Message modification, neutral bits and boomerangs

From which round should we start counting in SHA ?

Antoine Joux
DGA
and
University of Versailles St-Quentin-en-Yvelines France

Joint work with Thomas Peyrin

Differential cryptanalysis of SHA

- Started in 1998 with SHA-0
- Many improvements starting from 2004:
- Neutral bits technique
- Multi-block collisions
- Message modification techniques
- Non linear differential paths
- In this talk, we focus on:
- Neutral bits
- Message modification
- Boomerang attack

Overview of the basic attack

Notations

Notation	Definition
\mathbb{F}_{q}	Finite field with q elements.
$\langle X, Y, \ldots, Z\rangle$	Concatenation of 32-bits words.
+	Addition on 32-bits words modulo 2^{32}.
\oplus	Exclusive or on bits or 32 -bits words.
\vee	Inclusive or on bits or 32 -bits words.
\wedge	Logical and on bits or 32 -bits words.
$R O L_{\ell}(X)$	Rotation by ℓ bits of a 32-bits word.
X_{i}	The i th bit of 32 -bits word X, from the least significant 0 to the most significant 31.

Description of SHA

SHA compression function

Initialization of $\left\langle A^{(0)}, B^{(0)}, C^{(0)}, D^{(0)}, E^{(0)}\right\rangle$
for $i=0$ to 79

$$
\begin{aligned}
& A^{(i+1)}= \\
& A D D\left(W^{(i)}, R O L_{5}\left(A^{(i)}\right), f^{(i)}\left(B^{(i)}, C^{(i)}, D^{(i)}\right), E^{(i)}, K^{(i)}\right) \\
& B^{(i+1)}=A^{(i)} \\
& C^{(i+1)}=R O L_{30}\left(B^{(i)}\right) \\
& D^{(i+1)}=C^{(i)} \\
& E^{(i+1)}=D^{(i)}
\end{aligned}
$$

Output

$$
\left\langle A^{(0)}+A^{(80)}, B^{(0)}+B^{(80)}, C^{(0)}+C^{(80)}, D^{(0)}+D^{(80)}, E^{(0)}+E^{(80)}\right\rangle
$$

Functions $f^{(i)}(X, Y, Z)$, and Constants $K^{(i)}$

Round i	Function $f^{(i)}$		Constant $K^{(i)}$
	Name	Definition	
$0-19$	IF	$(X \wedge Y) \vee(\neg X \wedge Z)$	0x5A827999
$20-39$	XOR	$(X \oplus Y \oplus Z)$	0x6ED9EBA1
$40-59$	MAJ	$(X \wedge Y) \vee(X \wedge Z) \vee(Y \wedge Z)$	0x8F1BBCDC
$60-79$	XOR	$(X \oplus Y \oplus Z)$	0xCA62C1D6

Expansion of SHA-0

- Input: $\left\langle W^{(0)}, \ldots, W^{(15)}\right\rangle$

$$
\begin{equation*}
W^{(i)}=W^{(i-3)} \oplus W^{(i-8)} \oplus W^{(i-14)} \oplus W^{(i-16)} \tag{1}
\end{equation*}
$$

- Output: $\left\langle W^{(0)}, \ldots, W^{(79)}\right\rangle$

Difference with SHA-1

- Slight difference in the expansion:

$$
\begin{equation*}
W^{(i)}=R O L_{1}\left(W^{(i-3)} \oplus W^{(i-8)} \oplus W^{(i-14)} \oplus W^{(i-16)}\right) \tag{2}
\end{equation*}
$$

- $E_{0}=\left(e_{0}\right)^{32}$ non-interleaved expansion of SHA-0.
- E_{1} interleaved expansion of SHA-1.

Linearized version of SHA

- Replace $A D D$ by $X O R$.
- Replace f_{i} by $X O R$.
- Then, collision can be found with linear algebra

Constructing Differential Collisions

Construction of the Differential Mask

- For SHA-0:
- Find a disturbance-vector $\left.m_{0}^{(0)}, \ldots, m_{0}^{(79)}\right)$.
- Apply it on bits 1 , in order to obtain perturbative mask $M_{0}=\left\langle M_{0}^{(-5)}, \ldots, M_{0}^{(79)}\right\rangle$ defined by:

$$
\begin{aligned}
\forall i,-5 \leq i \leq-1, M_{0}^{(i)} & =0 \\
\forall i, 0 \leq i \leq 79, M_{0, k}^{(i)} & =0 \text { if } k \neq 1 \\
\forall i, 0 \leq i \leq 79, M_{0,1}^{(i)} & =m_{0}^{(i)}
\end{aligned}
$$

- For SHA-1:
- Directly find the perturbative mask M_{0}
- Use a low weight vector of the expansion E_{1}
- Align many bits (not all) on bit 1

Corrective Masks

- From M_{0} derive: M_{1}, \ldots, M_{5} :

$$
\begin{align*}
& \left.\forall i,-4 \leq i \leq 79, M_{1}^{(i)}=R O L_{5} M_{0}^{(i-1)}\right) \tag{3}\\
& \forall i,-3 \leq i \leq 79, M_{2}^{(i)}=M_{0}^{(i-2)} \tag{4}\\
& \left.\forall i,-2 \leq i \leq 79, M_{3}^{(i)}=R O L_{30} M_{0}^{(i-3)}\right) \tag{5}\\
& \left.\forall i,-1 \leq i \leq 79, M_{4}^{(i)}=R O L_{30} M_{0}^{(i-4)}\right) \tag{6}\\
& \left.\forall i, 0 \leq i \leq 79, M_{5}^{(i)}=R O L_{30} M_{0}^{(i-5)}\right) \tag{7}
\end{align*}
$$

Constraints (basic attack on SHA-0)

- m_{0} must be ended by 5 zeroes.
- Differential mask M defined by

$$
\begin{equation*}
\forall i, 0 \leq i \leq 79, M^{(i)}=M_{0}^{(i)} \oplus M_{1}^{(i)} \oplus M_{2}^{(i)} \oplus M_{3}^{(i)} \oplus M_{4}^{(i)} \oplus M_{5}^{(i)} \tag{8}
\end{equation*}
$$

must be an output of E_{0}.
Ensured by:

$$
\begin{equation*}
M_{0}^{(i)}=M_{0}^{(i-3)} \oplus M_{0}^{(i-8)} \oplus M_{0}^{(i-14)} \oplus M_{0}^{(i-16)}, \forall i, 11 \leq i<80 \tag{9}
\end{equation*}
$$

Consequence for linearized model

- There exists 64 error vectors m_{0} satisfying the constraints.
- There exists 64 masks M : we deduce μ such that $M=E_{0}(\mu)$.
- For all input $W=W^{(0)} \ldots W^{(15)}, W^{\prime}=W \oplus \mu$ has same output by the linearized compression function.
- With non-negligible probability, also give attack on real SHA

Application to SHA-O

- A few patterns. Best one m_{0} with probability $1 / 2^{61}$: 0000000100010000000101111

01100011100000010100 01000100100100111011 00110000111110000000

- Complexity goes down to 2^{56} with neutral bits of Biham and Chen

Recent improvements

- Multiblock techniques
- Non linear characteristics
- Non linearity for a few rounds in the first SHA-0 collision
- Non linearity during about 16 rounds in Wang's et al SHA-1 attack
- Remove a lot of constraints (and improve attacks)

Evaluating the cost of the attack

- Three important phases:
- Early rounds, where control is possible
- Late rounds, where behavior is probabilistic
- Final rounds, where misbehavior can be partially ignored
- Roughly the complexity arises from the probability of success in the late rounds (the final rounds being excepted)
- Evaluated by computing the probability of success of each local collision

Evaluating the cost of a single local collision

- Disturbance insertion: No carry wanted (pr 1/2)
- A correction: Need opposite sign (pr 1)
- B correction: Disturbance propagates with the right sign (pr $1 / 2$)
- C correction: Disturbance propagates (Bit 31, pr 1 or $1 / 2$)
- Other bits: with the right sign (pr 1/2)
- Possible dependence on D with MAJ
- D correction: Disturbance propagates (Bit 31, pr 1 or $1 / 2$)
- Other bits: with the right sign (pr 1/2)
- E correction: Need opposite sign (pr 1)

Where do the late rounds start

- In the basic attack, round 16 (or 18 with some care)
- With neutral bits of Biham and Chen, round 23
- Use the fact that some message "bits" changes do not affect conformance.
- From one candidate message pair, generates many
- With message modifications of Wang et al., round 26
- Use ad'hoc message changes to force conformance in early rounds
- Much fewer pairs to explore, however each pair costs more
- Wang et al. at first Hash Workshop announced cost $2^{63}+2^{60}$.
- Crypto'05 was round 23 , cost $2 \cdot 2^{71}$ pairs, 2^{69} SHA computations

Where do the late rounds start

- Can we do better and improve the overall complexity?
- One track is to improve message modification. For example Gröbner approach.
- The cost per message pair is potentially high
- Another track is to improve neutral bits.
- Our approach here: Use a variant of the boomerang attack

Boomerang picture for block ciphers

Boomerang picture for hash compression

Boomerang for hash compression

- Each M, M^{\prime} pair is a partially conformant pair of the main differential
- Both pairs are related by a high probability auxillary differential
- The auxillary differential preserves conformance in the early rounds
- Beyond these rounds, the main differential holds (heuristic)
- Each auxillary differential thus doubles the number of conformant pairs
- Very similar to the neutral bit technique
- Longer range of the conformance preserving property

Construction of auxillary differentials

- A simple technique is to use collisions on pairs at some intermediate round
- First example of auxillary differential (experimentally seen in neutral bits)
- Insert difference in round 6 at bit i
- Correct in round 7 at bit $i+7$
- Correct in round 11 at bit $i-2$
- Rely on non-linearity for other correction
- With a well-chosen message pair, collision in round 12
- No more (auxillary) difference up to round 19
- Conformance to the main differential continues for a few additional rounds

An auxillary differential with pairwise collision up to round 26

- Found by simple search on bits $i-2, i$ and $i+5$
- Contains 5 local collision patterns
- Collision in round 16 , no more difference up to round 26

Bit i	0	4	6	8	10
Bit $i+5$	1	5	7	9	11
Bit i					
Bit $i-2$					
Bit $i-2$		8	10		14
Bit $i-2$	5	9	11	13	15

Associated constraints in initial pair

$M_{i}^{(0)}=a$	$M_{i}^{(4)}=b$	$M_{i}^{(6)}=c$	$M_{i}^{(8)}=d$	$M_{i}^{(10)}=e$
$A_{i}^{(1)}=a$	$A_{i}^{(5)}=b$	$A_{i}^{(7)}=c$	$A_{i}^{(9)}=d$	$A_{i}^{(11)}=e$
$M_{i+5}^{(1)}=\bar{a}$	$M_{i+5}^{(5)}=\bar{b}$	$M_{i+5}^{(7)}=\bar{c}$	$M_{i+5}^{(9)}=\bar{d}$	$M_{i+5}^{(11)}=\bar{e}$
$A_{i+2}^{(0)}=A_{i+2}^{(-1)}$	$A_{i+2}^{(4)}=A_{i+2}^{(3)}$	$A_{i+2}^{(6)}=A_{i+2}^{(5)}$	$A_{i+2}^{(8)}=A_{i+2}^{(7)}$	$A_{i+2}^{(10)}=A_{i+2}^{(9)}$
$A_{i-2}^{(2)}=0$	$A_{i-2}^{(6)}=0$	$A_{i-2}^{(8)}=0$	$A_{i-2}^{(10)}=0$	$A_{i-2}^{(12)}=0$
$A_{i-2}^{(3)}=1$	$A_{i-2}^{(7)}=0$	$A_{i-2}^{(9)}=0$	$A_{i-2}^{(11)}=1$	$A_{i-2}^{(13)}=0$
	$M_{i-2}^{(8)}=\bar{b}$	$M_{i-2}^{(10)}=\bar{c}$		$M_{i-2}^{(14)}=\bar{e}$
$M_{i-2}^{(5)}=\bar{a}$	$M_{i-2}^{(9)}=\bar{b}$	$M_{i-2}^{(11)}=\bar{c}$	$M_{i-2}^{(13)}=\bar{d}$	$M_{i-2}^{(15)}=\bar{e}$

An auxillary differential with pairwise collision up to round 24

- Contains 4 local collision patterns
- Collision in round 14, no more difference up to round 24

Bit i	2	4	6	8
Bit $i+5$	3	5	7	9
Bit $i-2$	5	7	9	
Bit $i-2$	6	8		12
Bit $i-2$	7	9	11	13

Associated constraints in initial pair

$M_{i}^{(2)}=a$	$M_{i}^{(4)}=b$	$M_{i}^{(6)}=c$	$M_{i}^{(8)}=e$
$A_{i}^{(3)}=a$	$A_{i}^{(5)}=b$	$A_{i}^{(7)}=c$	$A_{i}^{(9)}=d$
$M_{i+5}^{(3)}=\bar{a}$	$M_{i+5}^{(5)}=\bar{b}$	$M_{i+5}^{(7)}=\bar{c}$	$M_{i+5}^{(9)}=\bar{d}$
$A_{i+2}^{(2)}=A_{i+2}^{(1)}$	$A_{i+2}^{(4)}=A_{i+2}^{(3)}$	$A_{i+2}^{(6)}=A_{i+2}^{(5)}$	$A_{i+2}^{(8)}=A_{i+2}^{(7)}$
$A_{i-2}^{(4)}=1$	$A_{i-2}^{(6)}=1$	$A_{i-2}^{(8)}=1$	$A_{i-2}^{(10)}=0$
$A_{i-2}^{(5)}=0$	$A_{i-2}^{(7)}=0$	$A_{i-2}^{(9)}=1$	$A_{i-2}^{(11)}=0$
$M_{i-2}^{(7)}=\bar{a}$	$M_{i-2}^{(9)}=\bar{b}$	$M_{i-2}^{(11)}=\bar{c}$	$M_{i-2}^{(13)}=\bar{d}$

Ongoing work

- Depending on bit position induces conformance up to round 28, 29 or more
- No high message modification cost
- Compatible with the neutral bit technique
- Technical difficulties:
- Build a non-linear characteristic compatible with enough auxillary characteristics
* Useful tool: see talk of De Cannière and Rechberger
- Combine with simple message modification
- Expected result: SHA-1 weaker today than SHA-0 in 1998

A safety measure for collision builders

- Sooner or later a SHA-1 collision will be produced
- This will be an important milestone for hash functions
- Yet it would be nice to minimize bad consequences
- Proposed safety measure:
- Change the IV while keeping true SHA-1
- For this, prepend a long enough, publicly announced, string
- Two simple possibilities:
* Prepend 1Gbyte of zeroes
* Prepend 1 Gbyte of binary expansion of $\pi, e, \sqrt{2}, \ldots$

Conclusion
 Questions

