
Deploying Hashes

Deploying New Hash Functions

Steven M. Bellovin Eric K. Rescorla
smb@cs.columbia.edu ekr@networkresonance.com

Steven M. Bellovin October 12, 2005 1

mailto:ekr@networkresonance.com
mailto:smb@cs.columbia.edu

Deploying Hashes

The Problem

•	 We have to deploy new hash functions — if not today, at some point
soon

•	 We try for algorithm-agility in our protocols — but certificates are a
special case

•	 Certificates rely on hashes

•	 Goal: maintain security while new code is deployed

•	 Did we get it right?

•	 No. . .

Steven M. Bellovin October 12, 2005 2

Deploying Hashes

Gradual Conversions

•	 We cannot upgrade all systems at once

•	 Support for new hash (and signature) algorithms will appear gradually

•	 Newer systems need to be able to “switch-hit” — use new algorithms
when talking to other newer systems, but fall back to old algorithms
when talking to legacy systems

•	 This requires some sort of signaling

•	 The signaling has to be secure, to prevent downgrade attacks

Steven M. Bellovin October 12, 2005 3

Deploying Hashes

Protocols Analyzed

•	 We looked at S/MIME, TLS, and IPsec/IKE/IKEv2; we have
preliminary results for DNSSEC

•	 None of them got it right

•	 Note: for brevity, this talk will not discuss hash functions use with
HMAC or as PRFs; see the paper for details

Steven M. Bellovin October 12, 2005 4

Deploying Hashes

The Root of the Problem

•	 We had MD5 in 1992, and SHA-1 in 1995. In other words, for the
entire commercial life of the Internet we have had the same two
algorithms

•	 Everyone supported both; there was no need for signaling

•	 Unused protocol paths are just as bad as unused code paths

Steven M. Bellovin October 12, 2005 5

Deploying Hashes

S/MIME

•	 If the sender has more that one certificate, which should be used for
signing email?

•	 If you don’t have the receiver certificate, you have to use old
algorithms (but never use MD5 for signing)

•	 Eventually, switch to the newer algorithm as the default; users can
resend if needed (mail clients should cache such information)

•	 Multiple signatures are defined in the spec, but many
implementations won’t handle this case properly

•	 If you have the receiver’s certificate(s), use the newest algorithms
possible

•	 There is a proposed SMIMECapabilities certificate extension, but it’s
not yet standardized, let alone implemented

Steven M. Bellovin October 12, 2005 6

Deploying Hashes

TLS

•	 TLS server certificates are the most important case for upgrades

•	 Need TLS extension (or, possibly), overloaded ciphersuite for client
signaling to server

•	 Similarly, the server should be able to signal what client certificates it
can accept (though client-side certificates are rare)

•	 Other situations: RSA digital signatures in TLS use MD5
concatenated with SHA-1. Best option: have newer implementations
use the hash algorithm from the signer’s certificate

•	 Similar considerations for the TLS Finished message

Steven M. Bellovin October 12, 2005 7

Deploying Hashes

IPsec and IKE

•	 IKEv2 and IKE Main Mode have negotiation messages at the right
time, but there is no negotiation of certificate hash function or
certificate signature algorithms

•	 It is possible to overload the meaning one option to select hash
function

•	 IKE Aggressive Mode (which has four different variants) uses hash
functions before any negotiation

•	 In some situations, heuristics based on certificates can be used

•	 Possible practical solution: IPsec is used primarily in closed
environments

Steven M. Bellovin October 12, 2005 8

Deploying Hashes

Preliminary Analysis of DNSSEC

•	 Difficult, because no possibility of negotiation; server must send out
all possible signatures

•	 To guard against downgrade, the over-the-wire protocol is probably
sufficient

•	 The DS message should be overloaded to indicate which algorithms
should be expected

•	 This is a change in interpretation, and hence requires a new RFC and
code changes

•	 This will increase DNS message size

Steven M. Bellovin October 12, 2005 9

Deploying Hashes

Signature Algorithms

•	 Most of our analysis applies to signature algorithms, too

•	 Note that DSA can only be used with SHA-1

•	 Adapting to new signature algorithms is harder than new hash
functions, since the heuristics we sometimes suggest won’t work

Steven M. Bellovin October 12, 2005 10

Deploying Hashes

Estimated Conversion Timeline

1 year Design of new protocol features by the IETF
1-2 years Design, code, and test of new features by vendors
2-5 years Deployment by the user community — note that

many machines are never upgraded, merely
replaced

Standardization of a new hash function can proceed in parallel with
protocol redesigns. If a new hash technique requires a different API, it
may lengthen the design/code/test time.

Given the modest threat posed by collision attacks (except, of course, for
signed email), the speed of the upgrades may be driven by support for
ECC.

Steven M. Bellovin October 12, 2005 11

Deploying Hashes

Recommendations

S/MIME Support multiple signatures properly; stop using MD5; add
SMIMECapabilities certficate extension

TLS Add signaling for server and client certificates; change
digitally-signed element and Finished message definition

IPsec Add hash function signaling in the initial SA exchange

DSA Define DSA-2 or way to use DSA with other hashes

Vendors Add policy and preference knobs, for users and administrators

Steven M. Bellovin October 12, 2005 12

Deploying Hashes

Conclusions

•	 Agility is hard to get right unless you actually try deploying a new
algorithm

•	 All of the protocols we looked at need more work. Other protocols — ,
SECSH, OpenPGP, and more — should be examined by the
appropriate WGs.
☞ Most protocols need either an updated version or a BCP

describing how to manage the transition.

•	 Implementors need to think about it, too

•	 Most of our analysis applies to new signature algorithms

Steven M. Bellovin October 12, 2005 13

Deploying a New Hash Algorithm

Steven M. Bellovin Eric K. Rescorla
smb@cs.columbia.edu ekr@networkresonance.com

Columbia University Network Resonance

Abstract

The strength of hash functions such as MD5 and SHA-1
has been called into question as a result of recent discov
eries. Regardless of whether or not it is necessary to move
away from those now, it is clear that it will be necessary
to do so in the not-too-distant future. This poses a number
of challenges, especially for certificate-based protocols.
We analyze a number of protocols, including S/MIME and
TLS. All require protocol or implementation changes. We
explain the necessary changes, show how the conversion
can be done, and list what measures should be taken im
mediately.

1 Introduction

Nearly all major cryptographic protocols depend on the
security of hash functions. However, this is increasingly
looking like a brittle foundation: although a variety of
hash functions are available, only MD5 [Riv92] and SHA
1 [Nat02] are in wide use. Both hash functions derive
from MD4 [Riv90], which has long been known to be
weak [Dob96, Dob98], thus leading to concerns that they
might have common weaknesses.

These concerns were borne out in late 2004, when tech
niques for efficiently finding collisions in MD5 [WY05]
and SHA-0 [BCJ+05] were announced. Subsequently,
Wang [WYY05] announced a technique for finding col
lisions in SHA-1 in 269 operations,1 rather than the 280

for which it was designed, and Lenstra et al. [LWdW05]
demonstrated a pair of X.509 certificates with the same
distinguished name, different public keys, and identical
signatures, though no extension is known which can gen
erate such a pair with different distinguished names.

It should be emphasized at this point that none of these
results have translated into demonstrable attacks on real-
world protocols, though [LWdW05] comes uncomfort
ably close. However, it is clear that neither MD5 nor
SHA-1 is as strong as its target security level and so need
to be replaced. The possibility of new attacks lends some
urgency to this transition.

1In a presentation delivered at the Rump Session of CRYPTO 2005,
Shamir stated that Wang had improved the attack to 263 operations.

It is clear that a transition to newer hash functions is
necessary. The need is not immediate; however, it cannot
be postponed indefinitely. Our analysis indicates that sev
eral major Internet protocols were not designed properly
for such a transition. This paper presents our results.

Although we don’t discuss the issue in detail, most of
our work applies to deploying new signature algorithms
as well. If the signature algorithm is linked to a particular
hash function, as DSA is tied to SHA-1, the two would
change together; beyond that, since signature algorithms
are almost always applied to the output of hash functions,
if there is no easy way to substitute a new hash algorithm
there is almost certainly no way to substitute a new signa
ture algorithm, either.

2 Background

2.1 Uses of Hash Functions

Hash functions are used for many different purposes. In
this section, we outline their major uses.

2.1.1 Digital Signature

The purpose for which cryptographic hash functions were
originally designed is input preparation for digital signa
tures. Algorithms such as RSA are far too expensive to
apply directly to each input block of almost any real mes
sage. Instead, the message is securely compressed using
a hash function; the resulting “fingerprint” is the input to
the digital signature algorithm.

An enemy thus has two ways to attack a digital signa
ture algorithm: either the algorithm itself can be cryptan
alyzed (i.e., by factoring the RSA modulus), or the hash
function can be abused.

2.1.2 Message Authentication Codes

Hash functions are also used for high-speed message au
thentication between parties who share a common secret.
There are a number of ways in which this can be done; the
most common is to use the HMAC [KBC97] framework:

H(K ⊕ opad, H(K ⊕ ipad, M))

where H is the hash function, K is the shared secret and
M is the message to be authenticated. Note that the dou
ble application of H and the double occurrence of K helps
prevent many attacks; the enemy does not know and can
not control what the inputs are to the outer hash.

2.1.3	 Pseudo-Random Functions

Hash functions are often used as pseudo-random func
tions. That is, they provide a deterministic mechanism for
generating random-seeming bit streams from some input
source without disclosing any information about the input.
A typical use is generating cipher keying material after a
Diffie-Hellman exchange. IKE [KM97] uses HMAC for
this purpose, as does TLS [DA99].

2.1.4	 Data Fingerprinting

As noted above, hash functions can be used to produce
fingerprints of files or messages. Sometimes, instead of
digitally signing these fingerprints, the values are stored
separately from the data. This permits later detection of
changes to the original data.

One system in which this is used is Tripwire [KS94a,
KS94c, KS94b]. Tripwire is used as a host intrusion de
tection system. Critical system files are fingerprinted; at
intervals thereafter, the stored fingerprints are compared
to values newly-calculated on the running system. Any
change to a file will cause its fingerprint to change.

2.2	 Overview of Recent Hash Function At
tacks

Conventionally, hash functions are designed to have three
properties:

Collision resistance It is computationally infeasible to
find x, y, x � y such that H(x) = H(y).=

Preimage resistance Given an output value y, it is com
putationally infeasible to find x such that H(x) = y.

′
Second preimage resistance Given an input x , it is
computationally infeasible to find x such that
H(x) = H(x ′).

The current generation of attacks address collision re
sistance. MD5 is effectively dead from that perspective;
SHA-1 is much weaker than it should be, though finding
collisions is still impractical.

While not as devastating as failures of the
other two properties, collision resistance is in
deed a serious issue. Lucks and Daum have gen
erated Postscript files that exploit the attack (see
http://th.informatik.uni-mannheim.de/

people/lucks/HashCollisions). They took
advantage of a well-known property of hash functions:

H(x) = H(y)⇒ H(x||Σ) = H(y||Σ)

where Σ is an arbitrary string, provided that x and y are
the same length.

First, they generated two Postscript prologues that con
tained a collision in what was, syntactically, a constant.
This constant was assigned to a variable. To each of
these files, they then appended a Postscript program that
checked the value of this variable and displayed one of
two letters. An attacker could persuade someone to dig
itally sign the first, harmless letter; this same signature
would match the second, harmful letter. Note, however,
that to a great degree this attack is enabled by the fact that
users do not directly view the Postscript code and rather
use an interpreter. Similar attacks can be demonstrated
against such systems (e.g., HTML with JavaScript) even
without the ability to find hash collisions [Res05] by ex
ploiting conditional elements in the display system.

Collision-finding attacks do not rule out all uses of a
hash function. In particular, the pseudo-random function
properties are not affected at all. Furthermore, HMAC is
probably safe, since the unknown component—the key—
of the inner hash function makes it impossible to generate
a collision at that stage; this in turn helps protect the outer
hash.

On the other hand, there is grave danger for many sit
uations involving digital signatures or fingerprinting. If a
would-be attacker can supply the message to be signed,
that same attacker could have prepared two versions of
the message, one innocuous and one harmful, while pre
senting only the former. The attacks work because the
victim inspects the innocuous version and verifies that it
is acceptable. In environments where victims do not care
fully inspect data before it is hashed, collision attacks only
modestly increase the threat level.

3	 Overview of the Hash Transition
Problem

Although the details of transition strategies for any given
protocol may vary, there are many common elements. In
this section, we provide an overview of the hash transi
tion problem and the design goals that transition strategies
should attempt to fulfill.

The hash transition problem is a special case of the gen
eral protocol transition problem. Whenever a new version
of a protocol is rolled out, designers and implementors
must figure out how to accomplish a smooth transition
from old to new versions with a minimum level of disrup
tion. In a typical protocol transitional environment, there
are three types of agent:

http:http://th.informatik.uni-mannheim.de

Old Agents which only speak the older version.

Switch-hitting Agents which can speak both versions.

New Agents which can only speak the new version.

At the beginning of the transition, all agents are Old. At
the end of the transition (at least theoretically), all agents
are New. The purpose of a transition strategy is to ac
complish the transition between these states with a min
imum of disruption. This immediately implies some re
quirements for such a strategy.

Note carefully that the notion of an end to the transition
is a theoretical one. In practice, transitions of this nature
tend to persist for an arbitrarily long time, since old sys
tems never quite die off. In the security field, this is espe
cially bad, because it leaves open the door to downgrade
attacks.

3.1 Backward Compatibility

The most basic requirement for a seamless transition is
backward compatibility. Old agents and Switch-hitting
units should be able to communicate, using the older
version. Without backward-compatibility, users have an
enormous disincentive to upgrade their software because
it immediately cuts them off from most of the people they
would communicate with. The general approach is to
deploy Switch-hitting implementations until most imple
mentations are Switch-hitting. Once this is accomplished,
New implementations can be safely deployed.

In interactive protocols such as SSL/TLS or IKE, back
ward compatibility is generally accomplished by having
the Switch-hitting peer recognize that it is speaking to
an Old peer and fall back to the older version. In non-
interactive protocols such as S/MIME, Switch-hitting im
plementations must transmit messages that can be read
by Old implementations unless they know that the peer
is Switch-hitting or New.

3.2 Newest Common Version

When two Switch-hitting clients communicate, they can
either use the new or old versions of the protocol. Because
the purpose of the transition is to deploy the newer ver
sion, it is desirable that they use that version where pos
sible. With interactive protocols, this is straightforward;
the peers detect that they both speak the new version and
simply use it. With non-interactive protocols it is more
difficult. The standard approach is for Switch-hitting im
plementations to start out speaking the older version but
advertise that you support the newer version. This allows
the receiver to cache that the peer is Switch-hitting and
use the newer version from then on. Absent corner cases,
the recipient of a new-version message can assume that
the sender can read the new version.

3.3 Downgrade Protection

An additional requirement for security protocols is to de
fend against version/algorithm downgrade. Consider the
situation where two peers each support two cryptographic
algorithms, one of which is strong and one of which
is weak. If an attacker can force the peers to use the
weaker algorithm, he may be able to attack the commu
nication. The classic example of this attack is “export”
algorithms: all versions of SSL/TLS up to and including
TLS 1.0 [DA99] included support for weak “exportable”
algorithms. In SSLv2 [Hic95] it was possible to force two
implementations to use the weak algorithms even though
strong algorithms were available.

The attack is shown in Figure 1. The attacker intercepts
the client’s CLIENT-HELLO message and removes the
offer of the strong algorithm (in this case, RC4-128). The
server thinks that the client is only offering weak algo
rithms and so negotiates RC4-40, leaving the connection
open to attack.

Both SSLv3/TLS and IKE include partial defenses
against downgrade; the basic strategy is to exchange
MACs over the entire handshake. If the MACs verify, the
peers can have some assurance that the handshake has not
been tampered with. These defenses work well against
compromise of the symmetric ciphers and partial com
promise of the digest/MAC algorithms, but are not com
plete defenses. For instance, an attacker who had broken
a peer’s public key would be able to impersonate that peer
even if the peer subsequently generated a new, stronger
key (assuming, of course, that the public key has not been
revoked). As will become apparent in subsequent sec
tions, we cannot always depend on these mechanisms.

3.4 Credentials versus Implementations

Another issue specific to security protocols is the separa
tion of credentials and implementations. In typical public
key-based systems, a peer’s public keys is authenticated
using certificates (in the case of the protocols being dis
cussed here, PKIX [HPFS02] certificates). Certificates are
a general credential and are not tied to any specific revi
sion of a given security protocol. Moreover, the upgrade
cycle for protocol implementations is uncoupled from the
certificate issuance cycle. There is thus the potential for a
situation in which the user has a security protocol imple
mentation which understands SHA-256 but a certificate
which was digested with SHA-1—or indeed, one certifi
cate digested with SHA-1 and one with SHA-256. As we
shall see, this can lead to situations in which certificate
and protocol version capabilities need to be dealt with sep
arately.

Client
CLIENT-HELLO[RC4-128,RC4-40] −→

←−

Attacker
CLIENT-HELLO[RC4-40]
SERVER-HELLO[RC4-40]

−→
←−

Server

SERVER-HELLO[RC4-40]

Figure 1: SSLv2 downgrade attack

3.5 Outline

In the remainder of this paper, we consider the applica
tion of these principles to three major Internet security
protocols: S/MIME (a store-and-forward protocol), TLS
(a session-oriented protocol), and IPsec (which separates
key exchange from transport). A longer version of this
paper, with analysis of additional protocols and protocol
design principles, appears in [BR05].

4 S/MIME

The first protocol we will consider is S/MIME [Ram04a,
Ram04b, Hou04]. S/MIME is a standard message en
cryption and authentication protocol. In the most com
mon modes, it uses public key cryptography (RSA [JK03]
and DH [Res99]) for key establishment, symmetric
cryptography for bulk encryption, and digital signa
tures (RSA and DSA [Nat00]) for message authen
tication/nonrepudiation. User public keys are trans
ported/authenticated using PKIX [HPFS02] certificates.

There are five major types of S/MIME client:

1. Old clients.

2. Switch-hitting clients with only old certificates.

3. Switch-hitting clients with both types of certificate.

4. Switch-hitting clients with new certificates.

5. New clients with only new certificates.

The types of messages that each type of implementation
should send are shown in Figure 2.

Note that this table assumes perfect information about
the recipient’s capabilities, which is not always the case.
We now consider how to achieve interoperability in prac
tice, which is a matter of trying to estimate the recipient’s

Receiver

Sender Old Switch/Old Switch/Both Switch/New New

Old Old Old Old -
S/O Old Old Old Old -
S/B Old Either Either Either New
S/N - New New New New
New - New New New New

Figure 2: Interoperability table for S/MIME implementa
tions

capabilities and create a message which they are most
likely to be able to decode. For the remainder of this sec
tion, we focus on the behavior of Switch-hitting clients,
since Old and New clients only have one possible behav
ior.

4.1 The Initial Message

The first case we consider is the case where a user is send
ing a message to someone with whom he has never com
municated before. There are two possible sub-cases:

1. The sender does not have the recipient’s certificate.

2. The sender has the recipient’s certificate.

We consider each sub-case in turn.

4.1.1 Sending Without a Recipient Certificate

If the sender does not have access to the recipient’s cer
tificate, then he is subject to two limitations. First, he
cannot encrypt because he does not have the public key to
encrypt under. Second, he has no information about the
recipient’s capabilities, In particular, he cannot safely as
sume that the recipient’s software will be able to process
new hash functions.

Choice of certificate A sender with only one certificate
must use that certificate. The difficulty comes when a
sender has two certificates, one generated with an old hash
function, and one with a new hash function. The possibili
ties, of course, are to use only one certificate or—because
S/MIME allows multiple signatures—to use both. Any
one-certificate strategy guarantees that some class of re
cipients will not be able to verify the message. Using both
certificates preserves the possibility that the recipient can
verify the message.

In order for this to work, however, recipients must be
able to correctly verify messages with multiple signa
tures when one of them is unverifiable. Unfortunately, the
S/MIME specification is fairly vague on this point. An
unscientific poll of S/MIME implementors indicates that
support for this option is spotty at best. Reported behav
iors when one signature is good and the other unverifiable
include:

• Verify only the first signature [Ram05].

•	 Generate an error [Hen05].

•	 Report success with warnings about unverifiable sig
natures [Gut05]

Only the final choice allows Switch-hitting implemen
tations to guarantee interoperability for the messages they
send. Another option would be to treat a message with
any valid signature as valid, but we have not heard this
behavior reported.

Because receiver behavior is unpredictable, senders
must attempt to estimate what sorts of implementation re
ceivers are likely to have. This probably means choos
ing interoperability with the most popular strategies as a
default (which are currently the older, weak, algorithms)
and allowing users the option to configure a new behav
ior. This is irritating in that it involves a manual step
if the sender guesses wrong. However there are already
a number of non-security scenarios in which users must
retransmit unreadable messages (bad attachment formats,
HTML-vs-ASCII text, etc.) so it’s not totally foreign to
users.

If only collision attacks are available, there is little se
curity advantage to the sender in using stronger hash func
tions, as long as he controls the content being signed (see
Section 4.4.3 for what can happen if he does not). A third
party attacker cannot use collisions to attack a signed mes
sage. However, if preimage attacks are possible, then such
an attacker can potentially use the signature on a signed
message to create a new signed message with different
content. See 4.4.1 for more on this topic.

Choice of digest algorithm Once the certificate has
been chosen, the sender must choose a digest algorithm
to digest the message before signing. This choice is made
independently for each signature, so it is possible the mes
sage will be digested twice. In general, if the certificate
being used was generated with one of the old algorithms
(MD5, SHA-1), the message should be digested using
SHA-1, which receivers are required to accept by section
2.1 of RFC 3851 [Ram04b]. This minimizes the chance
that the recipient will not be able to verify the message
signature. (MD5 should not be used at all for message
digests, even if the certificate uses it.)

If the certificate being used was digested with a new
hash algorithm, we recommend that the sender use the
same algorithm to digest the message, on the grounds that
if the recipient can use the digest algorithm to verify the
certificate they can use it to verify the message. This runs
the risk that the recipient will be using a separate toolkit
to verify the certificate signature than they used to verify
the message signature; however we are not aware of any
S/MIME client that behaves in this way. This algorithm
has the attractive property that it automatically works cor
rectly with DSA, which can only sign SHA-1 digests. The

only requirement is that the certificate is itself signed with
DSA, as is standard practice.

4.1.2 Sending With the Recipient’s Certificate

The case where the sender has the recipient’s certificate(s)
is somewhat simpler. Although there is no guarantee, we
believe that it is a reasonable assumption that implemen
tations can verify their own certificates and therefore must
implement whatever digest algorithm was used to create
them. If the recipient has only one certificate, the sender
should therefore use their certificate with the correspond
ing algorithm. If the recipient has multiple certificates,
the sender should use the one created using the strongest
algorithm. For the reasons indicated above, we do not rec
ommend sending multiple certificates in this case.

The choice of which certificate to send would be sim
pler yet if the recipient’s certificate indicated which algo
rithms it was capable of using. Although this not currently
possible, the S/MIME working group is currently con
sidering a considering a draft [San05] that would allow
certificates to contain an SMIMECapabilities [Ram04b]
extension for the owner of the certificate. This informa
tion could include information about allowed digest algo
rithms. However, because this extension is not included
in current certificates or processed by current implemen
tations, it is of limited value in promoting interoperability.
Note that if the recipient’s certificate was received via a
signed message from the recipient, then it should contain
SMIMECapabilities, which makes the problem easier, as
discussed below.

4.2 Subsequent Messages

Once an S/MIME implementation has received a signed
message from it is in a much better position to estimate
the sender’s capabilities. For clarity, say that Alice has
received a signed message from Bob. With high proba
bility Bob can verify signatures produced with whatever
algorithm(s) it used to digest its own message. If this is a
new (strong) algorithm then all is good and Alice should
herself use that algorithm.

If Bob used an old (weak) algorithm, then Alice at
least knows that she can communicate with Bob using
that algorithm. However, it is still possible that Bob has
a Switch-hitting implementation. Optimally, Alice would
be able to detect this case and use a newer algorithm for
her response. S/MIME has a standard way for Bob to sig
nal this fact using the SMIMECapabilities signature at
tribute, which includes a (potentially partial) list of the
algorithms that Bob supports. Bob can send a message
using SHA-1 but include an SMIMECapabilities attribute
indicating that he also supports SHA-512. If this attribute

is included, it is always signed, thus preventing the intro
duction of a false attribute.

Thus, Bob can send a message using SHA-1 but include
an SMIMECapabilities attribute indicating that he also
supports SHA-512. Upon processing the signature, Al
ice can detect that Bob’s implementation is Switch-hitting
and respond with the stronger algorithm. Thus, we rec
ommend that when Switch-hitting implementations send
messages using weak algorithms they include an indica
tion that they also support a stronger algorithm. There is
no point in including such an indication if you are sending
with the stronger algorithm, since that algorithm is pre
ferred and a recipient which cannot process the stronger
algorithm cannot verify that you also support the weak
one.

If, on the other hand, Bob’s message includes an
SMIMECapabilities attribute saying that he does not sup
port strong hash functions, Alice’s system will be forced
to use old ones. Presumably, her implementation will
cache that information. It is important that such cache
entries expire after some period of time, since Bob may
upgrade his client and certificate.

Because the SMIMECapabilities attribute is part of the
signerInfo element, it is not included in messages which
are unsigned. However, if Alice receives an encrypted
message from Bob, she knows that he was able to verify
the certificate that he used to encrypt to her. Therefore, if
she wishes to sign future messages she should digest using
whatever algorithm was used to produce that certificate.

4.3 Diffie-Hellman Key Agreement

RFC 2631 [Res99] specified a method for Diffie-Hellman
(DH) key agreement in which SHA-1 is used as a PRF
(pseudo-random function) to compute key encryption
keys from the DH shared secret. There is no room for ne
gotiation here: the standard specifies SHA-1, and a new
algorithm identifier would need to be defined for DH with
the newer hash function. It is not currently known how
to attack SHA-1 when used in this way. If such an attack
were to be found, implementations would need to con
vert to a new digest algorithm and use it every time they
used DH key agreement. Although this does not guaran
tee interoperability, the alternative is worse: encrypting
data with an algorithm known to be insecure.

4.4 Attacks

In this section, we consider the problem of protecting
Switch-hitting implementations during the transition pe
riod when it is impractical to turn off support for the old
algorithms. There are three basic scenarios:

•	 The attacker does not have a valid certificate and pri
vate key for either peer.

•	 The attacker has acquired a valid (but false) certifi
cate and knows the private key.

•	 The attacker is one of the communicating parties.

4.4.1 Attacks Without a Valid Certificate

If the attacker does not have a valid certificate, then
his ability to mount attacks, even on older digest algo
rithms, is fairly minimal unless he can compute preim
ages.2 Clearly, an attacker who can compute preimages
can undetectably modify messages in transit. In this case,
the only defense is to stop using the affected algorithm.
Note that senders cannot prevent this attack by multiply
signing their messages; S/MIME multiple signatures are
parallel and independent, so the attacker can simply strip
the strong signature. Indeed, as a general matter, not send
ing messages signed with old algorithms is not a complete
defense against preimage attacks. Because S/MIME mes
sages are generally not securely timestamped, an attacker
can potentially attack any signed message, even a histori
cal one, so the increase in security exposure by continuing
to send messages with old digests may not be that large.
Rather, receivers must stop accepting an algorithm where
computing preimages is possible.

4.4.2 Attacks Using a Valid Certificate

If the attacker has a certificate with a valid signature
containing the identity of one of the peers—for in
stance obtained using an improved version of the Lenstra
construction—he can impersonate that peer. This would
allow him to forge messages that appear to be from that
peer. It may also allow him to convince the other peer to
encrypt messages using his fake certificates. The only cer
tain countermeasure here is to stop accepting the compro
mised algorithm. One partial workaround would be for
the victim to refuse to accept certificates dated after the
time when the algorithm was compromised. This is a de
fense against collision attacks, but if the attacker can gen
erate 2nd preimages, then he can forge a certificate with
an arbitrary date and bypass this countermeasure. Another
partial workaround is to store copies of previously used
peer certificates (as with SSH [Ylo96, Ylo05]), thus re
ducing the window of exposure to the first exchange of

3messages.

2An attacker who can compute preimages is likely to be able to
forge certificates. However, it is possible that an attacker could compute
preimages but without fine enough control to forge a specific certificate.

3Note that it’s common to store a digest of the certificate rather than
the certificate itself. This obviously leaves one open to preimage attacks
if the attacker can manage to get a certificate with the same digest (not
easy, because he must also simultaneously attack the CA’s digesting pro
cess which covers different data). If a digest is being stored, it might be
wise to store a keyed hash using some locally known key instead.)

4.4.3	 The Attacker is One of the Communicating
Parties

If it is easy to find collisions in a hash, then being one
of the communicating parties—or at least in a position to
substantially control the message contents—confers sub
stantial advantage to the attacker. In particular, it allows
him to cheat in contexts where an S/MIME signature is
to be verified by a third party. The basic scenario is de
scribed in Section 2.2: two versions of a document are
prepared, one innocuous and one malicious. One or both
of the parties signs the innocuous version and then the at
tacker convinces the third party that the victim signed the
malicious version. This attack can be mounted regard
less of which party does the actual signing. The key is
for the attacker to be allowed to prepare the document to
be signed, since the colliding pair must be generated to
gether.

In order to mount this attack on a Switch-hitting peer,
the attacker must represent that he only supports the bro
ken algorithm, thus forcing the signature to be performed
using that algorithm. However, since supporting only old
algorithms is a legitimate configuration, this is extremely
easy to achieve. The victim has the choice of using that
algorithm or not communicating at all.

This attack is extremely difficult to defend against in
standard systems. Bob can defened against being conned
by preparing the final document version and inserting
enough randomness near the beginning (e.g., in a dummy
field) to make it infeasible for Alice to have generated a
collision.4 However, this is complex and not supported by
typical application software. Moreover, Alice should be
suspicious of this request, since it allows Bob to mount a
collision attack himself. A more general defense is for the
parties to jointly agree on random values once the docu
ment content is fixed, but this is even more complex for or
dinary users.5 S/MIME implementations could of course
do this automatically, but if one is willing to modify im
plementations it is easier to simply add strong algorithms.

We stress that this attack is very real and very practical
if MD5 is used.

Because defense against this attack is difficult, in con
texts when users are signing messages that might be ver
ified by a third party, it is better to simply insist on using
a strong algorithm. Similarly, third parties should be ex
tremely suspicious when they are asked to rely on signa
tures that use weak algorithms, especially MD5. Note that
as with the Lucks/Daum attack, close inspection of such

4From a security perspective this is inferior to randomized hash
ing [HK05] but doesn’t require changing the S/MIME implementation
on either side.

5Kelsey and Kohno presented a “Herding” attack at the CRYPTO ’05
rump session that allows cheating in this scenario, but the effort level
(287 for MD5, 2108 for SHA-1) far exceeds that of ordinary collision
finding.

messages generally will reveal their unusual structure and
so this attack can only be mounted when the documents
in question will be subject to only casual (or automatic)
scrutiny.

5 TLS

TLS [DA99] is a standard channel security protocol which
lives above the transport layer (where the OSI session
layer sits). Originally designed for Web security [Res00],
it is now widely used for other application protocols in
cluding SIP [RSC+02] and SMTP [Kle01]. The most
common TLS deployment involves an anonymous client
connecting to a server an using the server’s certificate and
public RSA key for key exchange.

There are five major places digest algorithms are used
in TLS:

• In the per-record MAC.

• In the certificates used by client and server.

• In the digitally-signed element.

• In the PRF used to make keying material.

• In the Finished message

TLS contains an extensive framework for algorithm ne
gotiation, using the concept of “cipher suites”. A cipher
suite consists of a triple specifying the key establishment
mechanism, the symmetric encryption algorithm used to
encrypt traffic, and the message digest used to provide
traffic message integrity. For instance, the cipher suite
TLS RSA WITH RC4 128 MD5 indicates RSA key ex
change, encryption with RC4-128, and message integrity
with a MAC based on MD5 (in TLS this is HMAC
MD5 [KBC97].)

Unfortunately, this mechanism is only useful for ne
gotiating the record MAC. Although there is a mech
anism for negotiating client certificate type, it does not
include digest algorithm and the other algorithms cannot
be negotiated. Indeed, the PRF, ServerKeyExchange, and
ClientVerify messages are not parametrized, but rather are
specified directly in the standard. In order to accomodate
newer digest algorithms in these cases we must extend
TLS.

5.1 MAC Functions

Negotiating the MAC in TLS is straightforward. Each ci
pher suite specifies the digest function function to be used
as the basis for the MAC. So, in principle all that needs to
be done is to define a new set of cipher suites with stronger
hash algorithms. Note that because TLS uses HMAC, the
current collision-only attacks most likely do not represent
a threat, thus making this a low priority upgrade.

5.2 Server Certificates

The most important element of TLS to upgrade is the
server certificate. Because certificates are automatically
verified, they are the cryptographic technique most threat
ened by current digest attacks. TLS client certificates are
rare; by contrast, virtually every TLS server has a certifi
cate.

We assume that during the transition period, each server
will have two certificates, one created with an old hash
(typically SHA-1 or MD5) and one created with a new
hash. The client can then indicate to the server that it
can process the new certificate. There are two potential
techniques for doing this: an overloaded cipher suite and
a TLS extension [BWNH+03]. The TLS extension ap
proach is probably superior in that it preserves protocol
cleanliness—the hash functions in the TLS cipher suite
offers do not refer to the certificate. Moreover, there are
performance reasons for the client to prefer to use the
older hash algorithms for MAC functions: SHA-1 is much
faster than SHA-256, and the MAC functions do not need
to be upgraded immediately.

Note that this does not address the problem of DSA,
which, as noted previously, cannot be used with any algo
rithm other than SHA-1. The cleanest solution for DSA is
simply to define a new set of cipher suites that specify a
newer version of DSA (e.g., DSA2). This allows a client
to simultaneously offer RSA with multiple algorithms but
DSA with only SHA-1. If the newer version of DSA al
lows algorithm flexibility then the extension could extend
to negotiating that algorithm as well.

5.3 Client Certificates

TLS client certificates are much less commonly used;
where they are used they are often self-signed, although
the US government is now issuing client certificates for
establishing user identities. However, in the case where
client authentication is used, it is desirable to have a way
for the server to indicate which hashes it would like the
client to use. This is a fairly simply protocol engineering
matter with two obvious alternatives:

•	 Add new values to the certificate types field of
the CertificateRequest message. For instance, an
rsa sign sha256 type could be created.

•	 Use extension values.

Each of these approaches has advantages. The Certifi
cateRequest approach keeps all the information about the
certificates that the client should produce together. Un
fortunately, it creates the risk of combinatoric explosion
of certificate types values. Currently, four code points
(rsa sign, dss sign, rsa fixed dh, and dss fixed dh) out

of a possible 256 are defined. Every new hash function
added thus potentially creates four new code points, and
more if additional signature algorithms are defined.

The alternative approach is for the server to use an ex
tension (most likely in response to the client’s extension)
indicating which hash algorithms it accepts. This is less
elegant, but removes the combinatoric explosion problem.
Neither approach is superior from a security perspective.

5.4 The Digitally-Signed Element

There are two places in TLS where data is explicitly dig
itally signed: the CertificateVerify and the ServerKeyEx
change. In both places, the signature is accomplished us
ing the digitally-signed element. When the signature al
gorithm is DSA, the input is as expected—a SHA-1 digest
of the data to be signed. However, when the signature al
gorithm is RSA, the input is something unusual: the MD5
and SHA-1 digests of the input are concatenated and fed
directly into the RSA signature algorithm with PKCS#1
padding, but without DigestInfo wrapping. This is not a
negotiatiable algorithm but rather is wired into the speci
fication.

This unusual construction raises the question of what
the target construction should be. The original rationale
for the dual hash construction was to provide security in
the face of compromise of either hash. However, in prac
tice this has been partially undercut by the common her
itage of SHA-1 and MD5. A practical attack on SHA-1
could potentially extend to compromising the MD5/SHA
1 pair. The general feeling in the TLS community is that
a single negotiated digest would be a better choice.

The best choice here is probably to have the digitally-
signed element use the same algorithm as was used to sign
the certificate of the party doing the signing (the client for
the CertificateVerify and the server for the ServerKeyEx
change). This avoids the creation of a new negotiable op
tion, thus reducing protocol complexity. In principle this
could lead to interoperability problems if the certificate
system has different capabilities than the TLS implemen
tation. However, we’re skeptical that the number of real
implementations with this problem would be large enough
to justify the additional complexity.

There are two different ways to roll out this change.
The first is to simply decree that new cipher suites (e.g.,
one that used SHA-256) use their hash to produce the
digitally-signed element. This produces an inconsistency
in that the older cipher suites would still be using the com
bined hash construct. However, there is not a security
problem with this strategy since those cipher suites all use
SHA-1 or MD5 for their MAC in any case, and the current
construction is no weaker than SHA-1 or HMAC alone.

The second approach would be to simply change this

rule in the next version of TLS.6 This would be a more
principled approach but has the drawback that TLS is oth
erwise extremely stable and that new versions have his
torically taken a very long time to produce even when
the revisions were minor. Therefore, this would be the
slower approach. However, given the relatively low se
curity threat posed by the current attacks and the likely
catastrophic nature of any hash compromise that would al
low attacking the digitally-signed element, the level of ur
gency is relatively low. Thus, while either roll-out strategy
is probably acceptable, we prefer the new version strategy
as a matter of protocol cleanliness.

5.5 PRFs

TLS uses a hash function-based PRF to create the key
ing material from the PreMaster Secret and Master Secret.
It is also used to compute the Finished messages which
are used to secure the TLS negotiation against downgrade
attack. Compromise of the PRF might potentially allow
an attacker to determine the keying material or mount a
downgrade attack.

The TLS PRF is actually two PRFs, both based on
HMAC, with one using MD5 and the other using SHA
1. Like the digitally-signed element, the TLS PRF is
explicitly specified in the standard and not negotiable.7

This construction, while somewhat over-complex, is prov
ably secure under the assumption that either HMAC
SHA1 or HMAC-MD5 are secure pseudorandom func
tions [Kra03]. Because the current attacks do not af
fect the security of HMAC, upgrading the PRF is a low-
priority task. However, we briefly consider methods here.

The two basic methods for negotiating the PRF algo
rithm are to use the negotiated cipher suite or to create a
new extension. In the first case, whatever digest algorithm
was negotiated for the cipher suite would also be used as
the basis for the PRF. This has the obvious drawback that
it ties TLS to the basic HMAC-X structure of the PRF. If
this construction were found to be insecure (despite the
proofs of security), then it would not be possible to ne
gotiate a new construction. By contrast, while using an
extension adds complexity it would allow substitution of
the construction without creating a new version of TLS.

We are skeptical that this increased flexibility justifies
the added complexity of defining a new extension. In view
of the security proofs for HMAC and its wide use in TLS,
it seems likely that any attack on HMAC would imply
compromise of the underlying digest function and result
in the compromise of key elements of the system (mes
sage MACs, certificates, etc.), thus necessitating a new

6This would be TLS 1.2 as TLS 1.1 [DR05] has just been approved.
7This has already been an issue with the proposed GOST cipher

suite [CL04], which for regulatory reasons must use the GOST digest
function in the PRF

revision of TLS in any case. It would be straightforward
to revise the PRF at that time.

PRFs have similar roll-out issues to those described in
Section 5.4. As with the digitally-signed element, we rec
ommend that the transition to a negotiated PRF occur in a
future version of TLS.

5.6 The Finished Message

The TLS Finished message is computed by computing
the TLS PRF over the master secret and the concatena
tion of two digests over the handshake messages, one
using MD5 and one using SHA-1. The same consid
erations apply here as in the PRF. The hash itself is
unkeyed although both sides contribute random nonces.
This design modestly reduces memory requirements on
the client and server. HMAC-based MACs digest the
key before the data; however, the MAC key (the master
secret) is not known until after the ClientKeyExchange
message. Thus, the client and server cannot start com
puting an HMAC immediately and must instead store the
pre-ClientKeyExchange messages (about of 2-5k of data).
There is a potential risk in this design in that keyed hashes
are harder to attack than simple hashes. However, because
the attacker cannot control the client messages and can
only slightly influence the server’s messages (by modi
fying the client messages in flight to produce a different
negotiation result) the ability to create collisions is insuf
ficient to mount this attack.

The obvious approach to transition is to replace the
pair of hashes with the negotiated hash function used for
the message MAC. However, note that this requires both
sides to store the handshake messages until the MAC al
gorithm is decided (in the ServerHello). This requires
a modest change in TLS implementation behavior and a
slight increase in storage requirements. An alternative de
sign would be to replace the “digest then PRF” construc
tion with a MAC directly over the handshake messages.
This would have only slightly higher storage requirements
and be modestly more secure in the event of preimage at
tacks on the underlying hash function. We consider either
approach adequate, though we believe that the security
considerations outweigh the memory issue and therefore
recommend transitioning to a simple MAC over the mes
sages.

5.7 Attacks

As with S/MIME, we consider the problem of protecting
Switch-hitting implementations during the transition pe
riod. The general form of the attack is for the enemy to
force one or both sides to believe that the other side is
an old implementation and convince them to use weaker
algorithms, thus rendering them susceptible to attack.

We can divide these attacks broadly into two categories.
In the first, the attacker has obtained a valid certificate for
one side of the connection (most likely the server) and
knows the corresponding private key. In the first case,
where the attacker has a valid (but fake) certificate, no
complete defense is possible other than turning off the old
algorithm. The attacker can simply intercept the connec
tion and use its certificate. As with S/MIME, partial de
fenses including rejecting newer certificates signed with
weak algorithms and SSH-style fingerprint comparison.

If the attacker does not have a valid certificate, he must
attack the negotiation more indirectly. However, because
the negotiation is protected by a MAC computed using the
PRF, the attacker must be able to predict PRF output in or
der to predict the key used for the PRF. As argued in Sec
tion 5.5, this would require a very serious break of HMAC
and most likely that the attacker can compute preimages,
making a direct attack on certificates possible.

6 IPsec

IPsec[KA98c] is composed of two major pieces:
the per-packet protection mechanisms, ESP [MD98]
and AH [KA98a], and the key exchange algorithm,
IKE [HC98]. The two pieces have very different depen
dencies on hash algorithms.

A revised IPsec specification is currently being pre
pared. For our purposes, the most important change is
the replacement of IKE by a substantially different ver
sion [Kau04]. However, because the IPsec WG opted to
retain the basic elements of IKE (except for Aggressive
Mode) in IKEv2, our analysis is largely the same. Differ
ences are noted as necessary.

Although IPsec can provide general security, realisti
cally it is generally restricted to VPNs. This implies that
each VPN gateway knows its clients, and has perhaps is
sued their certificates. The gateway thus has the ability to
refrain from using new algorithms until it has issued new
certificates to its clients. More generally, with IPsec each
party often knows who the other party is, and what creden
tials it will present; the presence of new hash functions in
a peer’s certificate are thus a signal for what certificate it
should use. In some cases, a gateway may be configured
to trust all clients presenting a certificate from a particular
CA or group of CAs; in such cases, the signaling mecha
nisms described below can be used.

6.1 AH and ESP

AH [KA98a], the authentication header, provides authen
tication only. The usual algorithm is HMAC [KA98a,
MG98a, MG98b, KA98b] with either MD5 or SHA-1. As
noted, the use of today’s hash functions within HMAC is

not believed to be risky; as such, no changes are needed
to AH. That said, HMAC-MD5 has been deprecated for
use with IPsec.

ESP [KA98b], the Encapsulating Security Protocol,
provides confidentiality and/or integrity protection. As
with AH, the standard integrity algorithms are based on
HMAC, and thus require no changes.

6.2 IKE

IKE [HC98, MSST98] is an extremely complex protocol,
with many different variants. Authentication can be via
public key technology, in which case certificates and hash
functions are used, or shared secrets. In addition, hash
functions are always used as PRFs and for integrity pro
tection. We look at each of these issues separately.8

IKE has two phases. In the first phase, the two parties
authenticate themselves to each other using potentially-
expensive mechanisms. In addition, during Phase 1 they
negotiate hash algorithms, authentication methods, and
PRFs for use in Phase 2. Phase 2 is used to set up actual
IPsec security associations (SAs); at this time, algorithms
for such associations are negotiated. Because there is full
negotiation via a protected channel, there are no compati
bility issues with Phase 2; accordingly, we will not discuss
it further.

For IKEv2 [Kau04] and Main Mode of IKEv1, the
first set of messages in IKE contain security association
proposals for use during Phase 2 and the remainder of
Phase 1. This permits early negotiation of hash functions
and PRFs. A party that has implemented new hash func
tions can, of course, specify them at this point. The IKE
initiator transmits an ordered list of the algorithms it con
siders acceptable; the responder selects one from that list.
There is no requirement that they be ordered by strength.
Note, though, that there are no Transform types defined
for hash or signature algorithms. Furthermore, it is pos
sible to have valid SA messages that don’t mention any
hash functions at all; both the PRF and Integrity algo
rithms have AES-CBC variants. Accordingly, new Trans
form types are necessary.

The situation is much more complex if Aggressive
Mode (IKEv1 only) is used, since the messages ex
changed differ greatly. There are four different variants,
depending on how the exchange is authenticated. In all of
them, however, the initial SA message is combined with
other parts of the key exchange. There is thus no opportu
nity for prenegotiation of hash function capabilities, and
hence no graceful upgrade path.

If Phase 1 is authenticated with digital signatures, the
responder sees the initiator’s SA proposal before perform

8In addition to MD5 and SHA-1, [HC98] says that the
TIGER [AB96] hash function “should” be supported. To our knowl
edge, this is very rarely done in practice.

ing any public key operations. It thus knows the initiator’s
capabilities, and hence which of its certificates it may use.
As with TLS, downgrade attacks are prevented by later
hashing the SA proposals.

If public key encryption or revised public key encryp
tion is used to authenticate the Phase 1 exchange, the situ
ation is more complex. The initiator may use a hash func
tion in its first message; it must also encrypt certain values
with the responder’s public key. Before doing this, how
ever, the initiator must have the responder’s certificate. It
can thus use the same heuristic we have discussed ear
lier: if the certificate uses a new hash function, the client
should do so as well.

Finally, shared secret mode can be used for initial au
thentication. In this case, there are no certificates; how
ever, hash functions are used. The initiator does not need
to employ any until it has seen the responder’s SA; there is
thus no problem negotiating newer hash functions if avail
able.

6.3 Hash Functions

Section 4 of [HC98] requires that all exchanges start by
negotiating certain SA parameters. One such parameter is
which hash function should be used by IKE.

The negotiated hash function is used for several pur
poses. If no PRF is negotiated, the selected hash function
is used via HMAC. In addition, a hash of a certificate is
sometimes transmitted, to indicate which one is in use.

We suggest overloading this message for signaling
what hash functions can be used in certificates. That is,
if a new, strong hash function appears in the initiator’s SA
proposal, the responder can assume that the initiator will
accept that hash function in certificates. Similarly, if the
responder specifies such a function, the initiator will know
the same about the responder. This is not the cleanest way
of conveying this information; however, the code impact
should be minimal.

The alternative would be to add another payload to
the SA proposal message. We suspect that this would
cause more interoperability problems; however, it would
be cleaner, and would be the only way to signal support
for new signature algorithms.

Given the limited direct use of hash functions in IKE,
there is arguably no need to upgrade them. As far as is
known, there is no need to use HMAC-512. However, the
performance impact is minimal, and the ability to signal
is quite important.

6.3.1 MAC Functions

IKE uses HMAC for authentication. As before, HMAC is
believed to be resistant to collision attacks. There is thus
no need for enhanced MAC functions.

6.3.2 PRFs

PRFs are use in IKE for key generation. Two types are in
use, HMAC with MD5 or SHA-1 and AES-XCBC-PRF
128 [Hof04]. There is thus no need to change behavior
here.

6.4 Attacks

Given that all uses of hash functions except for certificate
exchanges are matters for negotiation, and given that IKE
already uses protection against downgrade attacks, we re
strict our attention to certificate exchanges. The question
must be addressed for both initiator and responder certifi
cates. We first consider Main Mode and IKEv2.

If the SA signaling described in Section 6.3 is used, the
initiator will have a clear indication of whether or not the
responder supports new hash functions. An attacker who
has somehow created a fake responder certificate could
tamper with the SA response; however, this will be de
tected as a downgrade attack. It is thus not possible to
confuse the initiator. Similarly, if the attacker tampered
with the SA proposal, the responder might believe that
the initiator only supported old hash functions; again, this
is easily detected.

Aggressive mode is much more complex, because of
its many variants. As outlined earlier, though, the cases
reduce to preprovisioning or downgrade protection.

There is one more interesting situation to consider: op
portunistic encryption [RR05]. With opportunistic en
cryption, there is no prior knowledge of a peer’s identity,
let alone capabilities. Fortunately, [RR05] requires use of
Main Mode, where a full SA negotiation is done before
hand.

7 Conclusions

It is clear that new hash functions or new methods of em
ploying hash functions are necessary. However, as we
have demonstrated, neither the specifications nor imple
mentations are ready for the transition. We have pre
sented an analysis of transition strategies for S/MIME,
TLS, and IPsec; we have also analyzed DNSsec in
[BR05]. We strongly urge the analysis of other protocols
that use hash functions. Prominent candidates include
OpenPGP [CDFT98], and Secure Shell [Ylo96, Ylo05].

For the protocols we analyzed, we present recommen
dations to implementors and the IETF. These changes
are necessary to prepare for the transition. We suggest
that they be made as quickly as possible, to provide maxi
mum secure interoperability when new hash functions are
ready.

In a number of protocols, users need to have a choice
of which hash functions to offer or accept. We urge im

plementors to make this easily configurable, both by end
users and system administrator.

When protocol upgrades are being designed, consid
eration should be given to signature algorithm agility as
well. In most cases, the signaling will have to be done in
the same place as for hash functions. However, some of
the overloading we suggest is inappropriate for signature
algorithms. For example, Section 6.3 suggests using the
appearance of a new hash algorithm in the SA proposal
as a signal that one party supports a new hash algorithm
in one context, and hence presumably in another. There
is no obvious way to extend this to, say, support of ECC
signatures. (The growing popularity of ECC may require
these changes sooner than would be required by the cur
rent attacks on hash functions.)

S/MIME
Implementors of S/MIME should ensure that their
product handles multiple signatures properly. In par
ticular, programs should report success with one sig
nature while warning about unverifiable signatures.

MD5 should never be used for digests, since all con
forming implementations already support SHA-1.

The IETF should develop a method for indicating
digest function capabilities in certificates, CA ven
dors should implement it, and new certificates should
contain explicit statements about hash functions sup
ported.

TLS
The IETF should define a TLS extension by which
clients can signal support for newer certificates.

The IETF should pick one of the two suggested al
ternatives for supporting client side certificates prop
erly.

The IETF should consider making the PRF depend
on the MAC algorithm in a future version of TLS.

The definition of the digitally-signed element should
be amended to support new hash functions.

The definition of the Finished message should be
amended to support new hash functions.

IPsec
The IETF should amend the IKE and IKEv2 speci
fications to describe signaling via the SA hash pro
posal, or via an explicit new field in the SA exchange.

DSA
DSA presents a special problem, since it may only
be employed with SHA-1. NIST needs to clarify this
situation, either by defining DSA-2 or by describing
how DSA can be used with randomized hashes or
truncated longer hashes.

The problems we have described here are symptomatic
of a more general problem. Most security protocols allow
for algorithm negotiation at some level. However, it is
clear that this has never been thoroughly tested. Virtually
all of the protocols we have examined have some wired-
in assumptions about a common base of hash functions.
It is a truism in programming that unexercised code paths
are likely to be buggy. The same is true in cryptographic
protocol design.

8 Acknowledgments

The authors would like to thank Russ Housley for his
detailed review of this paper. We would also like to
thank Alex Alten, Steve Burnett, Hal Finney, Eu-Jin Goh,
Peter Gutmann, Steve Henson, Paul Hoffman, Michael
Howard, Charlie Kaufman, John Kelsey, Ben Laurie, Ar
jen Lenstra, Blake Ramsdell, Hovav Shacham, and Benne
de Weger for their advice and comments.

References

[AB96]	 R. Anderson and E. Biham. Tiger: A fast
new hash function. In IWFSE: Interna
tional Workshop on Fast Software Encryp
tion, LNCS, 1996.

[BCJ+05]	 E. Biham, R. Chen, A. Joux, P. Carribault,
C. Lemuet, and W. Jalby. Collisions of
SHA-0 and Reduced SHA-1. In Proceed
ings of Eurocrypt ’05, 2005.

[BR05]	 Steven M. Bellovin and Eric K. Rescorla.
Deploying a new hash algorithm. Techni
cal Report CUCS-036-05, Dept. of Com
puter Science, Columbia University, Octo
ber 2005.

[BWNH+03] S. Blake-Wilson, M. Nystrom, D. Hop-
wood, J. Mikkelsen, and T. Wright. Trans
port Layer Security (TLS) Extensions.
RFC 3546, June 2003.

[CDFT98]	 J. Callas, L. Donnerhacke, H. Finney, and
R. Thayer. OpenPGP Message Format.
RFC 2440, November 1998.

[CL04]	 G. Chudov and S. Leontiev. Addition of
GOST ciphersuites to Transport Layer Se
curity (TLS), May 2004. draft-chudov
cryptopro-cptls-01.txt.

[DA99]	 T. Dierks and C. Allen. The TLS Protocol
Version 1.0. RFC 2246, January 1999.

[Dob96] H. Dobbertin. Cryptanalysis of MD4
(Third Workshop on Cryptographic Algo
ruthms, Cambridge 1996). Lecture Notes
in Computer Science, pages 55–72, 1996.

[Dob98] H. Dobbertin. The First Two Rounds of
MD4 are Not One-Way. Lecture Notes in
Computer Science, 1372, 1998.

[DR05] T. Dierks and E. Rescorla. The TLS Pro
tocol: Version 1.1, Jun 2005. draft-ietf-tls
rfc2246-bis-13.txt.

[Gut05] P. Gutmann.
2005.

Personal communication,

[HC98] D. Harkins and D. Carrel. The Internet Key
Exchange (IKE). RFC 2409, November
1998.

[Hen05] S. Henson. Personal communication, 2005.

[Hic95] K. Hickman. The SSL Protocol, February
1995. http://www.netscape.com/
eng/security/SSL_2.html .

[HK05] S. Halevi and H. Krawczyk. Strengthening
Digital Signatures via Randomized Hash
ing, May 2005. draft-irtf-cfrg-rhash-00.txt.

[Hof04] P. Hoffman. The AES-XCBC-PRF-128
Algorithm for the Internet Key Exchange
Protocol (IKE). RFC 3664, January 2004.

[Hou04] R. Housley. Cryptographic Message Syn
tax (CMS). RFC 3852, July 2004.

[HPFS02] R. Housley, W. Polk, W. Ford, and D. Solo.
Internet X.509 Public Key Infrastructure
Certificate and Certificate Revocation List
(CRL) Profile. RFC 3280, April 2002.

[JK03] J. Jonsson and Burton S. Kaliski. Public-
key cryptography standards (PKCS) #1:
RSA cryptography specifications version
2.1. RFC 3447, Internet Engineering Task
Force, February 2003.

[KA98a] S. Kent and R. Atkinson. IP Authentication
Header. RFC 2402, November 1998.

[KA98b] S. Kent and R. Atkinson. IP Encapsulat
ing Security Payload (ESP). RFC 2406,
November 1998.

[KA98c] S. Kent and R. Atkinson. Security Ar
chitecture for the Internet Protocol. RFC
2401, November 1998.

[Kau04]

[KBC97]

[Kle01]

[KM97]

[Kra03]

[KS94a]

[KS94b]

[KS94c]

[LWdW05]

[MD98]

[MG98a]

[MG98b]

C. Kaufman. Internet Key Exchange
(IKEv2) Protocol, Sep 2004. draft-ietf
ipsec-ikev2-17.txt.

H. Krawczyk, M. Bellare, and R. Canetti.
HMAC: Keyed-Hashing for Message Au
thentication. RFC 2104, February 1997.

J. Klensin. Simple Mail Transfer Protocol.
RFC 2821, April 2001.

D. Kristol and L. Montulli. HTTP State
Management Mechanism. RFC 2109,
February 1997.

H. Krawczyk. SIGMA: The ‘SIGn-
and-MAc’ Approach to Authenticat
icated Diffie-Hellman and its Use
in the IKE Protocol, June 2003.
http://www.ee.technion.ac .
il/˜hugo/sigma.ps .

Gene Kim and Eugene H. Spafford. The
design and implementation of Tripwire:
A file system integrity checker. In Pro
ceedings of the 2nd ACM Conference on
Computer and Communications Security,
November 1994.

Gene Kim and Eugene H. Spafford. Ex
periences with Tripwire: Using integrity
checkers for intrusion detection. In Pro
ceedings of Systems Administration, Net
working, and Security III, 1994.

Gene Kim and Eugene H. Spafford. Writ
ing, supporting, and evalutaing tripwire: A
publically available security tool. In Pro
ceedings of the Usenix UNIX Applications
Development Symposium, 1994.

A. Lenstra, X. Wang, and B. de Weger.
Colliding X.509 Certificates. In Pro
ceedings of ACISP, 2005. To appear.
Online: http://eprint.iacr.org /
2005/067 .

C. Madson and N. Doraswamy. The ESP
DES-CBC Cipher Algorithm With Explicit
IV. RFC 2405, November 1998.

C. Madson and R. Glenn. The Use of
HMAC-MD5-96 within ESP and AH. RFC
2403, November 1998.

C. Madson and R. Glenn. The Use of
HMAC-SHA-1-96 within ESP and AH.
RFC 2404, November 1998.

http:http://eprint.iacr.org
http:il/�hugo/sigma.ps
http:http://www.ee.technion.ac

[MSST98] D. Maughan, M. Schertler, M. Schnei
der, and J. Turner. Internet Security As
sociation and Key Management Protocol
(ISAKMP). RFC 2408, November 1998.

[Nat00] National Institute of Standards and Tech
nology, U.S. Department of Commerce.
Digital Signature Standard, 2000. FIPS
PUB 186-2.

[Nat02] National Institute of Standards and Tech
nology, U.S. Department of Commerce.
Secure Hash Standard, 2002. FIPS PUB
180-2.

[Ram04a] B. Ramsdell. Secure/Multipurpose Inter
net Mail Extensions (S/MIME) Version 3.1
Certificate Handling. RFC 3850, July
2004.

[Ram04b] B. Ramsdell. Secure/Multipurpose Inter
net Mail Extensions (S/MIME) Version 3.1
Message Specification. RFC 3851, July
2004.

[Ram05] B. Ramsdell.
2005.

Personal communication,

[Res99] E. Rescorla. Diffie-Hellman Key Agree
ment Method. RFC 2631, June 1999.

[Res00] E. Rescorla. HTTP Over TLS. RFC 2818,
May 2000.

[Res05] E. Rescorla. MD5 Collisions in
PostScript Files”, June 2005. http:
//www.educatedguesswork.org/
movabletype/archives/2005/
06/md5_collisions.html .

[Riv90] R.L. Rivest. MD4 Message Digest Algo
rithm. RFC 1186, October 1990.

[Riv92] R. Rivest. The MD5 Message-Digest Al
gorithm . RFC 1321, April 1992.

[RR05] M. Richardson and D. Redelmeier. Oppor
tunistic encryption using the Internet Key
Exchange (IKE), 2005. draft-richardson
ipsec-opportunistic-17.txt.

[RSC+02] J. Rosenberg, H. Schulzrinne, G. Camar
illo, A. Johnston, J. Peterson, R. Sparks,
M. Handley, and E. Schooler. SIP: Session
Initiation Protocol. RFC 3261, June 2002.

[San05] S. Santesson. X.509 Certificate Extension
for S/MIME Capabilities, May 2005. draft
ietf-smime-certcapa-05.txt.

[WY05] X. Wang and H. Yu. How to Break MD5
and Other Hash Functions. In Proceedings
of Eurocrypt ’05, 2005.

[WYY05] X. Wang, Y. Yin, and H. Yu. Colli
sion Search Attacks on SHA1, 2005.
http://theory.csail.mit.edu/
˜yiqun/shanote.pdf .

[Ylo96] Tatu Ylonen. SSH – secure login connec
tions over the Internet. In Proceedings of
the Sixth Usenix Unix Security Symposium,
pages 37–42, July 1996.

[Ylo05] T. Ylonen. SSH protocol architecture,
2005. draft-ietf-secsh-architecture-22.txt.

