

Differential cryptanalysis of SHA

- Started in 1998 with SHA-0
- Many improvements starting from 2004:
 - Neutral bits technique
 - Multi-block collisions
 - Message modification techniques
 - Non linear differential paths
- In this talk, we focus on:
 - Neutral bits
 - Message modification
 - Boomerang attack

Overview of the basic attack

Notations

Notation	Definition
\mathbb{F}_q	Finite field with q elements.
$\langle X, Y, \dots, Z \rangle$	Concatenation of 32-bits words.
+	Addition on 32-bits words modulo 2^{32} .
\oplus	Exclusive or on bits or 32-bits words.
\vee	Inclusive or on bits or 32-bits words.
\land	Logical and on bits or 32-bits words.
$ROL_{\ell}(X)$	Rotation by ℓ bits of a 32-bits word.
X_i	The <i>i</i> th bit of 32-bits word X , from the
	least significant 0 to the most significant
	31.

Description of SHA

SHA compression function
Initialization of
$$\langle A^{(0)}, B^{(0)}, C^{(0)}, D^{(0)}, E^{(0)} \rangle$$

for $i = 0$ to 79
 $A^{(i+1)} =$
 $ADD \left(W^{(i)}, ROL_5 \left(A^{(i)} \right), f^{(i)} \left(B^{(i)}, C^{(i)}, D^{(i)} \right), E^{(i)}, K^{(i)} \right)$
 $B^{(i+1)} = A^{(i)}$
 $C^{(i+1)} = ROL_{30} \left(B^{(i)} \right)$
 $D^{(i+1)} = C^{(i)}$
 $E^{(i+1)} = D^{(i)}$

Output $\left\langle A^{(0)} + A^{(80)}, B^{(0)} + B^{(80)}, C^{(0)} + C^{(80)}, D^{(0)} + D^{(80)}, E^{(0)} + E^{(80)} \right\rangle$

Functions $f^{(i)}(X, Y, Z)$, and Constants $K^{(i)}$

Round <i>i</i>		Function $f^{(i)}$	Constant $K^{(i)}$
	Name	Definition	
0 -19	IF	$(X \wedge Y) \vee (\neg X \wedge Z)$	0x5A827999
20-39	XOR	$(X\oplus Y\oplus Z)$	Ox6ED9EBA1
40-59	MAJ	$(X \wedge Y) \lor (X \wedge Z) \lor (Y \wedge Z)$	0x8F1BBCDC
60-79	XOR	$(X\oplus Y\oplus Z)$	0xCA62C1D6
·			

Expansion of SHA-0

• Input:
$$\langle W^{(0)}, \dots, W^{(15)} \rangle$$

$$W^{(i)} = W^{(i-3)} \oplus W^{(i-8)} \oplus W^{(i-14)} \oplus W^{(i-16)}$$
.

(1)

• Output:
$$\langle W^{(0)}, \dots, W^{(79)} \rangle$$

Difference with SHA-1

• Slight difference in the expansion:

$$W^{(i)} = ROL_1 \left(W^{(i-3)} \oplus W^{(i-8)} \oplus W^{(i-14)} \oplus W^{(i-16)} \right) \quad . \tag{2}$$

- $E_0 = (e_0)^{32}$ non-interleaved expansion of SHA-0.
- E_1 interleaved expansion of SHA-1.

Linearized version of SHA

- Replace ADD by XOR.
- Replace f_i by XOR.
- Then, collision can be found with linear algebra

Constructing Differential Collisions

Construction of the Differential Mask

- For SHA-0:
 - Find a **disturbance**-vector $m_0^{(0)}, \ldots, m_0^{(79)}$).
 - Apply it on bits 1, in order to obtain perturbative mask $M_0 = \left\langle M_0^{(-5)}, \dots, M_0^{(79)} \right\rangle$ defined by:

$$\begin{aligned} \forall i, \ -5 &\leq i \leq -1, \ M_0^{(i)} &= 0 \\ \forall i, \ 0 &\leq i \leq 79, \ M_{0,k}^{(i)} &= 0 \text{ if } k \neq 1 \\ \forall i, \ 0 &\leq i \leq 79, \ M_{0,1}^{(i)} &= m_0^{(i)} . \end{aligned}$$

- For SHA-1:
 - Directly find the perturbative mask M_0
 - Use a low weight vector of the expansion E_1
 - Align many bits (not all) on bit 1

Corrective Masks

• From M_0 derive: M_1, \ldots, M_5 :

$$\forall i, -4 \le i \le 79, M_1^{(i)} = ROL_5 M_0^{(i-1)}$$
; (3)

$$\forall i, -3 \le i \le 79, M_2^{(i)} = M_0^{(i-2)};$$
(4)

$$\forall i, -2 \le i \le 79, M_3^{(i)} = ROL_{30} M_0^{(i-3)}$$
; (5)

$$\forall i, -1 \le i \le 79, \ M_4^{(i)} = ROL_{30} \ M_0^{(i-4)}) \quad ; \qquad (6)$$

$$\forall i, \ 0 \le i \le 79, \ M_5^{(i)} = ROL_{30} \ M_0^{(i-5)} \end{pmatrix} ;$$
 (7)

Constraints (basic attack on SHA-0)

- m_0 must be ended by 5 zeroes.
- Differential mask M defined by

$$\forall i, \ 0 \le i \le 79, \ M^{(i)} = M_0^{(i)} \oplus M_1^{(i)} \oplus M_2^{(i)} \oplus M_3^{(i)} \oplus M_4^{(i)} \oplus M_5^{(i)} ,$$
(8)

must be an output of E_0 . Ensured by:

$$M_0^{(i)} = M_0^{(i-3)} \oplus M_0^{(i-8)} \oplus M_0^{(i-14)} \oplus M_0^{(i-16)}, \ \forall i, \ 11 \le i < 80 \ .$$
(9)

Consequence for linearized model

- There exists 64 error vectors m_0 satisfying the constraints.
- There exists 64 masks M: we deduce μ such that $M = E_0(\mu)$.
- For all input $W = W^{(0)} \dots W^{(15)}$, $W' = W \oplus \mu$ has same output by the linearized compression function.
- With non-negligible probability, also give attack on real SHA

Application to SHA-0

- Complexity goes down to 2⁵⁶ with neutral bits of Biham and Chen

Recent improvements

- Multiblock techniques
- Non linear characteristics
 - Non linearity for a few rounds in the first SHA-0 collision
 - Non linearity during about 16 rounds in Wang's et al SHA-1 attack
- Remove a lot of constraints (and improve attacks)

Evaluating the cost of the attack

- Three important phases:
 - Early rounds, where control is possible
 - Late rounds, where behavior is probabilistic
 - Final rounds, where misbehavior can be partially ignored
- Roughly the complexity arises from the probability of success in the late rounds (the final rounds being excepted)
- Evaluated by computing the probability of success of each local collision

Evaluating the cost of a single local collision

- Disturbance insertion: No carry wanted (pr 1/2)
- A correction: Need opposite sign (pr 1)
- B correction: Disturbance propagates with the right sign (pr 1/2)
- C correction: Disturbance propagates (Bit 31, pr 1 or 1/2)
 - Other bits: with the right sign (pr 1/2)
 - Possible dependence on D with MAJ
- D correction: Disturbance propagates (Bit 31, pr 1 or 1/2)
 - Other bits: with the right sign (pr 1/2)
- E correction: Need opposite sign (pr 1)

Where do the late rounds start

- In the basic attack, round 16 (or 18 with some care)
- With neutral bits of Biham and Chen, round 23
 - Use the fact that some message "bits" changes do not affect conformance.
 - From one candidate message pair, generates many
- With message modifications of Wang et al., round 26
 - Use ad'hoc message changes to force conformance in early rounds
 - Much fewer pairs to explore, however each pair costs more
 - Wang et al. at first Hash Workshop announced cost $2^{63} + 2^{60}$.
 - Crypto'05 was round 23, cost $2\cdot 2^{71}$ pairs, 2^{69} SHA computations

Where do the late rounds start

- Can we do better and improve the overall complexity ?
 - One track is to improve message modification. For example Gröbner approach.
 - The cost per message pair is potentially high

- Another track is to improve neutral bits.
- Our approach here: Use a variant of the ${\bf boomerang}\ {\bf attack}$

Boomerang for hash compression

- Each M, M' pair is a partially conformant pair of the main differential
- Both pairs are related by a high probability auxillary differential
- The auxillary differential preserves conformance in the early rounds
- Beyond these rounds, the main differential holds (heuristic)

- Each auxiliary differential thus doubles the number of conformant pairs
- Very similar to the neutral bit technique
- Longer range of the conformance preserving property

Construction of auxillary differentials

- A simple technique is to use collisions on pairs at some intermediate round
- First example of auxiliary differential (experimentally seen in neutral bits)
 - Insert difference in round 6 at bit i
 - Correct in round 7 at bit i + 7
 - Correct in round 11 at bit i 2
 - Rely on non-linearity for other correction
- With a well-chosen message pair, collision in round 12
- No more (auxillary) difference up to round 19
- Conformance to the main differential continues for a few additional rounds

An auxillary differential with pairwise collision up to round 26

- Found by simple search on bits i 2, i and i + 5
- Contains 5 local collision patterns
- Collision in round 16, no more difference up to round 26

Bit i	0	4	6	8	10
Bit $i + 5$	1	5	7	9	11
Bit i					
Bit $i-2$					
Bit $i-2$		8	10		14
Bit $i-2$	5	9	11	13	15

$M_i^{(0)} = a$	$M_i^{(4)} = b$	$M_i^{(6)} = c$	$M_i^{(8)} = d$	$M_i^{(10)} = e$
$A_i^{(1)} = a$	$A_i^{(5)} = b$	$A_i^{(7)} = c$	$A_i^{(9)} = d$	$A_i^{(11)} = e$
$M_{i+5}^{(1)} = \bar{a}$	$M_{i+5}^{(5)} = \bar{b}$	$M_{i+5}^{(7)} = \bar{c}$	$M_{i+5}^{(9)} = \bar{d}$	$M_{i+5}^{(11)} = \bar{e}$
$A_{i+2}^{(0)} = A_{i+2}^{(-1)}$	$A_{i+2}^{(4)} = A_{i+2}^{(3)}$	$A_{i+2}^{(6)} = A_{i+2}^{(5)}$	$A_{i+2}^{(8)} = A_{i+2}^{(7)}$	$A_{i+2}^{(10)} = A_{i+2}^{(9)}$
$A_{i-2}^{(2)} = 0$	$A_{i-2}^{(6)} = 0$	$A_{i-2}^{(8)} = 0$	$A_{i-2}^{(10)} = 0$	$A_{i-2}^{(12)} = 0$
$A_{i-2}^{(3)} = 1$	$A_{i-2}^{(7)} = 0$	$A_{i-2}^{(9)} = 0$	$A_{i-2}^{(11)} = 1$	$A_{i-2}^{(13)} = 0$
	$M_{i-2}^{(8)} = \bar{b}$	$M_{i-2}^{(10)} = \bar{c}$		$M_{i-2}^{(14)} = \bar{e}$
$M_{i-2}^{(5)} = \bar{a}$	$M_{i-2}^{(9)} = \bar{b}$	$M_{i-2}^{(11)} = \bar{c}$	$M_{i-2}^{(13)} = \bar{d}$	$M_{i-2}^{(15)} = \bar{e}$

Associated constraints in initial pair

An auxillary differential with pairwise collision up to round 24

- Contains 4 local collision patterns
- Collision in round 14, no more difference up to round 24

Bit i	2	4	6	8
Bit $i + 5$	3	5	7	9
Bit $i-2$	5	7	9	
Bit $i-2$	6	8		12
Bit $i-2$	7	9	11	13

Associated constraints in initial pair

$M_i^{(2)} = a$	$M_i^{(4)} = b$	$M_i^{(6)} = c$	$M_i^{(8)} = e$
$A_i^{(3)} = a$	$A_i^{(5)} = b$	$A_i^{(7)} = c$	$A_i^{(9)} = d$
$M_{i+5}^{(3)} = \bar{a}$	$M_{i+5}^{(5)} = \bar{b}$	$M_{i+5}^{(7)} = \bar{c}$	$M_{i+5}^{(9)} = \bar{d}$
$A_{i+2}^{(2)} = A_{i+2}^{(1)}$	$A_{i+2}^{(4)} = A_{i+2}^{(3)}$	$A_{i+2}^{(6)} = A_{i+2}^{(5)}$	$A_{i+2}^{(8)} = A_{i+2}^{(7)}$
$A_{i-2}^{(4)} = 1$	$A_{i-2}^{(6)} = 1$	$A_{i-2}^{(8)} = 1$	$A_{i-2}^{(10)} = 0$
$A_{i-2}^{(5)} = 0$	$A_{i-2}^{(7)} = 0$	$A_{i-2}^{(9)} = 1$	$A_{i-2}^{(11)} = 0$
$M_{i-2}^{(7)} = \bar{a}$	$M_{i-2}^{(9)} = \bar{b}$	$M_{i-2}^{(11)} = \bar{c}$	$M_{i-2}^{(13)} = \bar{d}$

Ongoing work

- Depending on bit position induces conformance up to round 28, 29 or more
- No high message modification cost
- Compatible with the neutral bit technique
- Technical difficulties:
 - Build a non-linear characteristic compatible with enough auxillary characteristics
 - * Useful tool: see talk of De Cannière and Rechberger
 - Combine with simple message modification
- Expected result: SHA-1 weaker today than SHA-0 in 1998

A safety measure for collision builders

- Sooner or later a SHA-1 collision will be produced
- This will be an important milestone for hash functions
- Yet it would be nice to minimize bad consequences
- Proposed safety measure:
 - Change the IV while keeping true <code>SHA-1</code>
 - For this, prepend a long enough, publicly announced, string
 - Two simple possibilities:
 - * Prepend 1Gbyte of zeroes
 - * Prepend 1Gbyte of binary expansion of $\pi, e, \sqrt{2}, \ldots$

Conclusion Questions