Cryptographic hash functions from expander graphs

Denis Charles, Microsoft Research
Eyal Goren, McGill University
Kristin Lauter, Microsoft Research
$2^{\text {nd }}$ NIST Hash Function Workshop
August 24-25, 2006

Status quo

" WELL WE KNOW WHERE WE'RE GOIN‘ BUT WE DON'T KNOW WHERE WE'VE BEEN

AND WE KNOW WHAT WE'RE KNOWIN' GIVE US TIME TO WORK IT OUT"
-Talking Heads, Road to Nowhere

Related work: (provable hashes)

- VSH [Contini, Lenstra, Steinfeld, 2005]
- ECDLP-based [?]
- Zemor-Tillich `94, Hashing with $\mathrm{SL}_{2}(\mathrm{Z})$
- Joye-Quisquater, `97,
- Quisquater 2004, Liardet 2004
- Goldreich, 2000, One-way functions from LPS graphs

Construction of the hash function:

- k-regular graph G
- Each vertex in the graph has a label

Input: a bit string

- Bit string is divided into blocks
- Each block used to determine which edge to follow for the next step in the graph
- No backtracking allowed!

Output: label of the final vertex of the walk

Simple idea

- Random walks on expander graphs are a good source of pseudo-randomness
- Are there graphs such that finding collisions is hard? (i.e. finding distinct paths between vertices is hard)
- Bad idea: hypercube (routing is easy, can be read off from the labels)

What kind of graph to use?

- Random walks on expander graphs mix rapidly: $\log (\mathrm{n})$ steps to a random vertex
- Ramanujan graphs are optimal expanders
- To find a collision: find two distinct walks of the same length which end at same vertex, which you can easily do if you can find cycles

Example: graph of supersingular elliptic curves modulo p (Pizer)

- Vertices: supersingular elliptic curves mod p
- Edges: degree ℓ isogenies between them
- $\ell+1$ - regular
- Graph is Ramanujan
- \# vertices ~ p/12
- $p \sim 256$ bits

Collision resistance

Finding collisions reduces to finding isogenies between elliptic curves:

- Finding a collision \rightarrow finding 2 distinct paths between any 2 vertices (or a cycle)
- Finding a pre-image \rightarrow finding 1 path between 2 given vertices
- $O(\sqrt{ } \mathrm{p})$ birthday attack to find a collision

One step of the walk:

- $E_{1}: y^{2}=x^{3}+a_{4} x+a_{6}$
- $\left.j\left(E_{1}\right)=1728^{*} 4 a_{4}^{3 /(} a_{4}^{3}+27 a_{6}{ }^{2}\right)$
- 2-torsion point $Q=(r, 0)$
- $E_{2}=E / Q$ (quotient of groups)
- $E_{2}: y^{2}=x^{3}-\left(4 a_{4}+15 r^{2}\right) x+\left(8 a_{6}-14 r^{3}\right)$.
- $E_{1} \rightarrow E_{2}$
- $(x, y) \rightarrow\left(x+\left(3 r^{2}+a_{4}\right) /(x-r), y-\left(3 r^{2}+a_{4}\right) y /(x-r)^{2}\right)$

Timings

- p 192-bit prime and $\ell=2$
- Time per input bit is $3.9 \times 10-5$ secs.
- Hashing bandwidth: 25.6 Kbps.
- p 256-bit prime
- Time per input bit is $7.6 \times 10-5$ secs or
- Hashing bandwidth: 13.1 Kbps.
- 64-bit AMD Opteron 252 2.6Ghz machine.

Other graphs

- Vary the isogeny degree
- Ordinary elliptic curves
- Same efficiency as supersingular graph
- Finding isogenies: $p^{3 / 2} \log (p)$ [Galbraith]
- Isogeny graph with fixed degree not connected
- Lubotzky-Phillips-Sarnak Cayley graph
- random walk is efficient to implement
- Ramanujan graph
- Different problem for finding collisions

