

IEEE Computer, Volume 29, Number 2, February 1996, pages 38-47.

y zRole-Based Access Control Models

Ravi S. Sandhu', Edward J. Coynek, Hal L. Feinsteink and Charles E. Youmank

Revised October 26, 1995

Abstract This article introduces a family of reference models for role-
based access control (RBAC) in which permissions are associated with

roles, and users are made members of appropriate roles. This greatly

simplifes management of permissions. Roles are closely related to the

concept of user groups in access control. However, a role brings together

a set of users on one side and a set of permissions on the other, whereas

user groups are typically defned as a set of users only.

The basic concepts of RBAC originated with early multi-user com-
puter systems. The resurgence of interest in RBAC has been driven by

the need for general-purpose customizable facilities for RBAC and the

need to manage the administration of RBAC itself. As a consequence

RBAC facilities range from simple to complex. This article describes a

novel framework of reference models to systematically address the diverse

components of RBAC, and their interactions.

Keywords: security, access control, roles, models

* This paper has been accepted for publication in IEEE Computer.

y All correspondence should b e addressed to Prof. Ravi Sandhu, ISSE Department MS 4A4,

George Mason University, Fairfax, Va 22030. Phone: 703-993-1659, fax: 703-993-1638, email:

sandhu@isse.gmu.edu.

z This work is funded in part by contracts 50-DKNA-4-00122 and 50-DKNB-5-00188 from the

National Institute of Standards and Technology. The work of Ravi Sandhu is also supported by

grant CCR-9503560 from the National Science Foundation.

' SETA Corporation and George Mason University

k SETA Corporation

mailto:sandhu@isse.gmu.edu

1 INTRODUCTION

The concept of role-based access control (RBAC) began with multi-user and multi-
application on-line systems pioneered in the 1970s. The central notion of RBAC

is that permissions are associated with roles, and users are assigned to appropriate

roles. This greatly simplifes management of permissions. Roles are created for the

various job functions in an organization and users are assigned roles based on their

responsibilities and qualifcations. Users can b e easily reassigned from one role to

another. Roles can b e granted new permissions as new applications and systems are

incorporated, and permissions can b e revoked from roles as needed.

A role is properly viewed as a semantic construct around which access control pol-
icy is formulated. The particular collection of users and permissions brought together

by a role is transitory. The role is more stable because an organization's activities or

functions usually change less frequently.

Several distinct motivations for constructing a role are discussed below. A role

can represent competency to do specifc tasks, such as a physician or a pharmacist.

A role can emb o d y authority and responsibility, e.g., project supervisor. Authority

and responsibility are distinct from competency. Jane Doe may be competent to head

several departments, but is assigned to head one of them. Roles can refect specifc

duty assignments that are rotated through multiple users, e.g., a duty physician or

shift manager. RBAC models and implementations should b e able to conveniently

accommodate all of these manifestations of the role concept.

A recent study by NIST [1] demonstrates that RBAC addresses many needs of

the commercial and government sectors. In this study of 28 organizations, access

control requirements were found to b e driven by a v ariety of concerns including cus-
tomer, stockholder and insurer confdence, privacy of personal information, preventing

unauthorized distribution of fnancial assets, preventing unauthorized usage of long-
distance telephone circuits, and adherence to professional standards. The study found

that many organizations based access control decisions on "the roles that individual

users take on as part of the organization." Many organizations preferred to centrally

control and maintain access rights, not so much at the system administrator's per-
sonal discretion but more in accordance with the organization's protection guidelines.

The study also found that organizations typically viewed their access control needs

as unique and felt that available products lacked adequate fexibility.

Other evidence of strong interest in RBAC comes from the standards arena. Roles

are being considered as part of the emerging SQL3 standard for database management

systems, based on their implementation in Oracle 7. Roles have also been incorporated

in the commercial security profle of the draft Common Criteria [2]. RBAC is also

well matched to prevailing technology and business trends. A numb e r of products

support some form of RBAC directly, and others support closely related concepts,

such as user groups, that can be utilized to implement roles.

1

Notwithstanding the recognized usefulness of the RBAC concept, there is little

agreement on what RBAC means. As a result RBAC is an amorphous concept inter-
preted in diferent ways by various researchers and system developers, ranging from

simple to elaborate and sophisticated.

This paper describes a novel framework of four reference models developed by

the authors to provide a systematic approach to understanding RBAC, and to cat-
egorizing its implementation in diferent systems. Our framework also separates the

administration of RBAC from its use for controlling access to data and other re-
sources.

2 BACKGROUND AND MOTIVATION

A major purpose of RBAC is to facilitate security administration and review. Many

commercially successful access control systems for mainframes implement roles for

security administration. For example, an operator role could access all resources

but not change access permissions, a security-ofcer role could change permissions

but have no access to resources, and an auditor role could access audit trails. This

administrative use of roles is also found in modern network operating systems, e.g.,

Novell's NetWare and Microsoft Windows NT.

Recent resurgence of interest in RBAC has focussed on general support of RBAC

at the application level. In the past, and today, specifc applications have been built

with RBAC encoded within the application itself. Existing operating systems and

environments provide little support for application-level use of RBAC. Such support is

beginning to emerge in products. The challenge is to identify application-independent

facilities that are sufciently fexible, yet simple to implement and use, to support a

wide range of applications with minimal customization.

Sophisticated variations of RBAC include the capability to establish relations

b e t ween roles as well as b e t ween permissions and roles and b e t ween users and roles.

For example, two roles can b e established as mutually exclusive, so the same user

is not allowed to take on both roles. Roles can also take on inheritance relations,

whereby one role inherits permissions assigned to a diferent role. These role-role

relations can be used to enforce security policies that include separation of duties and

delegation of authority. Heretofore, these relations would have to b e encoded into

application software; with RBAC, they can be specifed once for a security domain.

With RBAC it is possible to predefne role-permission relationships, which makes

it simple to assign users to the predefned roles. The NIST study [1] indicates that

permissions assigned to roles tend to change relatively slowly compared to changes

in user membership of roles. The study also found it desirable to allow administra-
tors to confer and revoke membership to users in existing roles without giving these

administrators authority to create new roles or change role-permission assignments.

2

Assignment of users to roles will typically require less technical skill than assignment

of permissions to roles. It can also b e difcult, without RBAC, to determine what

permissions have been authorized to what users.

Access control policy is embodied in various components of RBAC such as role-
permission, user-role and role-role relationships. These components collectively de-
termine whether a particular user will be allowed to access a particular piece of data

in the system. RBAC components may b e confgured directly by the system owner

or indirectly by appropriate roles as delegated by the system owner. The policy en-
forced in a particular system is the net result of the precise confguration of various

RBAC components as directed by the system owner. Moreover, the access control

policy can evolve incrementally over the system life cycle, and in large systems it is

almost certain to do so. The ability t o modify policy to meet the changing needs of

an organization is an important beneft of RBAC.

Although RBAC is policy neutral, it directly supports three well-known security

principles: least privilege, separation of duties, and data abstraction. Least privilege

is supported because RBAC can b e confgured so only those permissions required

for the tasks conducted by members of the role are assigned to the role. Separation

of duties is achieved by ensuring that mutually exclusive roles must b e invoked to

complete a sensitive task, such as requiring an accounting clerk and account manager

to participate in issuing a check. Data abstraction is supported by means of abstract

permissions such as credit and debit for an account object, rather than the read, write,

execute permissions typically provided by the operating system. However, RBAC

cannot enforce application of these principles. The security ofcer could confgure

RBAC so it violates these principles. Also, the degree to which data abstraction is

supported will be determined by the implementation details.

RBAC is not a panacea for all access control issues. More sophisticated forms of

access control are required to deal with situations where sequences of operations need

to b e controlled. For example, a purchase requisition requires various steps before it

can lead to issuance of a purchase order. RBAC does not attempt to directly control

the permissions for such a sequence of events. Other forms of access control can b e

layered on top of RBAC for this purpose. Mohammed and Dilts [3] and Thomas

and Sandhu [4] have discussed some of these issues. We view control of sequences of

operations to be outside the scope of RBAC, although RBAC can be a foundation on

which to build such controls.

3 ROLES AND RELATED CONCEPTS

A frequently asked question is, "What is the diference b e t ween roles and groups?"

Groups of users as the unit of access control are commonly provided in many access

control systems. A major diference between most implementations of groups and the

3

concept of roles is that groups are typically treated as a collection of users and not

as a collection of permissions. A role is both a collection of users on one side and a

collection of permissions on the other. The role serves as an intermediary to bring

these two collections together.

Consider the Unix operating system. Group membership in Unix is defned in

two fles, /etc/passwd and /etc/group. It is thus easy to determine the groups to

which a particular user belongs or all the members of a specifc group. Permissions

are granted to groups on basis of permission bits associated with individual fles

and directories. To determine what permissions a particular group has will generally

require a traversal of the entire flesystem tree. It is thus much easier to determine the

membership of a group than to determine the permissions of the group. Moreover the

assignment of permissions to groups is highly decentralized. Essentially, the owner

of any sub-tree of the Unix flesystem can assign permissions for that sub-tree to

a group. (The precise degree to which this can b e done depends on the particular

variant of Unix in question.) However, Unix groups can b e used to implement roles

in certain situations, even though groups are not the same as our concept of roles.

To illustrate the qualitative nature of the group versus role distinction, consider a

hypothetical system in which it takes twice as long to determine group membership

as to determine group permissions. Assume that group permissions and membership

can only be changed by the system security ofcer. In this case, the group mechanism

would be very close to our concept of a role.

The preceding discussion suggests two characteristics of a role, it should b e ap-
proximately equally easy to determine role membership and role permissions, and

control of role membership and role permissions should be relatively centralized in a

few users. Many mechanisms that are claimed to b e role-based fail one or both of

these requirements.

A question is often asked concerning the relationship of roles to compartments.

Compartments are a part of the security label structure as used in the classifed

defense and government sectors [5]. Compartments are based on the notion of need-
to-know, which has a semantic connotation regarding the information available under

a compartment label analogous to the semantic connotation of role. However, the

use of compartments is for the specifc policy of one-directional information fow i n a

lattice of labels. Roles do not presume a particular policy of this kind.

A long-standing distinction exists b e t ween discretionary and mandatory access

controls, respectively known as DAC and MAC. This distinction emerged from se-
curity research in the defense sector. MAC enforces access controls on the basis of

security labels attached to users (more precisely, to subjects) and objects [5]. DAC

enforces access control to an object on the basis of permissions or denials or both

confgured by an individual user, typically the object's owner. RBAC can b e viewed

as an independent component of access control, coexisting with MAC and DAC when

appropriate. In such a case access is allowed if and only if permitted by RBAC, MAC,

4

and DAC. We also expect that RBAC in many cases will exist by itself.

As a related issue, is RBAC itself a discretionary or a mandatory mechanism?

The answer depends on the precise defnition of discretionary and mandatory as

well as on the precise nature and confguration of permissions, roles, and users in

an RBAC system. We understand mandatory to mean that individual users do not

have any choice regarding which permissions or users are assigned to a role, whereas

discretionary signifes that individual users make these decisions. As we said earlier,

RBAC is policy-neutral by itself. Particular confgurations of RBAC can have a

strong mandatory favor, while others can have a strong discretionary favor.

4 A FAMILY OF REFERENCE MODELS

To understand the various dimensions of RBAC w e defne a family of four conceptual

models. The relationship between these four models is shown in Figure 1(a) and their

essential characteristics portrayed in Figure 1(b). RBAC0

, the base model, is at the

bottom, indicating that it is the minimum requirement for any system that professes

to support RBAC. RBAC and RBAC both include RBAC0

, but add independent 1 2

features to it. They are called advanced models. RBAC adds the concept of role 1

hierarchies (situations where roles can inherit permissions from other roles). RBAC2

adds constraints (which impose restrictions on acceptable confgurations of the dif-
ferent components of RBAC). RBAC and RBAC are incomparable to one another.

The consolidated model, RBAC3

, includes RBAC and RBAC and, by transitivity,

1 2

1 2

RBAC0

.

These models are intended to be reference points for comparison with systems and

models used by other researchers and developers. They can also serve as a guideline

for development of products and their evaluation by prospective customers. For the

moment, we assume there is a single security ofcer who is the only one authorized

to confgure the various sets and relations of these models. Later we will introduce a

more sophisticated management model.

4.1 BASE MODEL

The base model RBAC consists of that part of Figure 1(b) not identifed with one 0

of the three advanced models. There are three sets of entities called users (U), roles

(R), and permissions (P). The diagram also shows a collection of sessions (S).

A user in this model is a human being. The concept of a user can be generalized

to include intelligent autonomous agents such as robots, immobile computers, or even

networks of computers. For simplicity, w e focus on a user as a human being. A role

is a job function or job title within the organization with some associated semantics

regarding the authority and responsibility conferred on a memb e r o f t h e role.

5

A permission is an approval of a particular mode of access to one or more objects

in the system. The terms authorization, access right and privilege are also used in the

literature to denote a permission. Permissions are always positive and confer the abil-
ity to the holder of the permission to perform some action(s) in the system. Objects

are data objects as well as resource objects represented by data within the computer

system. Our conceptual model permits a variety of interpretations for permissions,

from very coarse grain, e.g., where access is permitted to an entire subnetwork, to

very fne grain, where the unit of access is a particular feld of a particular record.

Some access control literature talks about "negative permissions" which deny, rather

than confer, access. In our framework denial of access is modeled as a constraint

rather than a negative permission.

The nature of a permission depends greatly on the implementation details of

a system and the kind of system that it is. A general model for access control

must therefore treat permissions as uninterpreted symbols to some extent. Each

system protects objects of the abstraction it implements. Thus an operating system

protects such things as fles, directories, devices, and ports, with operations such

as read, write, and execute. A relational database management system protects

relations, tuples, attributes, and views, with operations such as SELECT, UPDATE,

DELETE, and INSERT. An accounting application protects accounts and ledgers

with operations such as debit, credit, transfer, create-account, and delete-account. It

should b e possible to assign the credit operation to a role without being compelled

to also assign the debit operation to that role.

Permissions can apply to single objects or to many. For example, a permission can

be as specifc as read access to a particular fle or as generic as read access to all fles

belonging to a particular department. The manner in which individual permissions

are joined into a generic permission so they can be assigned as a single unit is highly

implementation dependent.

Figure 1(b) shows user assignment (U A) and permission assignment (P A) rela-
tions. Both are many-to-many relations. A user can b e a memb e r of many roles,

and a role can have many users. Similarly, a role can have many permissions, and

the same permission can b e assigned to many roles. The key to RBAC lies in these

two relations. Ultimately, it is a user who exercises permissions. The placement of

a role as an intermediary to enable a user to exercise a permission provides much

greater control over access confguration and review than does directly relating users

to permissions.

Each session is a mapping of one user to possibly many roles, i.e., a user establishes

a session during which the user activates some subset of roles that he or she is a

member of. The double-headed arrow from the session to R in Figure 1(b) indicates

that multiple roles are simultaneously activated. The permissions available to the user

are the union of permissions from all roles activated in that session. Each session is

associated with a single user, as indicated by the single-headed arrow from the session

6

to U in Figure 1(b). This association remains constant for the life of a session.

A user may have multiple sessions open at the same time, each in a diferent

window on the workstation screen for instance. Each session may have a diferent

combination of active roles. This feature of RB A C supports the principle of least

privilege. A user who is a memb e r of several roles can invoke any subset of these

that is suitable for the tasks to b e accomplished in that session. Thus, a user who

is a memb e r o f a p o werful role can normally keep this role deactivated and explicitly

activate it when needed. We defer consideration of all kinds of constraints, including

constraints on role activation, to RB A C 2

. So in RB A C 0

it is entirely up to the user's

0

discretion as to which roles are activated in a given session. RB A C also permits

roles to b e dynamically activated and deactivated during the life of a session. The

concept of a session equates to the traditional notion of a subject in the access control

literature. A subject (or session) is a unit of access control, and a user may have

multiple subjects (or sessions) with diferent permissions active at the same time.

The following defnition formalizes the above discussion.

0

Defnition 1 The RB A C 0

model has the following components:

•	 U , R, P , and S (users, roles, permissions and sessions respectively),

•	 P A � P x R, a many-to-many permission to role assignment relation,

•	 U A � U x R, a many-to-many user to role assignment relation,

•	 user : S ! U , a function mapping each session si

to the single user user(si)

(constant for the session's lifetime), and

•	 r o l e s : S ! 2R, a function mapping each session si

to a set of roles r o l e s (si) �

fr j (user(si); r) 2 U A g (which can change with time) and session si

has the

permissions Ur2 (si

)

fp j (p; r) 2 P A g. 2r o les

We expect each role to be assigned at least one permission and each user to be assigned

to at least one role. The model, however, does not require this.

As noted earlier, RB A C 0

treats permissions as uninterpreted symbols because

the precise nature of a permission is implementation and system dependent. We do

require that permissions apply to data and resource objects and not to the components

of RBAC itself. Permissions to modify the sets U , R, and P and relations P A

and U A are called administrative permissions . These will b e discussed later in the

management model for RBAC. For now we assume that only a single security ofcer

can change these components.

Sessions are under the control of individual users. As far the model is concerned, a

user can create a session and choose to activate some subset of the user's roles. Roles

active in a session can be changed at the user's discretion. The session terminates at

7

the user's initiative. (Some systems will terminate a session if it is inactive for too

long. Strictly speaking, this is a constraint and properly belongs in RBAC2

.)

Some authors [6] include duties, in addition to permissions, as an attribute of

roles. A duty is an obligation on a user's part to perform one or more tasks, which are

generally essential for the smooth functioning of an organization. In our view duties

are an advanced concept which do not belong in RBAC0

. We have also chosen not

to incorporate duties in our advanced models. We feel that incorporation of concepts

such as duties in access control models requires further research. One approach is to

treat them as similar to permissions. Other approaches could be based on new access

control paradigms such as task-based authorization [4].

4.2 ROLE HIERARCHIES

The model RBAC introduces role hierarchies (RH), as indicated in Figure 1. Role 1

hierarchies are almost inevitably included whenever roles are discussed in the liter-
ature [7, 8, 9, 10]. They are also commonly implemented in systems that provide

roles.

Role hierarchies are a natural means for structuring roles to refect an organiza-
tion's lines of authority and responsibility. Examples of role hierarchies are shown

in Figure 2. By convention more p o werful (or senior) roles are shown toward the

top of these diagrams, and less p o werful (or junior) roles toward the bottom. In

Figure 2(a) the junior-most role is health-care provider. The physician role is se-
nior to health-care provider and thereby inherits all permissions from health-care

provider. The physician role can have permissions in addition to those inherited from

the health-care provider role. Inheritance of permissions is transitive so, for example,

in Figure 2(a), the primary-care physician role inherits permissions from the physi-
cian and health-care provider roles. Primary-care physician and specialist physician

both inherit permissions from the physician role, but each one of these will have dif-
ferent permissions directly assigned to it. Figure 2(b) illustrates multiple inheritance

of permissions, where the project supervisor role inherits from both test engineer and

programmer roles.

Mathematically, these hierarchies are partial orders. A partial order is a refex-
ive, transitive and anti-symmetric relation. Inheritance is refexive because a role

inherits its own permissions, transitivity is a natural requirement in this context, and

anti-symmetry rules out roles that inherit from one another and would therefore b e

redundant.

The formal defnition of RBAC is given below. 1

Defnition 2 The RBAC model has the following components: 1

• U , R, P , S, PA, UA, and user are unchanged from RBAC0

,

8

�

�

•	 RH R x R is a partial order on R called the role hierarchy or role dominance

relation, also written as 2, and

•	 r o l e s : S ! 2R is modifed from RB A C to require r o l e s (si) fr j (9r0 20

r)[(user(si); r

0) 2 U A]g (which can change with time) and session si

has the

00 00) 2permissions Ur2 (si

)

fp j (9r : r)[(p; r P A]g.	 2r o les

Note that a user is allowed to establish a session with any combination of roles

junior to those the user is a memb e r of. Also, the permissions in a session are those

directly assigned to the roles of the session as well as those assigned to roles junior

to these.

It is sometimes useful in hierarchies to limit the scope of inheritance. Consider

the hierarchy of Figure 2(b) where the project supervisor role is senior to both the

test engineer and programmer roles. Now suppose test engineers wish to keep some

permissions private to their role and prevent their inheritance in the hierarchy to

project supervisors. This situation can exist for legitimate reasons, for example,

access to incomplete work in progress may not b e appropriate for the senior role

while RBAC can b e useful for enabling such access to test engineers. This situation

can b e accommodated by defning a new role test engineer0 and relating it to test

engineer as shown in Figure 2(c). The private permissions of test engineers can b e

assigned to role test engineer0 . Test engineers are assigned to role test engineer0

and inherit permissions from the test engineer role, which are also inherited upward

in the hierarchy by the project supervisor role. Permissions of test engineer0 are,

however, not inherited by the project supervisor role. We call roles such as test

engineer0 as private roles. Figure 2(c) also shows a private role programmer0 . In

some systems the efect of private roles is achieved by blocking upward inheritance

of certain permissions. In this case the hierarchy does not depict the distribution of

permission accurately. It is preferable to introduce private roles and keep the meaning

of the hierarchical relationship among roles intact.

Figure 3 shows, more generally, how a private subhierarchy of roles can b e con-
structed. The hierarchy of Figure 3(a) has four task roles, T 1, T 2, T 3 and T 4, all of

which inherit permissions from the common project-wide role P . Role S at the top of

the hierarchy is intended for project supervisors. Tasks T 3 and T 4 are a subproject

with P 3 as the subproject-wide role, and S3 as the subproject supervisory role. Role

T 10 in Figure 3(c) is a private role for members of task T 1. Suppose the subproject

of Figure 3(a) comprising roles S3, T 3, T 4, and P 3, requires a private subhierarchy

within which private permissions of the project can be shared without inheritance by

S. The entire subhierarchy is replicated in the manner shown in Figure 3(c). The

permissions inheritable by S can b e assigned to S3, T 3, T 4, and P 3, as appropriate

whereas the privates ones can b e assigned to S30 , T 30 , T 40, and P 30, allowing their

inheritance within the subproject only. As before members of the subproject team

are directly assigned to S30 , T 30 , T 40, or P 30 . Figure 3(c) makes it clear as to which

9

private roles exist in the system and assists in access review to determine what the

nature of the private permissions is.

4.3 CONSTRAINTS

Model RBAC introduces the concept of constraints as shown in Figure 1(b). Al-2

though we h a ve called our models RBAC and RBAC2

, there isn't really an implied 1

progression. Either constraints or role hierarchies can b e introduced frst. This is

indicated by the incomparable relation between RBAC and RBAC in Figure 1(a).

Constraints are an important aspect of RBAC and are sometimes argued to be the

principal motivation for RBAC. A common example is that of mutually disjoint roles,

such as purchasing manager and accounts payable manager. In most organizations

(except the very smallest) the same individual will not be permitted to be a memb e r

of both roles, because this creates a possibility for committing fraud. This is a well-
known and time-honored principle called separation of duties.

Constraints are a p o werful mechanism for laying out higher-level organizational

policy. Once certain roles are declared to be mutually exclusive, there need not be so

much concern about the assignment of individual users to roles. The latter activity

can then be delegated and decentralized without fear of compromising overall policy

objectives of the organization. So long as the management of RBAC is entirely

centralized in a single security ofcer, constraints are a useful convenience; but the

same efect can largely b e achieved by judicious care on the part of the security

ofcer. However, if management of RBAC is decentralized (as will b e discussed

later), constraints become a mechanism by which senior security ofcers can restrict

the ability of users who can exercise administrative privileges. This enables the chief

security ofcer to lay out the broad scope of what is acceptable and impose this as a

mandatory requirement on other security ofcers and users who participate in RBAC

management.

With respect to RBAC constraints can apply to the UA and PA relations and

1 2

0

the user and roles functions for various sessions. Constraints are predicates which,

applied to these relations and functions, return a value of "acceptable" or "not ac-
ceptable." Constraints can also b e viewed as sentences in some appropriate formal

language. Intuitively, constraints are better viewed according to their kind and na-
ture. We discuss constraints informally rather than stating them in a formal notation.

Hence, the following defnition.

Defnition 3 RBAC is unchanged from RBAC except for requiring that there b e2 0

a collection of constraints that determine whether or not values of various components

of RBAC are acceptable. Only acceptable values will be permitted. 20

Implementation considerations generally call for simple constraints that can b e

efciently checked and enforced. Fortunately, in RBAC simple constraints can go a

10

long way. We n o w discuss some constraints that we feel are reasonable to implement.

Most, if not all, constraints applied to the user assignment relation have a counterpart

that applies to the permission assignment relation. We therefore discuss constraints

on these two components in parallel.

The most frequently mentioned constraint in the context of RBAC is mutually

exclusive roles. The same user can be assigned to at most one role in a mutually ex-
clusive set. This supports separation of duties. Provision of this constraint requires

little motivation. The dual constraint on permission assignment receives hardly any

mention in the literature. Actually, a mutual exclusion constraint on permission

assignment can provide additional assurance for separation of duties. This dual con-
straint requires that the same permission can b e assigned to at most one role in a

mutually exclusive set. Consider two m utually exclusive roles, accounts-manager and

purchasing-manager. Mutual exclusion in terms of U A specifes that one individual

cannot be a member of both roles. Mutual exclusion in terms of P A specifes that the

same permission cannot b e assigned to both roles. For example, the permission to

issue checks should not be assigned to both roles. Normally such a permission would

b e assigned to the accounts-manager role. The mutual exclusion constraint on P A

would prevent the permission from being inadvertently, or maliciously, assigned to

the purchasing-manager role. More directly, exclusion constraints on P A are a useful

means of limiting the distribution of p o werful permissions. For example, it may not

matter whether role A or role B gets signature authority for a particular account,

but we may require that only one of the two roles gets this permission.

More generally membership by users in various combinations of roles can b e

deemed to be acceptable or not. Thus it may be acceptable for a user to be a memb e r

of a programmer role and a tester role in diferent projects, but unacceptable to take

on both roles within the same project. Similarly for permission assignment.

Another example of a user assignment constraint is that a role can have a max-
imum numb e r of members. For instance, there is only one person in the role of

chairman of a department. Similarly, the number of roles to which an individual user

can belong could also b e limited. We call these cardinality constraints . Correspond-
ingly, the number of roles to which a permission can be assigned can have cardinality

constraints to control the distribution of p o werful permissions. It should b e noted

that minimum cardinality constraints may b e difcult to implement. For example if

there is a minimum numb e r of occupants of a role, what can the system do if one of

them disappears? How will the system know this has happened?

The concept of prerequisite roles is based on competency and appropriateness,

whereby a user can be assigned to role A only if the user is already a member of role

B. For example, only those users who are already members of the project role can be

assigned to the testing task role within that project. In this example the prerequi-
site role is junior to the new role being assumed. Prerequisites between incomparable

roles are less likely to occur in practice. The dual constraint on permission assignment

11

applies more at the role end of the PA relation. It could b e useful, for consistency,

to require that permission p can b e assigned to a role only if that role already pos-
sesses permission q. For instance, in many systems permission to read a fle requires

permission to read the directory in which the fle is located. Assigning the former

permission without the latter would be incomplete.

User assignment constraints are efective only if suitable external discipline is

maintained in assigning user identifers to human beings. If the same individual

is assigned two or more user identifers, separation and cardinality controls break

down. There must be a one-to-one correspondence between user identifers and human

beings. A similar argument applies to permission constraints. If the same operation is

sanctioned by t wo diferent permissions, the RBAC system cannot efectively enforce

cardinality and separation constraints.

Constraints can also apply to sessions, and the user and roles functions associated

with a session. It may be acceptable for a user to be a memb e r o f t wo roles but the user

cannot be active in both roles at the same time. Other constraints on sessions can limit

the number of sessions that a user can have active at the same time. Correspondingly,

the numb e r of sessions to which a permission is assigned can be limited.

A role hierarchy can b e considered as a constraint. The constraint is that a

permission assigned to a junior role must also b e assigned to all senior roles. Or

equivalently, the constraint is that a user assigned to a senior role must also b e

assigned to all junior roles. So in some sense, RBAC is redundant and is subsumed 1

by RBAC However, we feel it is appropriate to recognize the existence of role 2

.

hierarchies in their own right. They are reduced to constraints only by introducing

redundancy of permission assignment or user assignment. It is preferable to support

hierarchies directly rather than indirectly by means of redundant assignment.

4.4 CONSOLIDATED MODEL

RBAC combines RBAC and RBAC to provide both role hierarchies and con-3 1 2

straints. There are several issues that arise by bringing these two concepts together.

Constraints can apply to the role hierarchy itself, as indicated by the dashed

arrow to RH in Figure 1(b). The role hierarchy is required to b e a partial order.

This constraint i s i n trinsic to the model. Additional constraints can limit the numb e r

of senior (or junior) roles that a given role may have. Two or more roles can also be

constrained to have no common senior (or junior) role. These kinds of constraints

are useful in situations where the authority to change the role hierarchy has been

decentralized, but the chief security ofcer desires to restrict the overall manner in

which such changes can b e made.

Subtle interactions arise b e t ween constraints and hierarchies. Suppose that test

engineer and programmer roles are declared to be mutually exclusive in the context of

Figure 2(b). The project supervisor role violates this mutual exclusion. In some cases

12

such a violation of a mutual exclusion constraint b y a senior role may be acceptable,

while in other cases it may not. We feel that the model should not rule out one or the

other possibility. A similar situation arises with cardinality constraints. Suppose that

a user can b e assigned to at most one role. Does an assignment to the test engineer

role in Figure 2(b) violate this constraint? In other words, do cardinality constraints

apply only to direct membership, or do they also carry on to inherited membership?

The hierarchy of Figure 2(c) illustrates how constraints are useful in the presence of

private roles. In this case the test engineer0, programmer0, and project supervisor roles

can b e declared to b e mutually exclusive. Because these have no common senior for

these roles, there is no confict. In general private roles will not have common seniors

with any other roles because they are maximal elements in the hierarchy. So mutual

exclusion of private roles can always b e specifed without raising any confict. The

shared counterpart of the private roles can be declared to have a maximum cardinality

constraint of zero members. In this way test engineers must b e assigned to the test

engineer0 role. The test engineer role serves as a means for sharing permissions with

the project supervisor role.

5 MANAGEMENT MODELS

So far we have assumed that all components of RBAC are under direct control of a

single security ofcer. In large systems the number of roles can be in the hundreds or

thousands. Managing these roles and their interrelationships is a formidable task that

often is highly centralized and delegated to a small team of security administrators.

Because the main advantage of RBAC is to facilitate administration of permissions,

it is natural to ask how RBAC can be used to manage RBAC itself. We believe that

the use of RBAC for managing RBAC will b e an important factor in the success of

RBAC. Here we can only touch on some of the major issues.

We mention some approaches to access control management that have been dis-
cussed in the literature. ISO has developed a number of security management related

standards and documents. These can b e approached via the top-level System Man-
agement Overview document [11]. The ISO model is object-oriented and includes a

hierarchy based on containment (a directory contains fles and a fle contains records).

Roles could be integrated into the ISO approach.

There is a long tradition of models for propagation of access rights, where the right

to propagate rights is controlled by special control rights. Among the most recent

and most developed of these is Sandhu's typed access matrix model [12]. While it is

often difcult to analyze the consequences of even fairly simple rules for propagation

of rights, these models indicate that simple primitives can be composed to yield very

fexible and expressive systems.

One example of work on managing RBAC is by Mofet and Sloman [13] who

13

defne a fairly elaborate model based on role domains, owners, managers, and security

administrators. In their work authority is not controlled or delegated from a single

central point, but rather is negotiated between independent managers who have only

a limited trust in each other.

Our management model for RBAC is illustrated in Figure 4. The top half of this

fgure is essentially the same as Figure 1(b). The constraints in Figure 4 apply to all

components. The bottom half of Figure 4 is a mirror image of the top half for ad-
ministrative roles and administrative permissions. It is intended that administrative

roles AR and administrative permissions AP be respectively disjoint from the regular

roles R and permissions P . The model shows that permissions can only b e assigned

to roles and administrative permissions can only be assigned to administrative roles.

This is a built-in constraint.

The top half of Figure 4 can range in sophistication across RB A C 0

, RB A C 1

,

RB A C 2

, and RB A C The bottom half can similarly range in sophistication across 3

.

ARB AC0

, ARB AC1

, ARB AC2

, and ARB AC3

, where the A denotes administrative.

In general we would expect the administrative model to b e simpler than the RBAC

model itself. Thus ARB AC0

can b e used to manage RB A C 3

, but there seems to b e

no point in using ARB AC3

to manage RB A C 0

.

It is also important to recognize that constraints can cut across both top and

bottom halves of Figure 4. We have already asserted a built-in constraint that per-
missions can only b e assigned to roles and administrative permissions can only b e

assigned to administrative roles. If administrative roles are mutually exclusive with

respect to regular roles, we will have a situation where security administrators can

manage RBAC but not use any of the privileges themselves.

How about management of the administrative hierarchy? In principle one could

construct a second level administrative hierarchy to manage the frst level one and so

on. We feel that even a second level of administrative hierarchy is unnecessary. Hence

the administration of the administrative hierarchy is left to a single chief security

ofcer. This is reasonable for a single organization or a single administrative unit

within an organization. The issue of how these units interact is not directly addressed

in our model.

Administrative authority in RBAC can b e viewed as the ability to modify the

user assignment, permission assignment and role hierarchy relations. In a manage-
ment model the permissions that authorize these administrative operations must b e

explicitly defned. The precise nature of these permissions is implementation specifc,

but their general nature is much the same.

One of the main issues in the management model is how to scope the adminis-
trative authority vested in administrative roles. To illustrate this consider the hier-
archies shown in Figure 3(a). The administrative hierarchy of Figure 3(b) shows a

single chief security ofcer role (CSO), which is senior to the three security ofcer

roles SO1, SO2, and SO3. The scoping issue concerns which roles of Figure 3(a) can

14

b e managed by which roles of Figure 3(b). Let us say the CSO role can manage all

roles of Figure 3(a). Suppose SO1 manages task T1. In general we do not want SO1

to automatically inherit the ability to manage the junior role P also. So the scope of

SO1 can be limited entirely to T1. Similarly, the scope of SO2 can be limited to T2.

Assume SO3 can manage the entire subproject consisting of S3, T3, T4, and P3. The

scope of SO3 is then bounded by S3 at the top and P3 at the bottom.

In general, each administrative role will b e mapped to some subset of the role

hierarchy it is responsible for managing. There are other aspects of management that

need to b e scoped. For example, SO1 may only b e able to add users to the T1 role

but their removal requires the CSO to act. More generally, w e need to scope not only

the roles an administrative role manages, but also the permissions and users that

role manages. It is also important t o c o n trol changes in the role hierarchy itself. For

example, because SO3 manages the subhierarchy b e t ween S3 and P3, SO3 could b e

authorized to add additional tasks to that subproject.

6 CONCLUSION

We h a ve presented a family of RBAC models that systematically spans the spectrum

from simple to complex. These models provide a common frame of reference for other

research and development in this area. We h a ve also presented a management model

whereby RBAC can be used to control itself. This supports our position that RBAC

is policy-neutral, rather than a model of a specifc security policy.

Much remains to be done to realize the promise of RBAC. One of the outstanding

research problems in this area is to develop a systematic approach to the design and

analysis of RBAC confgurations. Some recent research on the design and analysis

of role hierarchies has been reported [8, 9, 14]. As mentioned earlier, there is little

discussion in the literature about constraints in the context of RBAC. A categorization

and taxonomy of constraints would b e useful. A formal notation for stating and

enforcing constraints, along with some measure of difculty of enforcement, should

be developed. The ability to reason about constraints and analyze the net efect of an

RBAC confguration in terms of higher-level policy objectives is an important open

research area. The management aspects of RBAC need further work. Development o f

a systematic methodology that deals with the design and analysis of role hierarchies,

constraints, and RBAC management in a unifed framework is a challenging research

goal. Many of these open issues and problems are intertwined and will require an

integrated approach for their resolution.

Acknowledgement The authors are grateful to David Ferraiolo and Janet Cugini of NIST

for useful comments while this work was in progress. The authors also thank the anonymous

reviewers whose comments and suggestions have signifcantly improved the paper.

15

References

[1] David F. Ferraiolo, Dennis M. Gilbert, and Nickilyn Lynch.	 An examination

of federal and commercial access control policy needs. In NIST-NCSC National

Computer Security Conference, pages 107-116, Baltimore, MD, September 20-23

1993.

[2] Common Criteria Editorial Board. Common Criteria for Information Technology

Security Evaluation, Decemb e r 1994. Version 0.9, Preliminary Draft.

[3] Imtiaz Mohammed and David M. Dilts.	 Design for dynamic user-role-based

security. Computers & Security, 13(8):661-671, 1994.

[4] Roshan Thomas and Ravi S. Sandhu.	 Conceptual foundations for a model of

task-based authorizations. In IEEE Computer Security Foundations Workshop

7, pages 66-79, Franconia, NH, June 1994.

[5] Ravi S. Sandhu. Lattice-based access control models. IEEE Computer, 26(11):9-
19, Novemb e r 1993.

[6] Dirk Jonscher. Extending access controls with duties|realized by active mecha-
nisms. In B. Thuraisingham and C.E. Landwehr, editors, Database Security VI:

Status and Prospects, pages 91-111. North-Holland, 1993.

[7] David Ferraiolo and Richard Kuhn. Role-based access controls. In 15th NIST-

NCSC National Computer Security Conference, pages 554-563, Baltimore, MD,

October 13-16 1992.

[8] M.-Y. Hu, S.A. Demurjian, and T.C. Ting. User-role based security in the ADAM

object-oriented design and analyses environment. In J. Biskup, M. Morgernstern,

and C. Landwehr, editors, Database Security VIII: Status and Prospects. North-
Holland, 1995.

[9] Matunda Nyanchama and Sylvia Osborn.	 Access rights administration in role-
based security systems. In J. Biskup, M. Morgernstern, and C. Landwehr, editors,

Database Security VIII: Status and Prospects. North-Holland, 1995.

[10] S. H. von Solms and Isak van der Merwe. The management of computer security

profles using a role-oriented approach. Computers & Security, 13(8):673-680,

1994.

[11] ISO/IEC 10040. Information Technology - Open Systems Interconnection - Sys-

tems Management Overview.

[12] Ravi S. Sandhu.	 The typed access matrix model. In Proceedings IEEE Com-

puter Society Symposium on Research in Security and Privacy, pages 122-136,

Oakland, CA, May 1992.

16

[13] Jonathan D. Mofett and Morris S. Sloman. Delegation of authority. In I. Krish-
nan and W. Zimmer, editors, Integrated Network Management II, pages 595-606.

Elsevier Science Publishers B.V. (North-Holland), 1991.

[14] Eduardo B. Fernandez, Jie Wu, and Minjie H. Fernandez.	 User group struc-
tures in object-oriented database authorization. In J. Biskup, M. Morgernstern,

and C. Landwehr, editors, Database Security VIII: Status and Prospects. North-
Holland, 1995.

17

 RBAC 3

 RBAC 2RBAC 1

 RBAC 0

(a) Relationship among RBAC models

 RBAC 3

CONSTRAINTS

PERMISS­

IONS

PU

USERS

PERMISSION

ASSIGNMENT

PA

USER

ASSIGNMENT

UA

.

.

.

SESSIONS

S

user roles

ROLES

R

 RBAC 1

 RBAC 2

ROLE

HIERARCHY

RH

(b) RBAC models

Figure 1: A Family of RBAC Models

18

Primary-care Specialist

Physician Physician Project Supervisor

Test Engineer ProgrammerPhysician

Project Member

Health-care provider

(a) (b)

Test Engineer’ Project Supervisor Programmer’

Test Engineer Programmer

Project Member

(c)

Figure 2: Examples of Role Hierarchies

19

S

T1 T3

S3

P3

T2 T4

CSO

SO1 SO2 SO3

P

(a) Role Hierarchy (b) Administrative Role Hierarchy

S S3’

T1 T2

T1’

T3 T4

P3

S3

P3’

T3’ T4’

P

(c) Private and Scoped Roles

Figure 3: Role Hierarchies for a Project

20

RHRH

U

USERS

SESSIONS

S

ADMINIS-

TRATIVE

ROLES

AR

.

.

.
user roles

HIERARCHY

ROLE

ARH

ROLES

R

PERMISSION

APA

ADMINISTRATIVE

USER

ASSIGNMENT

UA

USER

ASSIGNMENT

UA

PERMISSION

ASSIGNMENT

PA

P

PERMIS-

SIONS

U

USERS

SESSIONS

S

ADMINIS­

TRATIVE

ROLES

AR

.

.

.
user roles

HIERARCHY

ROLE

ARH

ROLES

R

PERMISSION

APA

ADMINISTRATIVE

USER

ASSIGNMENT

UA

USER

ASSIGNMENT

UA

PERMISSION

ASSIGNMENT

PA

P

PERMIS­

SIONS

CONSTRAINTS

ADMIN.

AP

PERMIS-

SIONS

ADMIN.

AP

PERMIS­

SIONS

ADMINISTRATIVEADMINISTRATIVE

ROLEROLE ASSIGNMENTASSIGNMENT

HIERARCHYHIERARCHY

Figure 4: RBAC Administrative Model

21

