
Strengthening Digital Signatures 

via Randomized Hashing
 

Shai Halevi and Hugo Krawczyk
 

IBM Research
 

http://www.ee.technion.ac.il/~hugo/rhash.pdf 

http://www.ee.technion.ac.il/~hugo/rhash.pdf


Background: Digital Signatures At Risk!
 
� Post-Wang trauma 

� SHA-1 much weaker than thought 

� Lost confidence in SHA-1 but also in our ability to design 
secure collision resistant hashing (how much cryptanalysis ahead?) 

� Non-repudiable* digital signatures depend essentially on 
collision resistance (*most other uses of signatures do not require CR) 

� Digital signatures cannot “afford” such uncertainty 
(too central to the “electronic society”) 

� Is reliance on collision resistance evitable? Can we build 
secure digital signatures on weaker assumptions? 

� Yes in theory, how about practice? 



Our Proposal: Executive Summary
 
� A randomized mode of operation for hash functions 

� Use any hash function as is (existing and future, mainly M-D) 

� Add simple input randomization 

� Combine with digital signatures 

� Effect: increased security (cryptanalysts will have to work 
much harder to break the resultant signature schemes) 

� Off-line collisions useless, attack requires interaction with signer! 

� Even WEAK CR hash functions may be saved by this mode  

(remember HMAC?)
 

� What’s needed: change to signature standards              
� salt and encoding (no change to hash functions or signing algorithms) 



 

What this proposal is NOT
 

� NOT a new hash function 

� NOT a call to stop searching for stronger hash functions 

� NOT a magic bullet (but an effective vaccine) 

� NOT required for all uses of digital signatures (eg. ephemeral authent’n) 

� NOT a replacement for all applications of CR hashing  (eg. deterministic 
hashing, compare independ’ly computed hashes, bit commitment, counter-sigs) 

� NOT a new cryptographic notion (but a new mode of operation) 

BUT WHAT AN IMPROVEMENT TO OUR SIGNATURE SECURITY!
 



 

Randomized Hashing and Signatures 
� TODAY: To sign a message x (e.g. via RSA) 

� Set h=H(x), s = RSA−1( encode(h) ), return s as the sig on x 

� Break: either compute RSA−1 or find y≠x s.t. H(x)=H(y) 

Randomized Setting: 

� Use H(r,x) instead of H(x) (r is a random “salt value”, examples later) 

� To sign a message x: 

�

� Signer chooses a new fresh random salt r, set h = H(r,x) 

� Computes s = RSA−1(encode(h||r)) (r is signed!) 

� The signature is the pair (r,s) 

Break: either compute RSA−1 or find y such that H(r,x)=H(r,y) 

r is chosen by 
SIGNER! 

(not by forger) 



Resultant Hashing Game
 

� Attacker chooses x
 

� Digital signatures with randomized hashing are secure as long as 
(algorithm is secure and) attacker cannot win in the following game: 

� r is chosen at random and given to attacker
 

� Attacker tries to find y≠x s.t. H(r,x)=H(r,y)
 

� This hashing game much harder than collision resistance
 

� Pre-known collisions are helpless (off-line computation useless)
 

� Can attack a pair (r,x) only after seeing r and having committed to x 
before seeing r 

� x must be “good” for MANY r’s
 

� TCR: target-collision resistant (or UOWHF) [NY’89,BR97]
 

� “target collision”: no birthday attack (in the ideal case 2160 vs 280 for CR)
 

� Truncation!
 



Note: more precisely
 

� To attack the signatures via finding collisions in H, an 
attacker needs to: 

� Obtain signatures (ri,si) on messages xi 

� For some i, find some y≠xi s.t. Hri(xi)=Hri(y). 



 

Can Signer Cheat?
 

� Signer can find collisions (at least if underlying H not CR) 

� But this is no contradiction to non-repudiation 
� As long as ONLY the signer can find collisions all its signatures 

are valid (even if he shows two msgs with same signature) 

� Also: no contradiction to Goldwasser-Micali-Rivest definition 

� Example: ECDSA can produce same signature for two different 
messages even if used with collision resistant H 

� Some signature applications may break with randomized 
hashing (probably “broken” before -- e.g W3 counter-signature) 

� What if attacker controls r? OK if H is CR (we did not make it worse) 
On the same token: what if it controls the input to the signature algrthm?! 



 

One-Way: Given z in range (say {0,1}160) find x st H(x)=z

Comparative Requirements 

(the stronger the harder to achieve)
 

� Strong: full collision resistance 

� Weaker: target collision resistance 

� Even weaker 
� SPR (second pre-image resistance): like TCR but x chosen at 

random (A gets random (r,x) needs to find y st H(r,x)=H(r,y)) 

� Applicable to a family indexed by r or just to a single function 
(e.g., the compression function) 

� Challenge: build a TCR family from SPR functions! 
(e.g., if SHA-1 is SPR then SHA1+salt is TCR) 	 Constructions 

later… 



 

Changes to Security Standards
 

� Changes to signing process 
� Choice of r (random, unpredictable) 

� Replace H(m) with H(r,m) (API change) 

� Include r under signature 

� Transport r 

� Note: required changes are independent from specific randomized 
hashing scheme (except maybe size of r). 

Î Can start planning changes even before deciding on specific 
randomized mode H(r,•) 

� Next we’ll examine effects on specific signature schemes
 



                        

RSA 


� PKCS v1.5 encoding (input to RSA-1 function): 
� Now: (alg-id, pad, H(m)) 

� New: (alg-id, pad, r, H(r,m)) 

� Sufficient room under modulus to fit both r and H(r,m). 
Basically: transport and signature of r for free! 

� PSS encoding: change H(m) to H(r,m) 
(r is already available and “recoverable”) 

� In both cases cost is minimal except 
� Cost of randomness generation (the “weak device” argument, but 

would you trust it with cryptography, even non-repudiation? Cf. DSA) 

� Change in processing order: need r before can hash 



 

DSA 


� Changes to DSA are even simpler than RSA 

� DSA is already a randomized algorithm: sig=(R,S) 

� Can re-use R to randomize H?? YES! 

� Applying [FS] and [PS] to DSA one obtains that replacing H(m) 
with H(R,m) is good for “provable security” 

� Moreover, it is OK if H(R,m) is truncated! (isn’t NIST happy?) 
(proof does not require full random oracle; birthday attacks not an issue) 

� Randomness not an issue (but careful with unpredictability), 
order of processing changed but truncation resolved 



Randomized Hashing Schemes
 

� H any block-oriented hash, e.g. M-D (we use 512, 160 as examples)
 

� Our proposals (more proposals welcome – research topic)
 

� r of length 512 (if shorter, repeat it to 512 bit)
 

� Hr(x1, x2, …, xn)= H(x1⊕r, x2⊕r, …, xn⊕r) (note Hr subscript notation) 

� Some encouraging analytical findings 


� Close to the second preimage security of the comp function
 

� Inspiration: use a new r for each block (then TCR iff SPR) 


� Variants: e.g. prepend r (say, |r|=160). 


� Minimal requirement: no weakening relative to plain H                 
(if H is CR then Hr must be TCR!) 



  

Randomized Hashing Schemes (cont.)
 

� Second pre-images in sha1 (compression function of SHA-1)
 

� Some Cryptanalysis Challenges
 

� Given random (c,m) find (c’,m’) s.t. sha1(c’,m’) = sha1(c,m)
 

� A (much) easier problem (e.g. birthday)
 

� Given random m, find c1, c2 and m’ such that               

sha1(c1,x) = sha1(c2,x’) (is it known? how about MD5?)
 

� In between: m is random, c set as a function of m, find (c’,m’)
 

� If last problem is hard then our scheme is TCR 


� Note: birthday-type attacks on M-D functions apply to TCR
 

� Can solve it (block seq number), but is it worth?
 



                         

I1 

Summary
 
� Randomized hashing as mode of operation for existing and future 

hash functions (input is randomized, no change to hash function) 

� Substantial security increase for digital signatures 

� Off-line (i.e., signature-independent) collisions are useless, attacks are 
inherently on-line (interaction with signer) 

� Target-collision resistance (TCR) suffices. 

In particular: no inherent birthday, can help truncation
 

� A well designed mode Î a huge increase in cryptanalyst effort 

� Likely extension of useful life of hash functions, may prevent or 
mitigate catastrophic failure, more planning time upon weaknesses, etc 

� Need change in standards: encoding and processing of data prior to 
signature (not for free but not too costly, main issue: JUST DO IT!) 

� Practical sound schemes are feasible, our findings are encouraging 



Slide 15 

I1 I SHOULD SAY HERE THAT THIS DOES NO TMEAN WE ABANDON THE SEARCH FOR GOOD CR FUNCTIONS (TWO COMPLEMENTARY 
EFFORTS) 
IBM_USER, 9/30/2005 



If not now, when?
 

And if not us, who?
 

We will change standards anyway with new 
functions (so let’s do it right!) * 

(* See Bellovin-Rescorla) 



http://www.ee.technion.ac.il/~hugo/rhash.pdf
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Abstract
 

We propose to adopt randomized hashing as a mode of operation for
 
existing and future cryptographic hash functions. The idea is to
 
strengthen hash functions for use in the context of digital
 

signatures without requiring a change to the actual hashing and
 
signing algorithms or to their existing implementations.
 
We suggest that randomization can be achieved via the processing of
 
the input to the function, even if the hash function itself is not
 

randomized. Effective use of such mode of operation requires
 
changes to the standardization of the encoding and processing of
 
digital signatures (e.g., PKCS#1, FIPS186) but has no impact on
 
existing signature and hashing algorithms. We urge the standards
 

community to plan a transition towards these new mechanisms for
 
which we outline specific instantiations.
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1 Introduction
 

Recent cryptanalytical advances in the area of collision-resistant
 

hash functions (CRHF), specifically the attacks against MD5 and
 
SHA-1, have not only shaken our confidence in the security of
 
specific constructions but, more fundamentally, have cast doubts on
 
our ability to design collision-resistant hash functions that will
 

withstand attacks over a long period of time. These attacks remind
 
us that cryptography is founded on heuristic constructions whose
 
security may be endangered unexpectedly. In particular, this
 
highlights the importance of following two fundamental cryptographic
 

design principles:
 

(i) design protocols and applications such that the underlying
 
cryptographic pieces (e.g., hash functions) are easy to replace when
 
need arises (in particular, avoid hard-wiring of any specific
 
construction into the application), and
 

(ii) design as general as possible mechanisms with as little as
 
possible requirements from the basic cryptographic building blocks.
 

The present proposal is intended to address these points, especially
 
the second one.
 

Although many existing applications that use hash functions do not
 

actually require full collision resistance, and although the current
 
attack on SHA-1 is not quite practical yet, it is clear that we
 
cannot dismiss the recent attacks as theoretical only. Indeed there
 
are important applications today that do rely on full collision
 

resistance, in particular those that use standard signature schemes
 
to provide non-repudiation or certification services. And with the
 
expected cryptanalytical improvements in the near future, ignoring
 
these new attacks would be irresponsible. Some of the options
 

contemplated in the applied cryptography world for responding to
 
the recent attacks on MD5 and SHA-1 are the following:
 

(1) Modify applications that rely on collision resistance such that
 
the particular use of CRHF in these applications will be less
 
vulnerable to collision attacks.
 

(2) Upgrade the systems using SHA-1 and MD5 to use stronger hash
 

functions such as the SHA2 family (256- and 512-bit versions).
 
The hope is that these functions will provide for more robust CRHFs.
 

Option (1) could be applied to different settings, but it is very
 
application specific. In particular, note that even if one could set
 

precise assumptions on the way specific applications are used today,
 
these assumptions are likely to change or become obsolete over time.
 
To illustrate this point, consider modifying applications that use
 
signatures so that the messages to be signed are structured in a way
 

that is unpredictable to the attacker. This approach relies heavily
 
on the understanding of the semantics and structure of messages used
 
in the application. Therefore, while it may be viable for specific
 
applications (such as choosing unpredictable serial numbers in
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certificates) it is insufficient as a general measure.
 

Option (2) is more robust but its cost and complexity are
 

significant: it requires a multitude of applications, protocols and
 
implementations to instrument the transition to new functions.
 
Hopefully, the current attacks will improve at a mild enough pace so
 
that a relatively orderly transition can be implemented. And even if
 

we manage such a gradual transition, we must contemplate the
 
possibility that by the time the transition is completed the new
 
adopted functions will appear as weak as SHA-1 appears to be now.
 

The approach that we propose here takes elements from the above two
 
options. We suggest that we must plan for a transition to more
 

secure mechanisms, that this has to be done in an orderly way
 
(i.e., not as an uncontrolled panicking reaction), and that rather
 
than patching individual applications we re-engineer general
 
mechanisms in a way that provides for more robust cryptography,
 

specifically more secure signature schemes. To accomplish the
 
latter we propose to re-define the way hash functions are used in
 
the context of digital signatures so as not to rely so heavily on
 
the full collision resistance of our hash functions. This is likely
 

to result in a significantly longer useful life for SHA-1 itself
 
and, even more importantly, will result in significantly weaker
 
requirements from any hash family to be adopted or designed in the
 
future.
 

While this solution is not for free (see below), we show that it can
 

be done without having to change the basic signature algorithms in
 
use (e.g., RSA, DSS), without even changing the existing hash
 
functions (e.g., SHA-1, SHA2), and without the need to understand
 
the semantics of particular applications or messages. What needs to
 

be changed is the interface to the signing and hash algorithms. The
 
main tool for achieving all of the above, in particular lowering the
 
requirements on the security of hash functions, is the use of
 
randomized hashing, a well-studied notion in the cryptographic
 

literature (but seldom used in practice). Since our proposal
 
requires no change to the hashing algorithms themselves it can be
 
seen as a proposal for a "mode of operation" for existing and future
 
hash functions.
 

We end this introduction by noting that randomized hashing has
 
applications beyond the context of digital signatures. On the other
 
hand, it is important to also realize that randomized hashing is NOT
 
a replacement for CRHF in ALL possible applications. For example,
 

randomized hashing may not be appropriate in applications where
 
commitment is required or implied, e.g., a bidder committing to her
 
bid in an auction. So while we do not advocate abandoning CRHF as a
 
useful cryptographic tool, the important message we wish to convey
 

is that having a randomized mode of operation for CRHF for use in
 
digital signature applications, such as those requiring
 
non-repudiation, provides a substantial security gain and
 
significantly raises the bar against existing and future
 

cryptanalytical attacks on the underlying hash functions.
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2. Randomized Hashing and Signature Schemes
 

The idea behind the use of randomized hashing is simple. Instead of
 
using a single deterministic hash function such as SHA-1 one uses a
 

keyed hash function (equivalently, a family of hash functions where
 
each function in the family is determined by a key or index).
 
For example, SHA-1 itself can be converted into a family of hash
 
functions indexed through a variable IV (we mention this as an
 

illustration, not necessarily as the best way to transform SHA-1
 
into an indexed hash family for our purposes here).
 

Let us denote by SIG a secure signing algorithm (such as RSA or DSS),
 
by H a family of hash functions, and by H_r the function from this
 
family indexed by the value r. Now, for signing a message m the
 

signer chooses a random value r and computes SIG(r,H_r(m)).
 
Here, the pair (r,H_r(m)) represents a (standard) encoding of the
 
concatenation of the values r and H_r(m). The signature on message
 
m now consists of the pair (r,SIG(r,H_r(m)). Before discussing
 

implementation issues (such as the choice of the family H, the index
 
r, and the encoding function) let's see why this method reduces the
 
reliance on collision resistance of the hash function.
 

Consider an attacker, Alice, against a honest signer Bob that signs
 

using the scheme from above. Alice provides a message m to be signed
 
by Bob and she gets back the pair (r,SIG(r,H_r(m)) from Bob, where r
 
is a value chosen at random (or pseudo-randomly) by Bob anew with
 
each signature. How can Alice attack this scheme (short of breaking
 

the signature algorithm, say RSA, itself)?
 

What Alice needs to do is to find a message m that Bob is willing to
 
sign and hope that when she receives the pair (r,H_r(m)), for
 
random r chosen by Bob, she will be able to find another message m'
 
for which H_r(m)=H_r(m') (with the same index r chosen and signed by
 

Bob). If she could do that then the signature string SIG(r,H_r(m))
 
would also be a valid signature for m'.
 

We remark that Alice could do a bit better by asking to sign many
 
messages m1, m2,..., getting back many pairs (r1, SIG(r1,H_r1(m1)),
 
(r2,SIG(r2, H_r2(m2)),..., and then finding another m' such that for
 

some i it holds that H_ri(mi)=H_ri(m'). But note that the number of
 
pairs is limited by the number of signatures that Bob is willing to
 
generate, and that Alice needs to engage in an on-line interaction
 
with Bob for every such pair. It is therefore likely that in most
 

applications the number of pairs available to Alice would be quite
 
small (say, not more than 2^30 or 2^40). Below we analyze only the
 
case of a single pair, while keeping in mind this additional factor
 
when dealing with concrete parameters.
 

Returning to the single pair condition, we see that Alice can
 
produce a forged signature if she can do one of the following:
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(i)	 Cryptanalyze the family H to the point that for a random pair
 
(r,v) she can find m' such that H_r(m')=v.
 

(ii)	 Achieve (i) when in addition to the pair (r,v) Alice also
 
knows another value m for which H_r(m)=v.
 

(iii) Achieve (ii) when the value m is chosen by Alice herself
 
BEFORE learning r.
 

In other words, the collision finding task for Alice is not against
 
a fixed, known in advance, function as it is the case today with the
 
use of a fixed hash function, but against a random function in the
 
hash family H whose index r is revealed to Alice only after she
 

committed to the message m. In particular, being able to find
 
collisions against a fixed member of the family is useless; Alice
 
needs to be able to do so for a reasonably large fraction of hash
 
functions in the family.
 

Before we continue we note that the resistance to each of the above
 

forms of attacks is called, respectively:
 
(i) one-wayness (OW)
 
(ii) second-preimage resistance (SPR)
 
(iii) target-collision resistant (TCR)
 

The precise difference between SPR and TCR is that in the former the
 

first message m is chosen at random while in TCR the attacker gets
 
to choose m (but before learning r). We also remark that TCR
 
functions were first defined by Naor and Yung [NY89] where they were
 
called universal one-way hash function (UOWHF); the term TCR that we
 

use here is from [BR97].
 

Obviously, these tasks are harder to perform than a regular
 
collision-finding attack against a single CRHF function H (i.e. the
 
finding of two messages m,m' such that H(m)=H(m')).
 

More specifically, one can point to two essential differences
 
between a regular collision attack and any one of the above tasks.
 
First, a regular collision attack can be performed in a complete
 
off-line manner (i.e. ahead of the time when a signature is to be
 

issued) while each of (i)-(iii) depends on the choice of r and
 
therefore needs to be completed only after r is determined and
 
communicated to the adversary. Second, while collisions against a
 
single hash function that outputs k bits can be found by brute force
 

in time 2^{k/2}, a brute force TCR attack will take 2^k time.
 
And even if we recall the additional factor of 2^n pairs that Alice
 
can achieve via on-line interaction with Bob, a brute force attack
 
would still take her 2^{k-n} time (in the case of SHA-1 k=160,
 

while n would be no more than 40 in most reasonable applications).
 

Of course, none of the above says that SHA-1 (or any other specific
 
hash function) is sure to resist TCR attacks (or even SPR attacks).
 
But it clearly indicates that if an application uses a hash function
 
in a way that can only be broken under a successful TCR attack, then
 

the application is much more likely to remain secure in face of
 
cryptanalytical improvements than one that relies on full collision
 
resistance. This is true whether the hash function in use is a
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partially broken CRHF such as SHA-1, a (hopefully) better
 
collision-resistant family such as SHA2, or any hash function to be
 

designed in the future.
 

While the above indicates general relations between the strengths
 
and vulnerabilities of different hashing tasks it does not tell us
 
how to instantiate a TCR function. We discuss this in the next
 

section. Later, in section 4, we explain how to integrate
 
randomized hashing into signatures (specifically, how to sign and
 
transport the index r).
 

3. A TCR Construction for Iterated Hash Functions
 

We propose a specific way to convert a single hash function H
 
(e.g SHA-1 or SHA2) into a TCR function family. The design
 

principles that we follow are:
 

(1) Do not change H: randomization is applied to the hash input
 
before the hash function is called.
 

(2) Minimize performance impact.
 
(3) Increase (heuristically) the likelihood of resistance of the
 

family to TCR attacks.
 

In 3.1 we present a basic construction (with some heuristic
 
rationale in Appendix A). In 3.2 we list some variants which take
 
into account some further trade-offs between performance and
 
plausible security. We stress that these methods, although
 

plausible, need to be scrutinized further before they can be
 
adopted.
 

3.1 A simple randomized hash construction
 

Let H be a hash function that processes the message to be hashed in
 
512-bit blocks. For example, if H is an integrated hash function
 

a-la-Merkle-Damgard then the underlying compression function has as
 
inputs an IV and a 512-bit data input. (We use 512 bits as the
 
typical block size but other values are possible.) Let XOR denote
 
the bit-wise exclusive-or operation.
 

Given a message m to be hashed, the signer (or "hasher") chooses a
 

512-bit random value r, and XORs each 512-bit block of m with r.
 
(If m is not an exact multiple of 512-bit blocks then the shorter
 
last block is XORed with an appropriately truncated r.)
 
In other words, we concatenate r to itself until we get a string r*
 

of the same length of m, and then compute m XOR r*.
 
We define H_r(m) to be H(m XOR r*).
 

Note: By our definition the result of (m XOR r*) is of the same
 
length as m; therefore, the length padding defined by Merkle-Damgard
 

functions such as SHA-1 is applied to (m XOR r*). In other words,
 
the length padding is not subject to the XOR with r*.
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In Appendix A we provide some rationale on the choice of this
 
particular way of converting iterated hash functions into TCR.
 

Variants of this method are presented next.
 

3.2 Some Randomized Hash Variants
 

A possible strengthening of our construction from Sec 3.1 can be
 
obtained if, in addition to XORing each block of input with the
 
value r, one also prepends r to the input to H, i.e., the input to H
 

consists of the block r concatenated with (m XOR r*). This provides
 
a randomizing effect to the initial IV of H (in the spirit of the
 
HMAC construction).
 

An even more conservative variant could interleave the block r
 
between any two blocks of the original message, thus providing an IV
 

randomization feature for each application of the compression
 
function. The obvious drawback is the added computation (double the
 
cost of the original hash function).
 

Another natural idea is to add a layer of security by XORing a
 

different random pad to each block of the message. Clearly, this
 
adds a non-trivial computational cost (one would need to generate a
 
pad of the length of the message via some PRG). A midway strategy
 
could be to start with a pad of the length of a single block and
 

slightly (and inexpensively) change this pad for each new block of
 
input, for example by applying circular byte rotation to the
 
previous block pad. A similar idea would be to derive the pad from a
 
byte-oriented LFSR whose initial value is the key r.
 

Finally, if the generation of a 512-bit random (or pseudo-random)
 

quantity r for each signature is regarded as expensive (possibly
 
true for low-power devices, smart cards, etc.) then it is possible
 
to define r as the concatenation of a shorter pad. For example, in
 
order to define r one could choose a random 128-bit string and
 

concatenate it four times to create r. Given the heuristic nature of
 
our constructions this may be considered a reasonable trade-off.
 

4. TCR Hashing and Signature Encoding
 

Recall how randomized hashing is to be used in the context of digital
 
signatures. For signing a message m, the signer chooses at random a
 

value r and computes SIG(r,H_r(m)) where SIG represents a signing
 
algorithm (such as RSA or DSS). More precisely, the signer will use
 
a well-defined standard encoding of the concatenation of the values
 
r and H_r(m) and then apply algorithm SIG to this encoding.
 

The signature on message m consists of the pair (r,SIG(r,H_r(m)).
 

The above requires changing current signature schemes in four ways:
 

(1) Choosing a random (unpredictable) index r for each signature,
 
(2) Replacing the current hashing of a message m from H(m) to H_r(m),
 
(3) Signing r, and
 
(4) Transporting r as part of the signature.
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Here we discuss the required changes to existing message encodings
 
for implementing the last 3 points. We focus on the two main
 

algorithms in use: RSA and DSS. We note that while changing existing
 
encoding standards may be one of the possible obstacles to adopting
 
randomized hashing, this change is instrumental in allowing for more
 
secure and robust signature schemes not only in the short term but
 

in the farther future as well. We suggest that this change to the
 
standards be specified and adopted as soon as possible. As we see
 
below, these changes can be specified in a way that is independent
 
of the specific randomized hash function to be used.
 

We start with RSA. The most common encoding in use with RSA
 
signatures is PKCS#1 v1.5. It specifies that given a message m to be
 
signed, the input to the RSA signature function is a string composed
 
of the hash value H(m) (computed on the message m using a
 

deterministic hash function such as SHA-1) which is padded to the
 
length of the RSA modulus with a standard deterministic padding
 
(this padding contains information to identify the hash algorithm in
 
use). This encoding can be extended to deal with randomized hashing
 

as follows. First, the value H(m) is replaced with H_r(m) for r
 
chosen by the signer. Second, part of the deterministic padding
 
(which is currently filled with repeated 0xff octets) is replaced
 
with the value of r. In this way, r is signed and, at the same time,
 

it is made available to the verifier of the signature without any
 
increase in the size of signatures (r is recovered by the verifier
 
by inverting the signature operation).
 

Another RSA encoding, called EMSA-PSS, is standardized by PKCS#1 v2.1
 
and is based on the randomized signature scheme of Bellare and
 

Rogaway [BR96]. Unfortunately, the standard defines an encoding in
 
which the first step is to apply a deterministic hash function (say,
 
SHA-1) to the message m. Only then the randomized encoding scheme of
 
PSS is applied. As a result, the signature scheme that uses EMSA-PSS
 

is broken if the hash function is not fully collision resistant.
 
In order to use this scheme with randomized hashing, one would
 
replace the current H(m) value in the encoding with H_r(m) and the
 
value r would be encoded in a way that the verifier of a signature
 

can recover it before applying the randomized hashing. The original
 
PSS scheme from [BR96] can be used, or adapted, to achieve such an
 
encoding.
 

Two points to remark regarding the applicability of PSS here are:
 
first, the original PSS scheme is patented -- see US Patent 6266771
 

(which may or may not be an obstacle for adoption). Second, the
 
main analytical benefit of PSS is its provability based on the so
 
called "random oracle model". While this provides a good heuristic
 
backing to the construction, one has to take into account that here
 

we are dealing explicitly with lowering the security requirements
 
from the hash function, so it is questionable how random-like these
 
functions may be required to be. Formal proofs aside, the PSS scheme
 
offers good heuristic advantages over the PKCS#1 v1.5 in that it
 

better randomizes the input to the RSA signing algorithm.
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Regarding the DSS (or DSA) signature algorithm, the first thing to
 
note is that this is already a randomized signature scheme.
 

A DSS signature is composed of a pair of elements (R,S) where R is a
 
random element in the DSS group and S is a value computed as a
 
function of the private key of the signer, the discrete logarithm of
 
R (denoted k), and the value H(m) (where m is the message to be
 

signed and H a deterministic hash function). In order to convert
 
this scheme to use randomized hashing one can use R itself as the
 
index to the hash family, i.e., r=R (or to derive r from R in some
 
deterministic way). Then one would replace H(m) with H_r(m).
 

In this way the size of signatures is unchanged and no further
 
processing is required to generate r. Also note that while the
 
signature component R is not strictly "signed", the attacker cannot
 
control or choose this value (indeed, an attack that finds values R
 

and S for which (R,S) are a valid signature of H_R(m), for a value
 
H_R(m) not signed by the legitimate signer, would contradict the
 
basic security of DSS). One may argue that the use of H_r(m) instead
 
of H(m) can be viewed as an "implementation" of the random-oracle
 

version of DSS as analyzed by Pointcheval and Stern [PS96]; the same
 
caveats expressed in the case of PSS in relation to the use of the
 
random oracle model apply here as well.
 

One consideration in regards to using the component R of DSS
 

signatures as the index to the randomized hash family is that,
 
in order to ensure the TCR property, this index needs to be unknown
 
(unpredictable) to the attacker when the latter chooses the message
 
m to be signed. If the value of R is computed off-line by the signer
 

(which is possible in the case of DSS) and is leaked before the
 
attacker choses m then the benefit of randomized hashing is lost.
 
Hence, R=g^k should be kept secret together with k until the
 
signature is issued. This is not a fundamental limitation to the
 

practice of DSS since the DSS scheme already requires (in an
 
essential way) that k be kept secret, even if computed off-line,
 
since its discovery by the attacker is equivalent to finding the
 
secret private key of the signer!
 

5. Security Considerations
 

This document presents mechanisms that, if adopted by standard
 

bodies such as the IETF, will result in significant improvements to
 
our current and future digital signature systems. While this
 
document focuses on randomized modes of operation of hash functions
 
that provide randomized hashing without changing existing
 

algorithms, it is advisable that future hash families will be
 
designed with randomized hashing and TCR requirements in mind.
 
For example, new schemes that follow the Merkle-Damgard approach may
 
consider allowing for the masking of intermediate values with
 

optional user provided inputs (that is, such a mask could be set to
 
a default value, say 0, for deterministic uses of the hash function,
 
and to user-provided values when randomization is desired). The
 
important point is that implementations of the function will be
 

ready to accept such masks without having to change the function.
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We note that all references to "randomness" in this document should
 
be interpreted as "pseudo-randomness" provided one uses a
 

cryptographically strong pseudorandom generator (or pseudo-random
 
function) initialized with a strong unpredictable seed.
 

We also mention that using TCR hashing may mean that the legitimate
 
signer can find two messages with the same signature (since it is
 

the legitimate signer that is choosing the randomness r). One should
 
note, however, that this has no bearing on non-repudiation (as the
 
signer is still bound to both messages). Moreover, as shown in
 
[SPMS02], even if one uses CRHF some secure signature schemes (such
 

as ECDSA) may allow a signer to find two different messages whose
 
signature string is the same. Still, as mentioned at the end of the
 
Introduction, there may be OTHER applications of CRHF that cannot be
 
replaced with a TCR family.
 

Finally, the general approaches to randomized hashing and digital
 

signatures discussed here do not depend on the specifics of the
 
concrete constructions that we proposed here. Other forms of
 
randomized hashing and TCR schemes may be superior to the ones
 
proposed here and further proposals are encouraged.
 

ACKNOWLEDGMENT. We thank Ran Canetti for useful discussions and for
 

badgering us to write this document.
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Appendix A - Rationale for the Proposed TCR Construction(s)
 

Our TCR proposals follow the following principles:
 

(1) Allow the use of existing functions such as SHA-1 and SHA2
 

(in particular, iterated hash functions a la Merkle-Damgard).
 
(2) Do not change the hash function but only the interface to it
 

(e.g., in our proposal randomization is achieved via the input
 
to the function and therefore implemented hash functions, in
 

either software or hardware, can be used without modification).
 
(3) Use as weak as possible properties of the compression function
 

underlying the hash construction.
 

Our construction is general enough to be used with any hash function
 
that processes the incoming data as blocks. Yet, we focus in our
 

discussion here on Merkle-Damgard (M-D) type of hash functions since
 
these are the most common schemes in practice.
 

While (1) and (2) are obvious properties of our suggested
 
construction we elaborate here on point (3). Ideally, we would have
 

liked to provide a mathematical theorem proving the security of our
 
construction using only relatively weak requirements from the
 
underlying compression function. While such theorems exist for some
 
specific constructions (e.g., [BR97,S00]), they all include
 

operations that violate the principle of using the existing hash
 
functions without any change (e.g., masking the intermediate value of
 
the compression function with each call to this function). We thus
 
settle for a heuristic rationale that should be scrutinized in light
 

of the evolving ideas in the area of hash function cryptanalysis.
 

Let H be a M-D function (the reader can think of SHA-1 for
 
concreteness) and h be the corresponding compression function.
 
That is, h acts on two inputs, a and b, where a represents an
 
intermediate value (IV) and b is a 512-bit block, and the output
 

of h is of the length of the IV (IV lengths vary with different
 
constructions, e.g., 160, 256, etc.). The function H itself is
 
defined for arbitrary inputs by iterating h over the successive
 
blocks of the input with each iteration using the IV computed by the
 

previous application of h (the first IV is set to some constant
 
defined by the specification of H).
 

Consider now a family of compression functions derived from h as
 
follows: for each 512-bit index r, define h_r(a,b)=h(a,b XOR r).
 
It is easy to see that iterating h_r as in a M-D construction one
 

obtains the function H_r that we defined in 3.1.
 

Merkle and Damgard showed that if a compression function h is
 
collision resistant with respect to fixed-length inputs, then the
 
function H obtained by iterating h is collision resistant on
 

arbitrary inputs. We would like to claim the same with respect to
 
the property of target-collision resistance (TCR), namely, that if
 
h is TCR so is H. This, however, is not necessarily the case.
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Yet, an "approximation" to this result was recently shown by Hong,
 
Preneel and Lee [HPL04]. They show that if the construction h_r has
 

a property called "n-order TCR" then the iterated family H_r is TCR
 
for messages of up to n blocks. The property of n-order TCR is
 
defined by the following game between Alice (the Attacker) and a
 
"hasher" Bob.
 

(1) Bob chooses an index r and keeps it secret.
 
(2) For i=1,...,n: Alice chooses a pair (a_i,b_i) and receives from
 

Bob the value h_r(a_i,b_i).
 
(3) Alice chooses a pair (a,b).
 

(4) Bob reveals r to Alice
 
Alice wins the game if she can find (a',b') different from (a,b)
 
such that h_r(a,b)=h_r(a',b').
 

In other words, Alice needs to carry a TCR attack but she is
 
allowed to query h_r on n inputs of her choice before committing to
 

the first colliding message and before learning the value of r.
 
Intuitively, the difference with a regular TCR attack is that Alice
 
has now an advantage in choosing (a,b) since she can first learn
 
something about r from the first n queries.
 

A family h is called n-order TCR if any efficient attacker (Alice)
 

can only find (a',b') as above with insignificant probability.
 
Before we continue it is important to clarify that the above game
 
defining n-order TCR functions is not a game that reflects an actual
 
interaction between an attacker and a victim in real life but it is
 

only a virtual game used to define the security of a function.
 

How much does the extra phase (2) in the game from above help Alice
 
to find collisions? This of course depends on the specific function,
 
and to some extent also on the value of n. Note that if one lets n
 

to be huge (say 2^80 in the case of SHA-1) then Alice can use this
 
"learning phase" to find colliding pair (a_i,b_i) and (a_j,b_j) that
 
she can then use as (a,b) and (a',b') respectively. But recall that
 
n represents the length in blocks of the messages to be hashed with
 

the iterated construction, so it will typically be quite small.
 
(I.e., n=4 or so in the case of certificates, and n < 2^30 even for
 
huge documents.) Hence one may hope that the learning phase will
 
not be sufficiently useful for Alice to choose the colliding pair.
 

In other words, while in order to break a collision-resistant hash
 

function an attacker can spend a HUGE amount of OFF-LINE computation
 
for finding collisions, for breaking an n-order TCR function the
 
attacker is limited to only MODERATE ON-LINE interaction with the
 
hasher after which it needs to commit to a first colliding value x.
 

Only then the attacker receives the actual value r for which it
 
needs to find x' such that h_r(x)=h_r(x').
 

We also comment that the common view of the compression function
 
h(a,b) as a block cipher with key b and input a gives rise to another
 
heuristic argument supporting the view of h_r as n-order TCR.
 

Viewing h(a,b) as a block cipher, phase (2) of the attack from above
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on h_r is just a chosen-plaintext related-key attack on the block
 
cipher h. If h resists such attacks with a moderate number of
 

queries, then phase (2) does not help the attacker learn much about
 
r. Hence, if h is both TCR and a sufficiently robust block cipher,
 
then it is also an n-order TCR.
 

As said, [HPL04] show that if a compression family h={h_r} is
 

n-order TCR then the family H={H_r} is TCR on n block inputs
 
(here H_r is a Merkle-Damgard iteration of h_r). Applying this
 
result to our case, we obtain that if the construction
 
h_r(a,b) = h(a, b XOR r) is an n-order TCR then the family H_r
 

described in 3.1 is TCR for n-block inputs.
 
In other words, any TCR attack against the family H_r that uses
 
n-block messages, translates into an n-order TCR attack against the
 
compression function family h_r with only n initial oracle queries.
 

This provides some foundation to the belief that even the existing
 

hash functions are significantly more secure in the sense of TCR
 
than for collision resistance when used as specified here.
 
In addition, one should examine the current attacks and see to what
 
extent they apply to the defined functions. In particular, we note
 

that the XORing of input blocks with a random block, while it
 
preserves differentials, it also destroys the ability of the
 
attacker to set some of the bits of the colliding messages to values
 
of its choice. It seems that an attack that takes advantage of
 

differentials in this setting would need to rely on universal
 
differentials that depend only on the hash function and for which
 
most pairs of messages with that difference would collide.
 

Finally, we point out to another "motivating" element in our design.
 
Remember that SPR (second pre-image resistant) functions are a weaker
 

(i.e., easier to accomplish) version of TCR functions where the
 
attacker cannot choose the first colliding value but rather this
 
value is determined at random. A straightforward way to transform
 
an SPR compression function h into a TCR family [S00] is to choose a
 

pair r=(s1,s2), where s1,s2 are random values of the length of the
 
IV and block size, respectively, and define
 
h_r(a,b)=h(a XOR s1, b XOR s2). Unfortunately, iterating such an
 
h_r is impractical as it requires modifying H such that the IV can
 

be XORed with S1 in each iteration of h. Therefore, instead of
 
using this full transformation of SPR into TCR we carry the
 
randomization only in the second input of h, namely, in our
 
construction in 3.1 we use h_r(a,b)=h(a,b XOR r) (when viewing h as
 

a block cipher, as mentioned before, the XORing with r provides for
 
randomization of the cipher key).
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