
Hash Functions

Improving Hash Function Padding

Don B. Johnson
Entrust Cygnacom

Truth in Advertising

This is the LEAST technical talk at this
NIST Hash workshop

Please do not have high expectations

On the plus side, this talk should be
among the easiest to understand

© Copyright 2005 CygnaCom Solutions 2

1

Hash Functions

Hash Functions

NIST Secure Hash padding:

1. Append a binary 1 pad bit to message.

2. Append binary zero pad bits up to the block
length minus the size of the message length field.

a. SHA-256 & less: block length is 512 bits and
message length field is 64 bits.

b. SHA-384 & greater: block length is 1024 bits
and message length field is 128 bits.

3. Append the message length field containing a
value consisting of the bit length of the message.

© Copyright 2005 CygnaCom Solutions 3

NIST Secure Hash Padding (Simplified)

Data to be ‘1’ ‘0…0’ Postfix length
hashed field

© Copyright 2005 CygnaCom Solutions 4

2

Hash Functions

Hash Functions

Unambiguous Padding

• An Insight: The message length field
(by itself) ensures that all inputs are
mapped unambiguously after padding

• This means that appending a binary 1
pad bit is not needed

• Recommendation: Remove the
appending of a binary 1 pad bit in
padding for future hash designs.

© Copyright 2005 CygnaCom Solutions 5

Proposal 1 Secure Hash Padding

Data to be ‘0…0’ Postfix length
hashed field

© Copyright 2005 CygnaCom Solutions 6

3

Hash Functions

Hash Functions

Cost of appending ‘1’ pad bit

•	 Some (small) additional code space

• 1% to 2% additional performance
cost for processing an additional block
for messages with random lengths
(See paper for details)

• Software design principle: worth it to
highly optimize a commonly-used
routine

© Copyright 2005 CygnaCom Solutions	 7

Moral of Story

•	 “Every little bit
counts”

•	 Or you can make
up your own

© Copyright 2005 CygnaCom Solutions	 8

4

Hash Functions

Hash Functions

Postfix Length Padding Concerns

• Well known: postfix padding has
possible concerns because of length
extension

• A new block can be added with a new
length field

• Solution: Put length field in the same
fixed location

• The fixed location that always exists is
before any data to be hashed: prefix

© Copyright 2005 CygnaCom Solutions	 9

Why Postfix Length Padding?

•	 The rationale for postfix padding is that
SOME applications will not know the total
length to be hashed at the start of hash
processing

•	 This means every hash has postfix concern

•	 Can prefix length outside of hash design,
but this means short messages pay more

•	 Better: Prefix length field with an indicator
that postfix length field will be coming

© Copyright 2005 CygnaCom Solutions	 10

5

Hash Functions

Hash Functions

Postfix Padding Extension Concern

Data to be
hashed

‘0…0’ Original
postfix
length
field

‘0…0’ New
postfix
length
field

© Copyright 2005 CygnaCom Solutions 11

Proposal 2 Secure Hash Padding

Length Data to be ‘0…0’ Postfix length
Field hashed field, if needed

This way, only hashes that must have the postfix
block extension concern will have it.

Thanks for listening!

© Copyright 2005 CygnaCom Solutions 12

6

Improving Hash Function Padding
September 30, 2005
Don B. Johnson, Entrust CygnaCom, djohnson@cygnacom.com

The NIST Secure Hash Functions perform padding by doing the following:
1. Append a binary ‘1’ pad bit.
2. Append binary zero pad bits up to the block length minus the size of the
message length field. For SHA-256 and less the block length is 512 bits and the
message length field is 64 bits. For SHA-384 and greater the block length is
1024 bits and the message length field is 128 bits.
3. Append the message length field containing a value consisting of the bit length
of the input data.

Data to be hashed ‘1’ ‘0…0’ Length field

The message length field (by itself) ensures that all inputs are mapped
unambiguously after padding. This means that the appending of the binary 1 is
not needed.

This paper recommends that appending a binary 1 pad bit be removed in
future hash designs.

Data to be hashed ‘0…0’ Length field

It may seem that appending a binary 1 is a minor cost and not worth removing.
However, as a hash function is used extensively, one should try to avoid ANY
unnecessary cost in using it. This follows the well-known software design
principle that an extensively used subroutine should be highly optimized.

The cost includes the size of the additional code to append the binary 1, which
while it may be small, might unnecessarily use up code space in a constrained
environment where every byte is critical.

The performance cost for a hash function is significantly increased when an
additional block is needed to be processed, this occurs when the input is exactly
(448 modulo 512) bits for the smaller hash function outputs or (896 modulo 1024)
bits otherwise. As essentially all inputs to a hash function will be on byte
boundaries, we can simplify the above calculation to (56 modulo 64) bytes or
(112 modulo 128) bytes. This means for inputs with random byte lengths, about
1/64 or 1/128 of the time an additional block will need to be processed. This
averages out to a 1% to 2% additional cost for messages with random lengths
that can be avoided.

mailto:djohnson@cygnacom.com

The specific proposal of this paper is as follows for future Secure Hash padding:
1. Append binary zero pad bits up to the block length minus the size of the
message length field. For SHA-256 and less the block length is 512 bits and the
message length field is 64 bits. For SHA-384 and greater the block length is
1024 bits and the message length field is 128 bits.
2. Append the message length field containing a value consisting of the bit length
of the input data.

The moral to this story is: Every little bit counts!

There is another aspect of hash function padding that at least should be
discussed and that is prefix versus postfix padding of the length field. The
reason for postfix length padding is claimed to be for those cases when the
application does not know the final length of the data being hashed, for example,
when a large file is being hashed. However, it is well known that postfix length
padding has a security concern in that it is susceptible to a length extension
attack/concern by adding a new block to the old data with the new longer length.
This concern goes away if the length padding is always in the same location; for
variable length data the only location that is always the same is the front as is
done with prefix length padding.

Data to be ‘0…0’ Postfix length
hashed field

Data to be
hashed

‘0…0’ Postfix
length field

‘0…0’ New postfix
length field

The situation we find ourselves is that almost all hashes are done on short
messages or files where the application DOES know the length when it begins
processing. Why should all applications need to accept the potential risks of
postfix length padding? Of course they do not, one can simply ALSO do prefix
length padding and be done with it, but that solution seems inefficient for the vast
majority of cases.

A more efficient solution is to realize that there are 2 cases, the common one
where the length of the data to be hashed is known ahead of time and a rare
situation where it is not. As the rare case is (essentially always) due to large
data being hashed, it is reasonable to allow for a slight performance inefficiency
in this case. One way to have an integrated single solution is to define a prefix
length padding field with a special code to tell the hash routine that the final
length is not known when the hashing is begun and that it will be input with the
final chunk of data. This special code needs to be unambiguous different from
valid length codes so that correct processing can be done.

Prefix length Data to be ‘0…0’ Postfix length
field hashed field, if used

Whether this proposal or another is appropriate needs thought, but at least we
should acknowledge the question so that we are confident of the resulting
answer.

	Johnson_Hash Function Padding.pdf
	Improving Hash Function Padding

	Johnson_Hash Functions and Pseudorandomness.pdf
	Hash Functions and Pseudorandomness

	Johnson_Hash Function Padding.pdf
	Improving Hash Function Padding

