
Strengthening Digital Signatures

via Randomized Hashing

Shai Halevi and Hugo Krawczyk

IBM Research

http://www.ee.technion.ac.il/~hugo/rhash.pdf

http://www.ee.technion.ac.il/~hugo/rhash.pdf

Background: Digital Signatures At Risk!

� Post-Wang trauma

� SHA-1 much weaker than thought

� Lost confidence in SHA-1 but also in our ability to design
secure collision resistant hashing (how much cryptanalysis ahead?)

� Non-repudiable* digital signatures depend essentially on
collision resistance (*most other uses of signatures do not require CR)

� Digital signatures cannot “afford” such uncertainty
(too central to the “electronic society”)

� Is reliance on collision resistance evitable? Can we build
secure digital signatures on weaker assumptions?

� Yes in theory, how about practice?

Our Proposal: Executive Summary

� A randomized mode of operation for hash functions

� Use any hash function as is (existing and future, mainly M-D)

� Add simple input randomization

� Combine with digital signatures

� Effect: increased security (cryptanalysts will have to work
much harder to break the resultant signature schemes)

� Off-line collisions useless, attack requires interaction with signer!

� Even WEAK CR hash functions may be saved by this mode

(remember HMAC?)

� What’s needed: change to signature standards
� salt and encoding (no change to hash functions or signing algorithms)

What this proposal is NOT

� NOT a new hash function

� NOT a call to stop searching for stronger hash functions

� NOT a magic bullet (but an effective vaccine)

� NOT required for all uses of digital signatures (eg. ephemeral authent’n)

� NOT a replacement for all applications of CR hashing (eg. deterministic
hashing, compare independ’ly computed hashes, bit commitment, counter-sigs)

� NOT a new cryptographic notion (but a new mode of operation)

BUT WHAT AN IMPROVEMENT TO OUR SIGNATURE SECURITY!

Randomized Hashing and Signatures
� TODAY: To sign a message x (e.g. via RSA)

� Set h=H(x), s = RSA−1(encode(h)), return s as the sig on x

� Break: either compute RSA−1 or find y≠x s.t. H(x)=H(y)

Randomized Setting:

� Use H(r,x) instead of H(x) (r is a random “salt value”, examples later)

� To sign a message x:

�

� Signer chooses a new fresh random salt r, set h = H(r,x)

� Computes s = RSA−1(encode(h||r)) (r is signed!)

� The signature is the pair (r,s)

Break: either compute RSA−1 or find y such that H(r,x)=H(r,y)

r is chosen by
SIGNER!

(not by forger)

Resultant Hashing Game

� Attacker chooses x

� Digital signatures with randomized hashing are secure as long as
(algorithm is secure and) attacker cannot win in the following game:

� r is chosen at random and given to attacker

� Attacker tries to find y≠x s.t. H(r,x)=H(r,y)

� This hashing game much harder than collision resistance

� Pre-known collisions are helpless (off-line computation useless)

� Can attack a pair (r,x) only after seeing r and having committed to x
before seeing r

� x must be “good” for MANY r’s

� TCR: target-collision resistant (or UOWHF) [NY’89,BR97]

� “target collision”: no birthday attack (in the ideal case 2160 vs 280 for CR)

� Truncation!

Note: more precisely

� To attack the signatures via finding collisions in H, an
attacker needs to:

� Obtain signatures (ri,si) on messages xi

� For some i, find some y≠xi s.t. Hri(xi)=Hri(y).

Can Signer Cheat?

� Signer can find collisions (at least if underlying H not CR)

� But this is no contradiction to non-repudiation
� As long as ONLY the signer can find collisions all its signatures

are valid (even if he shows two msgs with same signature)

� Also: no contradiction to Goldwasser-Micali-Rivest definition

� Example: ECDSA can produce same signature for two different
messages even if used with collision resistant H

� Some signature applications may break with randomized
hashing (probably “broken” before -- e.g W3 counter-signature)

� What if attacker controls r? OK if H is CR (we did not make it worse)
On the same token: what if it controls the input to the signature algrthm?!

One-Way: Given z in range (say {0,1}160) find x st H(x)=z

Comparative Requirements

(the stronger the harder to achieve)

� Strong: full collision resistance

� Weaker: target collision resistance

� Even weaker
� SPR (second pre-image resistance): like TCR but x chosen at

random (A gets random (r,x) needs to find y st H(r,x)=H(r,y))

� Applicable to a family indexed by r or just to a single function
(e.g., the compression function)

� Challenge: build a TCR family from SPR functions!
(e.g., if SHA-1 is SPR then SHA1+salt is TCR) 	 Constructions

later…

Changes to Security Standards

� Changes to signing process
� Choice of r (random, unpredictable)

� Replace H(m) with H(r,m) (API change)

� Include r under signature

� Transport r

� Note: required changes are independent from specific randomized
hashing scheme (except maybe size of r).

Î Can start planning changes even before deciding on specific
randomized mode H(r,•)

� Next we’ll examine effects on specific signature schemes

RSA

� PKCS v1.5 encoding (input to RSA-1 function):
� Now: (alg-id, pad, H(m))

� New: (alg-id, pad, r, H(r,m))

� Sufficient room under modulus to fit both r and H(r,m).
Basically: transport and signature of r for free!

� PSS encoding: change H(m) to H(r,m)
(r is already available and “recoverable”)

� In both cases cost is minimal except
� Cost of randomness generation (the “weak device” argument, but

would you trust it with cryptography, even non-repudiation? Cf. DSA)

� Change in processing order: need r before can hash

DSA

� Changes to DSA are even simpler than RSA

� DSA is already a randomized algorithm: sig=(R,S)

� Can re-use R to randomize H?? YES!

� Applying [FS] and [PS] to DSA one obtains that replacing H(m)
with H(R,m) is good for “provable security”

� Moreover, it is OK if H(R,m) is truncated! (isn’t NIST happy?)
(proof does not require full random oracle; birthday attacks not an issue)

� Randomness not an issue (but careful with unpredictability),
order of processing changed but truncation resolved

Randomized Hashing Schemes

� H any block-oriented hash, e.g. M-D (we use 512, 160 as examples)

� Our proposals (more proposals welcome – research topic)

� r of length 512 (if shorter, repeat it to 512 bit)

� Hr(x1, x2, …, xn)= H(x1⊕r, x2⊕r, …, xn⊕r) (note Hr subscript notation)

� Some encouraging analytical findings

� Close to the second preimage security of the comp function

� Inspiration: use a new r for each block (then TCR iff SPR)

� Variants: e.g. prepend r (say, |r|=160).

� Minimal requirement: no weakening relative to plain H
(if H is CR then Hr must be TCR!)

Randomized Hashing Schemes (cont.)

� Second pre-images in sha1 (compression function of SHA-1)

� Some Cryptanalysis Challenges

� Given random (c,m) find (c’,m’) s.t. sha1(c’,m’) = sha1(c,m)

� A (much) easier problem (e.g. birthday)

� Given random m, find c1, c2 and m’ such that

sha1(c1,x) = sha1(c2,x’) (is it known? how about MD5?)

� In between: m is random, c set as a function of m, find (c’,m’)

� If last problem is hard then our scheme is TCR

� Note: birthday-type attacks on M-D functions apply to TCR

� Can solve it (block seq number), but is it worth?

I1

Summary

� Randomized hashing as mode of operation for existing and future

hash functions (input is randomized, no change to hash function)

� Substantial security increase for digital signatures

� Off-line (i.e., signature-independent) collisions are useless, attacks are
inherently on-line (interaction with signer)

� Target-collision resistance (TCR) suffices.

In particular: no inherent birthday, can help truncation

� A well designed mode Î a huge increase in cryptanalyst effort

� Likely extension of useful life of hash functions, may prevent or
mitigate catastrophic failure, more planning time upon weaknesses, etc

� Need change in standards: encoding and processing of data prior to
signature (not for free but not too costly, main issue: JUST DO IT!)

� Practical sound schemes are feasible, our findings are encouraging

Slide 15

I1 I SHOULD SAY HERE THAT THIS DOES NO TMEAN WE ABANDON THE SEARCH FOR GOOD CR FUNCTIONS (TWO COMPLEMENTARY
EFFORTS)
IBM_USER, 9/30/2005

If not now, when?

And if not us, who?

We will change standards anyway with new
functions (so let’s do it right!) *

(* See Bellovin-Rescorla)

http://www.ee.technion.ac.il/~hugo/rhash.pdf

http://www.ee.technion.ac.il/~hugo/rhash.pdf

CFRG S. Halevi (IBM)
Internet-Draft H. Krawczyk (IBM)
Expires: November 12, 2005 12 May, 2005

Strengthening Digital Signatures via Randomized Hashing

draft-irtf-cfrg-rhash-00.txt

Status of this Memo

This document is an Internet-Draft and is in full conformance with

all provisions of Section 10 of RFC2026.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF), its areas, and its working groups. Note that other

groups may also distribute working documents as Internet-Drafts.

Internet-Drafts are draft documents valid for a maximum of six months

and may be updated, replaced, or obsoleted by other documents at any

time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

By submitting this Internet-Draft, each author represents that any

applicable patent or other IPR claims of which he or she is aware

have been or will be disclosed, and any of which he or she becomes

aware will be disclosed, in accordance with Section 6 of BCP 79.

The list of current Internet-Drafts can be accessed at http://

www.ietf.org/ietf/1id-abstracts.txt.

The list of Internet-Draft Shadow Directories can be accessed at

http://www.ietf.org/shadow.html.

This Internet-Draft will expire on November 12, 2005.

Copyright (C) The Internet Society (2005). All Rights Reserved.

Abstract

We propose to adopt randomized hashing as a mode of operation for

existing and future cryptographic hash functions. The idea is to

strengthen hash functions for use in the context of digital

signatures without requiring a change to the actual hashing and

signing algorithms or to their existing implementations.

We suggest that randomization can be achieved via the processing of

the input to the function, even if the hash function itself is not

randomized. Effective use of such mode of operation requires

changes to the standardization of the encoding and processing of

digital signatures (e.g., PKCS#1, FIPS186) but has no impact on

existing signature and hashing algorithms. We urge the standards

community to plan a transition towards these new mechanisms for

which we outline specific instantiations.

Halevi and Krawczyk [Page 1]

http://www.ietf.org/shadow.html
www.ietf.org/ietf/1id-abstracts.txt

D

Internet Draft draft-irtf-cfrg-rhash-00.txt 12 May, 2005

1 Introduction

Recent cryptanalytical advances in the area of collision-resistant

hash functions (CRHF), specifically the attacks against MD5 and

SHA-1, have not only shaken our confidence in the security of

specific constructions but, more fundamentally, have cast doubts on

our ability to design collision-resistant hash functions that will

withstand attacks over a long period of time. These attacks remind

us that cryptography is founded on heuristic constructions whose

security may be endangered unexpectedly. In particular, this

highlights the importance of following two fundamental cryptographic

design principles:

(i) design protocols and applications such that the underlying

cryptographic pieces (e.g., hash functions) are easy to replace when

need arises (in particular, avoid hard-wiring of any specific

construction into the application), and

(ii) design as general as possible mechanisms with as little as

possible requirements from the basic cryptographic building blocks.

The present proposal is intended to address these points, especially

the second one.

Although many existing applications that use hash functions do not

actually require full collision resistance, and although the current

attack on SHA-1 is not quite practical yet, it is clear that we

cannot dismiss the recent attacks as theoretical only. Indeed there

are important applications today that do rely on full collision

resistance, in particular those that use standard signature schemes

to provide non-repudiation or certification services. And with the

expected cryptanalytical improvements in the near future, ignoring

these new attacks would be irresponsible. Some of the options

contemplated in the applied cryptography world for responding to

the recent attacks on MD5 and SHA-1 are the following:

(1) Modify applications that rely on collision resistance such that

the particular use of CRHF in these applications will be less

vulnerable to collision attacks.

(2) Upgrade the systems using SHA-1 and MD5 to use stronger hash

functions such as the SHA2 family (256- and 512-bit versions).

The hope is that these functions will provide for more robust CRHFs.

Option (1) could be applied to different settings, but it is very

application specific. In particular, note that even if one could set

precise assumptions on the way specific applications are used today,

these assumptions are likely to change or become obsolete over time.

To illustrate this point, consider modifying applications that use

signatures so that the messages to be signed are structured in a way

that is unpredictable to the attacker. This approach relies heavily

on the understanding of the semantics and structure of messages used

in the application. Therefore, while it may be viable for specific

applications (such as choosing unpredictable serial numbers in

Halevi and Krawczyk [Page 2]

D

Internet Draft draft-irtf-cfrg-rhash-00.txt 12 May, 2005

certificates) it is insufficient as a general measure.

Option (2) is more robust but its cost and complexity are

significant: it requires a multitude of applications, protocols and

implementations to instrument the transition to new functions.

Hopefully, the current attacks will improve at a mild enough pace so

that a relatively orderly transition can be implemented. And even if

we manage such a gradual transition, we must contemplate the

possibility that by the time the transition is completed the new

adopted functions will appear as weak as SHA-1 appears to be now.

The approach that we propose here takes elements from the above two

options. We suggest that we must plan for a transition to more

secure mechanisms, that this has to be done in an orderly way

(i.e., not as an uncontrolled panicking reaction), and that rather

than patching individual applications we re-engineer general

mechanisms in a way that provides for more robust cryptography,

specifically more secure signature schemes. To accomplish the

latter we propose to re-define the way hash functions are used in

the context of digital signatures so as not to rely so heavily on

the full collision resistance of our hash functions. This is likely

to result in a significantly longer useful life for SHA-1 itself

and, even more importantly, will result in significantly weaker

requirements from any hash family to be adopted or designed in the

future.

While this solution is not for free (see below), we show that it can

be done without having to change the basic signature algorithms in

use (e.g., RSA, DSS), without even changing the existing hash

functions (e.g., SHA-1, SHA2), and without the need to understand

the semantics of particular applications or messages. What needs to

be changed is the interface to the signing and hash algorithms. The

main tool for achieving all of the above, in particular lowering the

requirements on the security of hash functions, is the use of

randomized hashing, a well-studied notion in the cryptographic

literature (but seldom used in practice). Since our proposal

requires no change to the hashing algorithms themselves it can be

seen as a proposal for a "mode of operation" for existing and future

hash functions.

We end this introduction by noting that randomized hashing has

applications beyond the context of digital signatures. On the other

hand, it is important to also realize that randomized hashing is NOT

a replacement for CRHF in ALL possible applications. For example,

randomized hashing may not be appropriate in applications where

commitment is required or implied, e.g., a bidder committing to her

bid in an auction. So while we do not advocate abandoning CRHF as a

useful cryptographic tool, the important message we wish to convey

is that having a randomized mode of operation for CRHF for use in

digital signature applications, such as those requiring

non-repudiation, provides a substantial security gain and

significantly raises the bar against existing and future

cryptanalytical attacks on the underlying hash functions.

Halevi and Krawczyk [Page 3]

D

Internet Draft draft-irtf-cfrg-rhash-00.txt 12 May, 2005

2. Randomized Hashing and Signature Schemes

The idea behind the use of randomized hashing is simple. Instead of

using a single deterministic hash function such as SHA-1 one uses a

keyed hash function (equivalently, a family of hash functions where

each function in the family is determined by a key or index).

For example, SHA-1 itself can be converted into a family of hash

functions indexed through a variable IV (we mention this as an

illustration, not necessarily as the best way to transform SHA-1

into an indexed hash family for our purposes here).

Let us denote by SIG a secure signing algorithm (such as RSA or DSS),

by H a family of hash functions, and by H_r the function from this

family indexed by the value r. Now, for signing a message m the

signer chooses a random value r and computes SIG(r,H_r(m)).

Here, the pair (r,H_r(m)) represents a (standard) encoding of the

concatenation of the values r and H_r(m). The signature on message

m now consists of the pair (r,SIG(r,H_r(m)). Before discussing

implementation issues (such as the choice of the family H, the index

r, and the encoding function) let's see why this method reduces the

reliance on collision resistance of the hash function.

Consider an attacker, Alice, against a honest signer Bob that signs

using the scheme from above. Alice provides a message m to be signed

by Bob and she gets back the pair (r,SIG(r,H_r(m)) from Bob, where r

is a value chosen at random (or pseudo-randomly) by Bob anew with

each signature. How can Alice attack this scheme (short of breaking

the signature algorithm, say RSA, itself)?

What Alice needs to do is to find a message m that Bob is willing to

sign and hope that when she receives the pair (r,H_r(m)), for

random r chosen by Bob, she will be able to find another message m'

for which H_r(m)=H_r(m') (with the same index r chosen and signed by

Bob). If she could do that then the signature string SIG(r,H_r(m))

would also be a valid signature for m'.

We remark that Alice could do a bit better by asking to sign many

messages m1, m2,..., getting back many pairs (r1, SIG(r1,H_r1(m1)),

(r2,SIG(r2, H_r2(m2)),..., and then finding another m' such that for

some i it holds that H_ri(mi)=H_ri(m'). But note that the number of

pairs is limited by the number of signatures that Bob is willing to

generate, and that Alice needs to engage in an on-line interaction

with Bob for every such pair. It is therefore likely that in most

applications the number of pairs available to Alice would be quite

small (say, not more than 2^30 or 2^40). Below we analyze only the

case of a single pair, while keeping in mind this additional factor

when dealing with concrete parameters.

Returning to the single pair condition, we see that Alice can

produce a forged signature if she can do one of the following:

Halevi and Krawczyk [Page 4]

D

Internet Draft draft-irtf-cfrg-rhash-00.txt 12 May, 2005

(i)	 Cryptanalyze the family H to the point that for a random pair

(r,v) she can find m' such that H_r(m')=v.

(ii)	 Achieve (i) when in addition to the pair (r,v) Alice also

knows another value m for which H_r(m)=v.

(iii) Achieve (ii) when the value m is chosen by Alice herself

BEFORE learning r.

In other words, the collision finding task for Alice is not against

a fixed, known in advance, function as it is the case today with the

use of a fixed hash function, but against a random function in the

hash family H whose index r is revealed to Alice only after she

committed to the message m. In particular, being able to find

collisions against a fixed member of the family is useless; Alice

needs to be able to do so for a reasonably large fraction of hash

functions in the family.

Before we continue we note that the resistance to each of the above

forms of attacks is called, respectively:

(i) one-wayness (OW)

(ii) second-preimage resistance (SPR)

(iii) target-collision resistant (TCR)

The precise difference between SPR and TCR is that in the former the

first message m is chosen at random while in TCR the attacker gets

to choose m (but before learning r). We also remark that TCR

functions were first defined by Naor and Yung [NY89] where they were

called universal one-way hash function (UOWHF); the term TCR that we

use here is from [BR97].

Obviously, these tasks are harder to perform than a regular

collision-finding attack against a single CRHF function H (i.e. the

finding of two messages m,m' such that H(m)=H(m')).

More specifically, one can point to two essential differences

between a regular collision attack and any one of the above tasks.

First, a regular collision attack can be performed in a complete

off-line manner (i.e. ahead of the time when a signature is to be

issued) while each of (i)-(iii) depends on the choice of r and

therefore needs to be completed only after r is determined and

communicated to the adversary. Second, while collisions against a

single hash function that outputs k bits can be found by brute force

in time 2^{k/2}, a brute force TCR attack will take 2^k time.

And even if we recall the additional factor of 2^n pairs that Alice

can achieve via on-line interaction with Bob, a brute force attack

would still take her 2^{k-n} time (in the case of SHA-1 k=160,

while n would be no more than 40 in most reasonable applications).

Of course, none of the above says that SHA-1 (or any other specific

hash function) is sure to resist TCR attacks (or even SPR attacks).

But it clearly indicates that if an application uses a hash function

in a way that can only be broken under a successful TCR attack, then

the application is much more likely to remain secure in face of

cryptanalytical improvements than one that relies on full collision

resistance. This is true whether the hash function in use is a

Halevi and Krawczyk	 [Page 5]

D

Internet Draft draft-irtf-cfrg-rhash-00.txt 12 May, 2005

partially broken CRHF such as SHA-1, a (hopefully) better

collision-resistant family such as SHA2, or any hash function to be

designed in the future.

While the above indicates general relations between the strengths

and vulnerabilities of different hashing tasks it does not tell us

how to instantiate a TCR function. We discuss this in the next

section. Later, in section 4, we explain how to integrate

randomized hashing into signatures (specifically, how to sign and

transport the index r).

3. A TCR Construction for Iterated Hash Functions

We propose a specific way to convert a single hash function H

(e.g SHA-1 or SHA2) into a TCR function family. The design

principles that we follow are:

(1) Do not change H: randomization is applied to the hash input

before the hash function is called.

(2) Minimize performance impact.

(3) Increase (heuristically) the likelihood of resistance of the

family to TCR attacks.

In 3.1 we present a basic construction (with some heuristic

rationale in Appendix A). In 3.2 we list some variants which take

into account some further trade-offs between performance and

plausible security. We stress that these methods, although

plausible, need to be scrutinized further before they can be

adopted.

3.1 A simple randomized hash construction

Let H be a hash function that processes the message to be hashed in

512-bit blocks. For example, if H is an integrated hash function

a-la-Merkle-Damgard then the underlying compression function has as

inputs an IV and a 512-bit data input. (We use 512 bits as the

typical block size but other values are possible.) Let XOR denote

the bit-wise exclusive-or operation.

Given a message m to be hashed, the signer (or "hasher") chooses a

512-bit random value r, and XORs each 512-bit block of m with r.

(If m is not an exact multiple of 512-bit blocks then the shorter

last block is XORed with an appropriately truncated r.)

In other words, we concatenate r to itself until we get a string r*

of the same length of m, and then compute m XOR r*.

We define H_r(m) to be H(m XOR r*).

Note: By our definition the result of (m XOR r*) is of the same

length as m; therefore, the length padding defined by Merkle-Damgard

functions such as SHA-1 is applied to (m XOR r*). In other words,

the length padding is not subject to the XOR with r*.

Halevi and Krawczyk [Page 6]

D

Internet Draft draft-irtf-cfrg-rhash-00.txt 12 May, 2005

In Appendix A we provide some rationale on the choice of this

particular way of converting iterated hash functions into TCR.

Variants of this method are presented next.

3.2 Some Randomized Hash Variants

A possible strengthening of our construction from Sec 3.1 can be

obtained if, in addition to XORing each block of input with the

value r, one also prepends r to the input to H, i.e., the input to H

consists of the block r concatenated with (m XOR r*). This provides

a randomizing effect to the initial IV of H (in the spirit of the

HMAC construction).

An even more conservative variant could interleave the block r

between any two blocks of the original message, thus providing an IV

randomization feature for each application of the compression

function. The obvious drawback is the added computation (double the

cost of the original hash function).

Another natural idea is to add a layer of security by XORing a

different random pad to each block of the message. Clearly, this

adds a non-trivial computational cost (one would need to generate a

pad of the length of the message via some PRG). A midway strategy

could be to start with a pad of the length of a single block and

slightly (and inexpensively) change this pad for each new block of

input, for example by applying circular byte rotation to the

previous block pad. A similar idea would be to derive the pad from a

byte-oriented LFSR whose initial value is the key r.

Finally, if the generation of a 512-bit random (or pseudo-random)

quantity r for each signature is regarded as expensive (possibly

true for low-power devices, smart cards, etc.) then it is possible

to define r as the concatenation of a shorter pad. For example, in

order to define r one could choose a random 128-bit string and

concatenate it four times to create r. Given the heuristic nature of

our constructions this may be considered a reasonable trade-off.

4. TCR Hashing and Signature Encoding

Recall how randomized hashing is to be used in the context of digital

signatures. For signing a message m, the signer chooses at random a

value r and computes SIG(r,H_r(m)) where SIG represents a signing

algorithm (such as RSA or DSS). More precisely, the signer will use

a well-defined standard encoding of the concatenation of the values

r and H_r(m) and then apply algorithm SIG to this encoding.

The signature on message m consists of the pair (r,SIG(r,H_r(m)).

The above requires changing current signature schemes in four ways:

(1) Choosing a random (unpredictable) index r for each signature,

(2) Replacing the current hashing of a message m from H(m) to H_r(m),

(3) Signing r, and

(4) Transporting r as part of the signature.

Halevi and Krawczyk [Page 7]

D

Internet Draft draft-irtf-cfrg-rhash-00.txt 12 May, 2005

Here we discuss the required changes to existing message encodings

for implementing the last 3 points. We focus on the two main

algorithms in use: RSA and DSS. We note that while changing existing

encoding standards may be one of the possible obstacles to adopting

randomized hashing, this change is instrumental in allowing for more

secure and robust signature schemes not only in the short term but

in the farther future as well. We suggest that this change to the

standards be specified and adopted as soon as possible. As we see

below, these changes can be specified in a way that is independent

of the specific randomized hash function to be used.

We start with RSA. The most common encoding in use with RSA

signatures is PKCS#1 v1.5. It specifies that given a message m to be

signed, the input to the RSA signature function is a string composed

of the hash value H(m) (computed on the message m using a

deterministic hash function such as SHA-1) which is padded to the

length of the RSA modulus with a standard deterministic padding

(this padding contains information to identify the hash algorithm in

use). This encoding can be extended to deal with randomized hashing

as follows. First, the value H(m) is replaced with H_r(m) for r

chosen by the signer. Second, part of the deterministic padding

(which is currently filled with repeated 0xff octets) is replaced

with the value of r. In this way, r is signed and, at the same time,

it is made available to the verifier of the signature without any

increase in the size of signatures (r is recovered by the verifier

by inverting the signature operation).

Another RSA encoding, called EMSA-PSS, is standardized by PKCS#1 v2.1

and is based on the randomized signature scheme of Bellare and

Rogaway [BR96]. Unfortunately, the standard defines an encoding in

which the first step is to apply a deterministic hash function (say,

SHA-1) to the message m. Only then the randomized encoding scheme of

PSS is applied. As a result, the signature scheme that uses EMSA-PSS

is broken if the hash function is not fully collision resistant.

In order to use this scheme with randomized hashing, one would

replace the current H(m) value in the encoding with H_r(m) and the

value r would be encoded in a way that the verifier of a signature

can recover it before applying the randomized hashing. The original

PSS scheme from [BR96] can be used, or adapted, to achieve such an

encoding.

Two points to remark regarding the applicability of PSS here are:

first, the original PSS scheme is patented -- see US Patent 6266771

(which may or may not be an obstacle for adoption). Second, the

main analytical benefit of PSS is its provability based on the so

called "random oracle model". While this provides a good heuristic

backing to the construction, one has to take into account that here

we are dealing explicitly with lowering the security requirements

from the hash function, so it is questionable how random-like these

functions may be required to be. Formal proofs aside, the PSS scheme

offers good heuristic advantages over the PKCS#1 v1.5 in that it

better randomizes the input to the RSA signing algorithm.

Halevi and Krawczyk [Page 8]

D

Internet Draft draft-irtf-cfrg-rhash-00.txt 12 May, 2005

Regarding the DSS (or DSA) signature algorithm, the first thing to

note is that this is already a randomized signature scheme.

A DSS signature is composed of a pair of elements (R,S) where R is a

random element in the DSS group and S is a value computed as a

function of the private key of the signer, the discrete logarithm of

R (denoted k), and the value H(m) (where m is the message to be

signed and H a deterministic hash function). In order to convert

this scheme to use randomized hashing one can use R itself as the

index to the hash family, i.e., r=R (or to derive r from R in some

deterministic way). Then one would replace H(m) with H_r(m).

In this way the size of signatures is unchanged and no further

processing is required to generate r. Also note that while the

signature component R is not strictly "signed", the attacker cannot

control or choose this value (indeed, an attack that finds values R

and S for which (R,S) are a valid signature of H_R(m), for a value

H_R(m) not signed by the legitimate signer, would contradict the

basic security of DSS). One may argue that the use of H_r(m) instead

of H(m) can be viewed as an "implementation" of the random-oracle

version of DSS as analyzed by Pointcheval and Stern [PS96]; the same

caveats expressed in the case of PSS in relation to the use of the

random oracle model apply here as well.

One consideration in regards to using the component R of DSS

signatures as the index to the randomized hash family is that,

in order to ensure the TCR property, this index needs to be unknown

(unpredictable) to the attacker when the latter chooses the message

m to be signed. If the value of R is computed off-line by the signer

(which is possible in the case of DSS) and is leaked before the

attacker choses m then the benefit of randomized hashing is lost.

Hence, R=g^k should be kept secret together with k until the

signature is issued. This is not a fundamental limitation to the

practice of DSS since the DSS scheme already requires (in an

essential way) that k be kept secret, even if computed off-line,

since its discovery by the attacker is equivalent to finding the

secret private key of the signer!

5. Security Considerations

This document presents mechanisms that, if adopted by standard

bodies such as the IETF, will result in significant improvements to

our current and future digital signature systems. While this

document focuses on randomized modes of operation of hash functions

that provide randomized hashing without changing existing

algorithms, it is advisable that future hash families will be

designed with randomized hashing and TCR requirements in mind.

For example, new schemes that follow the Merkle-Damgard approach may

consider allowing for the masking of intermediate values with

optional user provided inputs (that is, such a mask could be set to

a default value, say 0, for deterministic uses of the hash function,

and to user-provided values when randomization is desired). The

important point is that implementations of the function will be

ready to accept such masks without having to change the function.

Halevi and Krawczyk [Page 9]

D

Internet Draft draft-irtf-cfrg-rhash-00.txt 12 May, 2005

We note that all references to "randomness" in this document should

be interpreted as "pseudo-randomness" provided one uses a

cryptographically strong pseudorandom generator (or pseudo-random

function) initialized with a strong unpredictable seed.

We also mention that using TCR hashing may mean that the legitimate

signer can find two messages with the same signature (since it is

the legitimate signer that is choosing the randomness r). One should

note, however, that this has no bearing on non-repudiation (as the

signer is still bound to both messages). Moreover, as shown in

[SPMS02], even if one uses CRHF some secure signature schemes (such

as ECDSA) may allow a signer to find two different messages whose

signature string is the same. Still, as mentioned at the end of the

Introduction, there may be OTHER applications of CRHF that cannot be

replaced with a TCR family.

Finally, the general approaches to randomized hashing and digital

signatures discussed here do not depend on the specifics of the

concrete constructions that we proposed here. Other forms of

randomized hashing and TCR schemes may be superior to the ones

proposed here and further proposals are encouraged.

ACKNOWLEDGMENT. We thank Ran Canetti for useful discussions and for

badgering us to write this document.

REFERENCES

[BR96] M. Bellare and P. Rogaway, "The Exact Security of Digital
Signatures -- How to Sign with RSA and Rabin", Eurocrypt'96,
LNCS 1070, 1996.

[BR97] M. Bellare and P. Rogaway, "Collision-Resistant Hashing:
Towards Making UOWHFs Practical", Crypto'97, LNCS 1294, 1997

[HPL04] D. Hong, B. Preneel, and S. Lee, "Higher Order Universal

One-Way Hash Functions", Asiacrypt'04, LNCS 3329, 2004.

[NY89]	 M. Naor and M. Yung, "Universal One-Way Hash Functions and

Their Cryptographic Applications", STOC'89, 1989.

[PS96]	 D. Pointcheval and J. Stern, "Security Arguments for Digital

Signatures and Blind Signatures", J.Cryptology, 13:361-396,

2000.

[S00]	 V. Shoup, "A Composite Theorem for Universal One-Way Hash

Functions", Eurocrypt'00, LNCS 1807, 2000.

[SPMS02] Jacques Stern, David Pointcheval, John Malone-Lee, and

Nigel P. Smart, "Flaws in Applying Proof Methodologies to

Signature Schemes", CRYPTO '2002, LNCS 2442, 2002.

Halevi and Krawczyk	 [Page 10]

D

Internet Draft draft-irtf-cfrg-rhash-00.txt 12 May, 2005

Appendix A - Rationale for the Proposed TCR Construction(s)

Our TCR proposals follow the following principles:

(1) Allow the use of existing functions such as SHA-1 and SHA2

(in particular, iterated hash functions a la Merkle-Damgard).

(2) Do not change the hash function but only the interface to it

(e.g., in our proposal randomization is achieved via the input

to the function and therefore implemented hash functions, in

either software or hardware, can be used without modification).

(3) Use as weak as possible properties of the compression function

underlying the hash construction.

Our construction is general enough to be used with any hash function

that processes the incoming data as blocks. Yet, we focus in our

discussion here on Merkle-Damgard (M-D) type of hash functions since

these are the most common schemes in practice.

While (1) and (2) are obvious properties of our suggested

construction we elaborate here on point (3). Ideally, we would have

liked to provide a mathematical theorem proving the security of our

construction using only relatively weak requirements from the

underlying compression function. While such theorems exist for some

specific constructions (e.g., [BR97,S00]), they all include

operations that violate the principle of using the existing hash

functions without any change (e.g., masking the intermediate value of

the compression function with each call to this function). We thus

settle for a heuristic rationale that should be scrutinized in light

of the evolving ideas in the area of hash function cryptanalysis.

Let H be a M-D function (the reader can think of SHA-1 for

concreteness) and h be the corresponding compression function.

That is, h acts on two inputs, a and b, where a represents an

intermediate value (IV) and b is a 512-bit block, and the output

of h is of the length of the IV (IV lengths vary with different

constructions, e.g., 160, 256, etc.). The function H itself is

defined for arbitrary inputs by iterating h over the successive

blocks of the input with each iteration using the IV computed by the

previous application of h (the first IV is set to some constant

defined by the specification of H).

Consider now a family of compression functions derived from h as

follows: for each 512-bit index r, define h_r(a,b)=h(a,b XOR r).

It is easy to see that iterating h_r as in a M-D construction one

obtains the function H_r that we defined in 3.1.

Merkle and Damgard showed that if a compression function h is

collision resistant with respect to fixed-length inputs, then the

function H obtained by iterating h is collision resistant on

arbitrary inputs. We would like to claim the same with respect to

the property of target-collision resistance (TCR), namely, that if

h is TCR so is H. This, however, is not necessarily the case.

Halevi and Krawczyk [Page 11]

D

Internet Draft draft-irtf-cfrg-rhash-00.txt 12 May, 2005

Yet, an "approximation" to this result was recently shown by Hong,

Preneel and Lee [HPL04]. They show that if the construction h_r has

a property called "n-order TCR" then the iterated family H_r is TCR

for messages of up to n blocks. The property of n-order TCR is

defined by the following game between Alice (the Attacker) and a

"hasher" Bob.

(1) Bob chooses an index r and keeps it secret.

(2) For i=1,...,n: Alice chooses a pair (a_i,b_i) and receives from

Bob the value h_r(a_i,b_i).

(3) Alice chooses a pair (a,b).

(4) Bob reveals r to Alice

Alice wins the game if she can find (a',b') different from (a,b)

such that h_r(a,b)=h_r(a',b').

In other words, Alice needs to carry a TCR attack but she is

allowed to query h_r on n inputs of her choice before committing to

the first colliding message and before learning the value of r.

Intuitively, the difference with a regular TCR attack is that Alice

has now an advantage in choosing (a,b) since she can first learn

something about r from the first n queries.

A family h is called n-order TCR if any efficient attacker (Alice)

can only find (a',b') as above with insignificant probability.

Before we continue it is important to clarify that the above game

defining n-order TCR functions is not a game that reflects an actual

interaction between an attacker and a victim in real life but it is

only a virtual game used to define the security of a function.

How much does the extra phase (2) in the game from above help Alice

to find collisions? This of course depends on the specific function,

and to some extent also on the value of n. Note that if one lets n

to be huge (say 2^80 in the case of SHA-1) then Alice can use this

"learning phase" to find colliding pair (a_i,b_i) and (a_j,b_j) that

she can then use as (a,b) and (a',b') respectively. But recall that

n represents the length in blocks of the messages to be hashed with

the iterated construction, so it will typically be quite small.

(I.e., n=4 or so in the case of certificates, and n < 2^30 even for

huge documents.) Hence one may hope that the learning phase will

not be sufficiently useful for Alice to choose the colliding pair.

In other words, while in order to break a collision-resistant hash

function an attacker can spend a HUGE amount of OFF-LINE computation

for finding collisions, for breaking an n-order TCR function the

attacker is limited to only MODERATE ON-LINE interaction with the

hasher after which it needs to commit to a first colliding value x.

Only then the attacker receives the actual value r for which it

needs to find x' such that h_r(x)=h_r(x').

We also comment that the common view of the compression function

h(a,b) as a block cipher with key b and input a gives rise to another

heuristic argument supporting the view of h_r as n-order TCR.

Viewing h(a,b) as a block cipher, phase (2) of the attack from above

Halevi and Krawczyk [Page 12]

D

Internet Draft draft-irtf-cfrg-rhash-00.txt 12 May, 2005

on h_r is just a chosen-plaintext related-key attack on the block

cipher h. If h resists such attacks with a moderate number of

queries, then phase (2) does not help the attacker learn much about

r. Hence, if h is both TCR and a sufficiently robust block cipher,

then it is also an n-order TCR.

As said, [HPL04] show that if a compression family h={h_r} is

n-order TCR then the family H={H_r} is TCR on n block inputs

(here H_r is a Merkle-Damgard iteration of h_r). Applying this

result to our case, we obtain that if the construction

h_r(a,b) = h(a, b XOR r) is an n-order TCR then the family H_r

described in 3.1 is TCR for n-block inputs.

In other words, any TCR attack against the family H_r that uses

n-block messages, translates into an n-order TCR attack against the

compression function family h_r with only n initial oracle queries.

This provides some foundation to the belief that even the existing

hash functions are significantly more secure in the sense of TCR

than for collision resistance when used as specified here.

In addition, one should examine the current attacks and see to what

extent they apply to the defined functions. In particular, we note

that the XORing of input blocks with a random block, while it

preserves differentials, it also destroys the ability of the

attacker to set some of the bits of the colliding messages to values

of its choice. It seems that an attack that takes advantage of

differentials in this setting would need to rely on universal

differentials that depend only on the hash function and for which

most pairs of messages with that difference would collide.

Finally, we point out to another "motivating" element in our design.

Remember that SPR (second pre-image resistant) functions are a weaker

(i.e., easier to accomplish) version of TCR functions where the

attacker cannot choose the first colliding value but rather this

value is determined at random. A straightforward way to transform

an SPR compression function h into a TCR family [S00] is to choose a

pair r=(s1,s2), where s1,s2 are random values of the length of the

IV and block size, respectively, and define

h_r(a,b)=h(a XOR s1, b XOR s2). Unfortunately, iterating such an

h_r is impractical as it requires modifying H such that the IV can

be XORed with S1 in each iteration of h. Therefore, instead of

using this full transformation of SPR into TCR we carry the

randomization only in the second input of h, namely, in our

construction in 3.1 we use h_r(a,b)=h(a,b XOR r) (when viewing h as

a block cipher, as mentioned before, the XORing with r provides for

randomization of the cipher key).

Halevi and Krawczyk [Page 13]

D

Internet Draft draft-irtf-cfrg-rhash-00.txt 12 May, 2005

Authors' Addresses

Shai Halevi

shaih@alum.mit.edu

Hugo Krawczyk

hugo@ee.technion.ac.il

IBM T.J. Watson Research Center

19 Skyline Drive

Hawthorne, NY 10532

USA

Full Copyright Statement

Copyright (C) The Internet Society (2005).

This document is subject to the rights, licenses and restrictions

contained in BCP 78, and except as set forth therein, the authors

retain all their rights.

This document and the information contained herein are provided on an

"AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS OR

IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY AND THE INTERNET

ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED,

INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE

INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED

WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Halevi and Krawczyk [Page 14]

mailto:hugo@ee.technion.ac.il
mailto:shaih@alum.mit.edu

	Krawczyk_PPT.pdf
	Strengthening Digital Signatures via Randomized Hashing
	Background: Digital Signatures At Risk!
	Our Proposal: Executive Summary
	What this proposal is NOT
	Randomized Hashing and Signatures
	Resultant Hashing Game
	Note: more precisely
	Can Signer Cheat?
	Comparative Requirements (the stronger the harder to achieve)
	Changes to Security Standards
	RSA
	DSA
	Randomized Hashing Schemes
	Randomized Hashing Schemes (cont.)
	Summary
	http://www.ee.technion.ac.il/~hugo/rhash.pdf

