user[x]]

Operation Authorization(rule 7 subsumes rule 5, Role Executighsubject can perform an
operation on an object if, and only if, the subject is acting within an effective role authorized that
permission.

VXVopVvo exec[x,0p,0F Ji (ieeffective-roles[x]/)\ perole-permissions|ij\ <op,0>p)

Dynamic Cardinality (new rule)The number of users active in a role at any one time cannot
exceed the dynamic capacity (i.e., active-membership-limit) of the role. This rule, though more
difficult to implement than Static Cardinality, seems to be much more desirable, since the role
capacity is maintained at activation time as opposed to authorization time. For example, a role
with a dynamic capacity of one would allow at most a single role instance to be active at any
time, ensuring consecutive use of the role’s capabilities by any assigned users.

Vi active-members[i] active-membership-limit][i]

Dynamic Cardinality Inheritance(new rule):Cardinality constraints are inherited by containing
roles. If one role contains another role, then the containing role must have an active membership
limit less than or equal to that of the contained role.

Vivji j active-membership-limit[i] active-membership-limitj]

Dynamic Separation of Duty (rule 6): A group of roles may be designated as mutually exclusive
of one another with regard to role activation, ensuring that at any one time a user may be active
in only one of the distinct roles so designated. Dynamic Separation of Duty (DSD) involving
multiple roles is expressed pairwise, using the DSD relation. DSD is a memoryless property
insofar as no history of activation is kept for a user. Although DSD roles are prevented from
being activated simultaneously by a user, they may be activated consecutively by simply
dropping one role and assuming another, negating the usefulness of the property for some
environments.

VXVYyViVj i€ active-roles[x]/\ jeactive-roles[y])\ subject-user[x}subject-userl[y]
<i,j>¢DSD

or alternatively
VXVYVivj <i,j>eDSD A subject-user[x}subject-user[y] (ieactive-roles[x] j¢active-

rolesly])

-12-

DSD Safety(new rule):As with SSD, there may also be implicit DSD relationships regarding

other roles possessing comparable capabilities, besides explicit DSD relationships. This property
ensures that implicit DSD relationships are upheld at activation time. If a user is active in a role,
which has a DSD relationship with another role whose effective permissions are a subset of a
third role’s, then the user cannot also be active in the third role.

VXVYViVjVp icactive-roles[x]\ subject-user[x}subject-user[y]\ <i,j>eDSD A\
Jk(peeffective-permissions|j] peeffective-permissions[k]) ke¢active-rolesl|y]

DSD Hierarchical Consistencynew rule):A DSD relationship cannot exist between two roles

that have a containment relationship between them or are contained by another role in common.
The same rationale that applied for SSD applies for DSD, namely that a DSD relationship cannot
be asserted in such situations without contradicting the capability intended by the containment
relation.

Vivi(i jV3k(Kk iAk) <ij>¢DSD)

DSD Inheritance(new rule):DSD relationships are inherited by containing roles. If one role
contains another role that has a DSD relationship with a third role, then the containing role also
has a DSD relationship with the third role. Through DSD Inheritance, distinct hierarchies of
roles, isolated with regard to role activation, are asserted from DSD relationships among a basic
set of roles.

Vivivki j A <j,k>eDSD <i,k>eDSD

Dynamic Mutual Exclusion(new rule):A group of roles may be designated as mutually

exclusive of one another with regard to role activation, ensuring that at any one time a user may
be active in only one of the distinct roles so designated. While Dynamic Mutual Exclusion is
similar in function to DSD, the underlying motivation for isolating roles is not one of conflict of
interest, but of codifying organizational policy. This distinction is subtle, but critical in
differentiating associated properties. In particular, there is no need for any associated Safety or
Hierarchical Consistency properties, since no fundamental incompatibilities exist among
designated roles. As with DSD, this property is memoryless and of limited usefulness in some
environments.

VXVYyViVj i€ active-roles[x]/\ jeactive-roles[y])\ subject-user[x}subject-user[y]
<i,j>¢Mutex-activation

or alternatively

VXVYViVj <i,j>eMutex-activation /subject-user[x}subject-user[y] (ieactive-roles|[x]
jeactive-roles[y])

DME Inheritance (new rule):DME relationships are inherited by containing roles, if those
relationships occur with roles outside the containment chain or lower in the chain. If one role

13-

contains another role that has a DME relationship with a third role, then the containing role also
has a DME relationship with the third role, provided that the third role does not contain either
role and is not contained directly by the first role (i.e., only indirectly through the second role).
As with DSD Inheritance, this property requires that a specific type of constraint be upheld
among any containing roles. However, the way in which the constraint is upheld within a chain
of containing roles is different in some cases.

Vivivki jA=(k) A kV (i K) A <j,k>eMutex-activation <i,k>eMutex-

activation
Dynamic Operational Separation of Dutfnew rule):A group of permissions may be designated
as mutually exclusive of one another with regard to the roles activated by a subject on behalf of
any single user. One side effect of this property is that no role may be authorized more than one
permission from a group of permissions designated mutually exclusive of one another. As with
DSD, this property is memoryless and has limited utility in some environments.

VXVYVIiVjVpVYQ icactive-roles[x])\ jeactive-roles[y]\ subject-user[x}subject-user[yJ\
perole-permissions[ij\ gerole-permissions|[j] <p,g>Mutex-perm

or alternatively

VXVYViVj ieactive-roles[x]\ jeactive-roles[y]\ subject-user[x}subject-user[y]
<i,j>¢DOSD

or alternatively

VXVYVIiVjVpVYQ perole-permissions[i]\ gerole-permissions[jj\ <p,g>Mutex-permA
subject-user[x}subject-user[y] (ieactive-roles[x] j¢active-roles[y])

or alternatively

VXVyVivj <i,j>eDOSDA subject-user[xdsubject-user[y] (ieactive-roles[x]
jeactive-roles[y])

DOSD Hierarchical Consistencynew rule):The same rationale that applied for SOSD applies
for DOSD. If a containment relationship exists between two roles or a common heir to both
exists, then a DOSD relationship cannot exist between them.

Vivi(i jV3k(kk iANk |) <i,j>¢DOSD)
Dynamic Operational Separation of Duty Inheritand@ew rule):DOSD relationships are
inherited by containing roles. If one role contains another role that has a DOSD relationship with
a third role, then the containing role also has a DOSD relationship with the third role.

Vivjvki j A <j,k>eDOSD <i,k>eDOSD

-14-

7. Other Features and Properties

The scope of both the original and revised models could be expanded in a variety of areas that for
certain environments would prove useful. The areas include features related to administration,
separation of duty, and role attributes. Though these features are not present in the revised
model, they provide both an understanding of the limits of applicability of the current model and

a direction for further enhancements.

Administration. RBAC can be treated as either a discretionary or non-discretionary access

control method. The treatment given in this paper is oriented toward the latter method. The
model implicitly requires administration roles to be distinct from user roles, insofar as their
permissions deal solely with the policy attribute components of the model: User-to-Role and
Role-to-Permission mappings, containment relations, cardinality constraints, and separation of
duty constraints. Personnel not authorized administration roles are denied these permissions and
must operate within the confines of the roles defined for and assigned to them by an
administrator. Conversely, personnel who are authorized administration roles are restricted to
administration of policy attribute components when active in those roles. Administrators are
expected to maintain strict separation of roles.

Division of roles in this manner supports the principle of Attenuation of Privileges, which states
that subjects should not be able to increase their privilege or grant to other subjects privileges
they themselves do not own. Separation of authorization aspects from policy attribute
management is useful in practice since authorization must be relatively independent of how
policy attributes, such as roles, are managed [3]. However, a circular dependency between
authorization and policy attribute management exists in such models, since authorization requires
defined policy attributes for controlling access, and specification of policy attributes requires
authorization to that information.

Features of the model to support strict separation of user and administrator roles are lacking. In
order to model the non-discretionary perspective, some additional administrative support
properties could be defined. For example, the model could be extended to account for
administration and user role distinctions with respect to both the type of objects accessed and the
type of role accessing the objects. While motivated by the desire to distinguish between user and
administrator domains within the model, these properties may also find utility in defining
distinctive sub-domains within those domains.

Separation of Duty A of separation of duty properties have been defined for the revised model,
the most basic and common being static and dynamic separation of duty. The rationale for
separation of duty properties lies in the notion of conflict of interest avoidance. Users must not
be placed in an environment where permitted actions allow a conflict of interest to occur. Each
separation of duty property involves either mutually-exclusive collections of permissions (i.e.,
roles) or single permissions, and constraining the authorization or activation of users associated
with those permissions.

-15-

In practice, the characteristics and security policy of one environment can be quite different from
that of another, affecting the usefulness of a particular separation of duty property [6, 7]. One
class of distinction already discussed is the authorization time vs. activation time differences
between static and dynamic properties. In the revised model, all properties, including separation
of duty, are memoryless with regard to the actions taken by a user active within a role or set of
roles. That is, the properties form an assertion that must always hold during authorization or
activation, regardless of the history of actions (viz., operations on objects) that may have
occurred. While satisfactory for some environments, such as databases or operating systems
where the set of operations and objects are somewhat uniform, in other environments, such as
workflow applications, these properties may be inadequate in providing the desired controls.

In [4], a number of separation of duty properties are discussed, some of which are memaoryfull,
contingent upon the past actions taken by a user. While [4] gives a clear overview of both the
variety and richness of this topic, it also points out situations where history-based constraints
prove useful not only for conflict of interest avoidance, but also for control of workflow.
History-based constraints include maintaining the strict sequence of actions taken on an object or
collection of objects; restricting users to m of n actions on an object or collection of objects,
regardless of the sequence in which roles are activated; and requiring m multiple users acting in
m distinct roles to collaborate on a set of actions on an object or collection of objects. For
example, the second constraint above prevents a user assigned two roles involved in a
memoryfull DSD relationship, from acting on an object in one role and then the other,
sequentially, or while simultaneously active in both roles. A normal DSD relationship only
prevents the latter from occurring.

Role Attributes The only class of attribute that has been defined for roles in the revised model is
membership limits for both static and dynamic cardinality. Other similar characteristics could
easily be added to the model, extending its applicability to other environments. These
characteristics include constraints on the start and stop activation time for the role, whether a
second authentication is needed to assume the role (e.g., to require a stronger form of
authentication), and whether user acknowledgments are needed for actions being taken by a role
(e.g., to counter a Trojan horse). The type of role, either user or administrator, is another
possible attribute already mentioned in this section.

8. Core RBAC Features

Because there is a wealth of properties that one can define in an RBAC model, one question that
commonly arises is whether a minimal subset of properties can be considered as the essential or
core features of an RBAC implementation. While any determination of core features is
subjective, it is, nevertheless, worthwhile to attempt such a categorization in the hopes of
reaching an eventual consensus among developers, vendors, and consumers of RBAC systems.
A general consensus is important to avoid the situation where products advertise RBAC
capabilities, yet only support an alternative mechanism such as user/group access control lists
that can be configured to simulate a particular configuration of roles.

-16-

One example of where a core feature list could be applied is the NIST RBAC protection profile
[5]. The profile identifies minimal security requirements for controlling access to programs,
transactions, and information, according to a user’s assigned organizational role. The intent of
the profile is to form the basis for evaluations of products claiming to meet the functionality and
assurance requirements specified.

Table 1 summarizes the basic properties of the RBAC model specified in this paper. The entries
within the table indicate whether the property identified from the row and column headings is
considered a core feature (i#),or not (i.e. X). While nearly all properties have static and

dynamic counterparts, a couple of them are solely dynamic in nature and blocked out accordingly
within the table.

Table 1: Summary of Core RBAC Features

Property Static Dynamic
Role Hierarchy v
Role Authorization V4
Operation Authorization v
Cardinality Ve v
Cardinality Inheritance v v
Separation of Duty v v
Separation of Duty Safety X X
Separation of Duty Hierarchical v v
Consistency
Separation of Duty Inheritance v v
Mutual Exclusion X X
Mutual Exclusion Inheritance X X
Operational Separation of Duty X X
Operational Separation of Duty X X
Hierarchical Consistency
Operational Separation of Duty X X
Inheritance

One of the main motivations for RBAC is the ease and flexibility it provides for administering
system privileges for large numbers of users. Roles can easily be established and modified
independently of the user assignments. Role hierarchies further simplify the definition and

-17-

maintenance of roles, by allowing many subtle differences in capabilities to be captured and
represented within a system through the containment relation. The ability to maintain
distinctions among roles easily, supports the principle of least privilege, since users can be
assigned the exact set of permissions necessary to perform their assigned tasks under the exact
set of constraints. Although many systems claiming to be RBAC implementations do not
currently support role hierarchies, this property is seen as fundamental for sound administration
practices and, therefore, included in the core features.

Role Authorization and Operation Authorization are essential to properly activate a role and,
once activated, performing actions (i.e., operations on objects) within the system. Without any
doubt, they are mandatory core features. Role Authorization is defined independently of Role
Hierarchy, while Operation Authorization is defined explicitly to account for containment
relationships within the role hierarchy in terms of the effective-roles function.

The remaining items from the set of basic properties are Cardinality, Separation of Duty, Mutual
Exclusion, Operational Separation of Duty, and Separation of Duty Safety. Note that with the
inclusion of Role Hierarchy in the core set, any Separation of Duty or Operational Separation of
Duty property selected causes all associated properties involving role hierarchies (i.e.,
Hierarchical Consistency and Inheritance properties) to be selected as well.

Cardinality is perhaps the most difficult property to categorize. The dynamic form is more
flexible than the static form, yet more difficult to implement. Its use ranges from controlling the
number of user employing a software package for software licensing restrictions, to limiting a
role to a single member for managements positions where either the manager or a subordinate
acting for the manager may be active, or a number of managers rotate into the role (e.g., during
shifts). The static form is simple to implement, but has limited use (e.g., establishing a private
role for a single user). As mentioned earlier, the Cardinality property is only one of several
constraints associated with role attributes that could be specified. Since itis the only
representative from this important class of properties, both the static and dynamic forms are
included in the core set. With their inclusion, come the associated Cardinality Inheritance
properties.

Separation of Duty is a long-standing security principal and one of the earliest motivations for
RBAC [9]. Both Static and Dynamic forms of Separation of Duty properties are well understood
and have a broad base of consistent specification [1, 2, 4, 9]; therefore, they are included in the
core RBAC properties. Operational Separation of Duty properties, on the other hand, are omitted
from the core properties, since they are relatively newer and lack consistency in definition among
various models. As mentioned above, with the inclusion of Separation of Duty also come the
associated Hierarchical Consistency and Inheritance properties.

Separation of Duty Safety is a new property, not specified in any of the references. While an
important feature in some environments, its effects are more subtle and can be mimicked by
disciplined administration practices. For this reason, it is omitted from the core set of properties.
For similar reasons, all forms of Mutual Exclusion and their associated Inheritance properties are
also omitted from the core set.

-18-

9. Summary

This report has carefully reexamined the original RBAC model and improved it in a number of
areas. The first of these is perfecting the specification by eliminating redundant mappings
between model components and correcting errors in the statement of basic properties, such as
Dynamic Separation of Duty. The second area is the array of additional properties generated by
applying the static and dynamic distinctions to the properties in the original model to state new
counterparts. Dynamic Cardinality is an example of an extremely useful property generated in
this fashion. A third, and perhaps the most significant area of improvement, is the set of
additional properties developed to extend and complete the model. These properties are the
Safety properties for Static and Dynamic Separation of Duty, Mutual Exclusion properties, and
the Inheritance and Hierarchical Consistency properties for those basic properties affected by role
hierarchies.

The report also describes the rationale behind a number of potential areas for enhancement, as a
means for understanding the limitations of the revised model. The enhancements identified are
the addition of subject/object domains, role attributes, and action histories. The report concludes
with the identification of a core set of properties considered the minimum set necessary for a
system to be called an RBAC system.

10. References

[1] Role-Based Access Control (RBAC): Features and Motivations, David Ferraiolo et al.,
Computer Security Applications Conference, December 1995.

[2] Role-Based Access Control Models, Ravi S. Sandhu et al., IEEE Computer, February
1996.

[3] The RBAC Security Policy Model, Virgil Gligor et al., unpublished paper,
http://cspa09.ncsl.nist.gov/disk2/rbac/docs/model.ps, December 1995.

[4] Separation of Duty in Role-Based Environments, Richard T. Simon & Mary Ellen Zurko,
Proceedings of the Second New Security Foundations Workshop, June 1997.

[5] Role-Based Access Control Protection Profile (PP), National Institute for Standards and
Technology, http://csrc.nist.gov/nistpubs/cc/pp/pplist.ntm/#RBAC, December 1997.

[6] The Chinese Wall Security Policy, David Brewer & Michael J. Nash, Proceedings IEEE
Symposium on Security and Privacy, May 1989, pp.206-214.

[7] Some Conundrums Concerning Separation of Duty, Michael J. Nash & Keith R. Poland,
Proceedings IEEE Symposium on Security and Privacy, May 1990, pp.201-207.

-19-

http://csrc.nist.gov/nistpubs/cc/pp/pplist.htm/#RBAC
http://cspa09.ncsl.nist.gov/disk2/rbac/docs/model.ps

[8] Access Rights Administration in Role-based Security Systems, M. Nyanchama & S.

Osborn, in Database Security VIII: Status and Prospects, Elsevier Science B.V. North-
Holland, 1994

[9] Security Considerations for an Automated Command and Control Information System:

Baseline Definition, Frank Mayer, Trusted Information Systems, Report 201, NATO
Unclassified, May 1989.

-20-

