
Provably Secure FFT HashingProvably Secure FFT Hashing
(+ comments on (+ comments on ““probably secureprobably secure”” hash functions)hash functions)

VadimVadim LyubashevskyLyubashevsky Daniele Daniele MicciancioMicciancio
(University of California, San Diego)(University of California, San Diego)

Chris Chris PeikertPeikert AlonAlon RosenRosen
(MIT) (Harvard University)(MIT) (Harvard University)

Our Hash FunctionOur Hash Function
A (Very) High Level DescriptionA (Very) High Level Description

Key: 3 random polynomialsKey: 3 random polynomials
Input: 3 polynomials with small coefficientsInput: 3 polynomials with small coefficients
Function: compute sum of productsFunction: compute sum of products

All arithmetic performed modulo p and All arithmetic performed modulo p and ββnn+1 +1
((ββ is the indeterminate in the polynomials)is the indeterminate in the polynomials)
Function is very efficient, parallelizable, and Function is very efficient, parallelizable, and
provably collisionprovably collision--resistant.resistant.

Efficiency and SecurityEfficiency and Security

Efficiency:Efficiency:
•• Input has b bits Input has b bits
•• O(bO(b log(blog(b)) time to compute the hash)) time to compute the hash

Security (2 modes of the function):Security (2 modes of the function):
•• ““Bulk modeBulk mode””

•• Large output Large output
•• Finding collisions at least as hard as solving a certain latticeFinding collisions at least as hard as solving a certain lattice problem problem

in the in the worst case.worst case.
•• ““NanoNano modemode””

•• Small outputSmall output
•• Same structure as the bulk modeSame structure as the bulk mode
•• Finding collisions equivalent to solving a certain (different) lFinding collisions equivalent to solving a certain (different) lattice attice

problem in the average caseproblem in the average case

Diffusion and ConfusionDiffusion and Confusion

Diffusion and ConfusionDiffusion and Confusion

For Diffusion, we use the Fast Fourier For Diffusion, we use the Fast Fourier
TransformTransform

Idea already appeared in [S91,S92,SV93]Idea already appeared in [S91,S92,SV93]
For Confusion, simply use linear For Confusion, simply use linear
combinationscombinations
By using results in [M02,PR06,LM06], we By using results in [M02,PR06,LM06], we
can build a provably secure compression can build a provably secure compression
function. function.

Performing the CompressionPerforming the Compression
(Step 0, Entering Input)(Step 0, Entering Input)

Compressing a string of length Compressing a string of length mnmn (m=3)(m=3)
Each Each xxi,ji,j is in {0,is in {0,……,d},d}
So domain is of size (d+1)So domain is of size (d+1)mnmn ((d+1)((d+1)3n 3n))
All operations performed in the field All operations performed in the field ZZpp (p>>d)(p>>d)

Performing the CompressionPerforming the Compression
(Step 1, Diffusion)(Step 1, Diffusion)

Step 1: multiply Step 1: multiply xxi,ji,j by wby wjj--1 1

(Just a trick to do multiplication modulo (Just a trick to do multiplication modulo ββnn+1)+1)
w is an element in Zw is an element in Z**

pp of order 2nof order 2n
Thus, wThus, w22 is a primitive nis a primitive nthth root of unity in Zroot of unity in Z**

pp

Performing the CompressionPerforming the Compression
(Step 2, Diffusion)(Step 2, Diffusion)

Step 2: Compute the Fast Fourier Transform of Step 2: Compute the Fast Fourier Transform of
each groupingeach grouping

Use wUse w22 as the primitive nas the primitive nthth root of unity in Zroot of unity in Z**
pp

yyi,ji,j==∑∑11≤≤kk≤≤nn(x(xi,ji,jwwjj--11)w)w2j(k2j(k--1)1)

Performing the CompressionPerforming the Compression
(Step 3, Confusion)(Step 3, Confusion)

Step 3: Multiply Step 3: Multiply yyi,ji,j by by aai,ji,j
The The aai,ji,j are uniformly random in are uniformly random in ZZpp

They are the hash function key They are the hash function key

Performing the CompressionPerforming the Compression
(Step 4, Confusion)(Step 4, Confusion)

Step 4: Step 4: zzjj==∑∑11≤≤ii≤≤nn aai,ji,jyyi,ji,j
Output size: Output size: ppnn

Equivalent Hash FunctionEquivalent Hash Function

Input: Input: xx11,,……,,xxmm in in ZZpp[[ββ]/<]/<ββnn+1> (m=3)+1> (m=3)
Each coefficient of Each coefficient of xxii is in {0,is in {0,……,d},d}

Hash key: Hash key: aa11,,……,,aamm in in ZZpp[[ββ]/<]/<ββnn+1> +1>
Output: Output: zz = = aa11xx11++……++aammxxmm

This function is completely equivalent This function is completely equivalent
securitysecurity--wise to the one presented and itwise to the one presented and it’’s s
much easier to understand. much easier to understand.

Security GuaranteeSecurity Guarantee

Input: Input: xx11,,……,,xxmm in in ZZpp[[ββ]/<]/<ββnn+1> (m=3)+1> (m=3)
Each coefficient of Each coefficient of xxii is in {0,is in {0,……,d},d}

Hash key: Hash key: aa11,,……,,aamm in in ZZpp[[ββ]/<]/<ββnn+1> +1>
Output: Output: zz = = aa11xx11++……++aammxxmm

Theorem [M02,PR06,LM06]:Theorem [M02,PR06,LM06]:
For appropriate values of For appropriate values of p,n,d,mp,n,d,m, finding a collision , finding a collision
for random for random aa11,,……,,aam m implies solving the approximate implies solving the approximate
Shortest Vector Problem for all lattices in a certain Shortest Vector Problem for all lattices in a certain
class. class.

The Function in PracticeThe Function in Practice
((““Bulk ModeBulk Mode””))

Can build a compression function whose security Can build a compression function whose security
is based on a worstis based on a worst--case problemcase problem
ItIt’’s efficient, but s efficient, but …… the output is big.the output is big.
Sample parameters and security:Sample parameters and security:

Domain: Domain: ≈≈ 65,000 bits65,000 bits
Range: Range: ≈≈ 28,000 bits28,000 bits
Security: Finding collisions implies approximating Security: Finding collisions implies approximating
Shortest Vector to within factor Shortest Vector to within factor ≈≈ 223232 in any 1024 in any 1024
dimensional lattice in a certain class of lattices.dimensional lattice in a certain class of lattices.

Could be used to hash large files, but impractical Could be used to hash large files, but impractical
for other purposes for other purposes

Why such a large range?Why such a large range?

Recall the hash function:Recall the hash function:
Input: Input: xx11,,……,,xxmm in in ZZpp[[ββ]/<]/<ββnn+1> +1>

Each coefficient of Each coefficient of xxii is in {0,is in {0,……,d},d}
Domain is of size (d+1)Domain is of size (d+1)mnmn ((mnmn lg(d+1) bits) lg(d+1) bits)

Hash key: Hash key: aa11,,……,,aamm in in ZZpp[[ββ]/<]/<ββnn+1> +1>
Output: Output: zz = = aa11xx11++……++aammxxmm

RangeRange is of size is of size ppnn (n (n lg(plg(p) bits)) bits)
In the proof of security, p has to be largeIn the proof of security, p has to be large

Making the Range SmallerMaking the Range Smaller

Making the range smaller:Making the range smaller:
Make p smallerMake p smaller
Still the same structure as provably secure functionStill the same structure as provably secure function
Lose proof of security, but finding collisions still Lose proof of security, but finding collisions still
seems to be hardseems to be hard

By lowering p, can get:By lowering p, can get:
Domain=1024 bits, Range=513 bitsDomain=1024 bits, Range=513 bits
Finding collisions is equivalent to a certain averageFinding collisions is equivalent to a certain average--
case (no longer worstcase (no longer worst--case) lattice problemcase) lattice problem

Equivalent Lattice ProblemEquivalent Lattice Problem

Let Let aa=(a=(a11,,……,a,ann) be a random vector (0) be a random vector (0≤≤aaii<p)<p). .
Define Define Rot(Rot(aa) as:) as:

a1 a2 a3 an

-an a1 a2 an-1

-an-1 -an a1 an-2

-a2 -a3 -a4 -a1

Equivalent Lattice ProblemEquivalent Lattice Problem

Rot(g1)

Rot(g2)

Rot(gm-1)

. . .

pI

n(m-1)n

n(m-1)

n

Lattice generated Lattice generated
by the rows of by the rows of
matrix matrix BB

Problem: find Problem: find
vector in lattice vector in lattice
with small inf. normwith small inf. norm

B=

Equivalent Lattice ProblemEquivalent Lattice Problem

Hardness of SVP for previous lattice depends on what Hardness of SVP for previous lattice depends on what Rot(gRot(gii) is.) is.
If If Rot(gRot(gii) is as we defined it, then finding collisions in the hash) is as we defined it, then finding collisions in the hash
function is equivalent to finding a vector in the lattice with ifunction is equivalent to finding a vector in the lattice with inf. nf.
norm norm ≤≤ dd

Note: If Note: If Rot(gRot(gii) is a random matrix, then we get a version of a well) is a random matrix, then we get a version of a well--
studied (and believed to be hard) problemstudied (and believed to be hard) problem

Great for security Great for security …… but we donbut we don’’t know how to make efficient t know how to make efficient
hash function equivalent to the hardness of that problemhash function equivalent to the hardness of that problem

To get equivalency to an efficient hash function, To get equivalency to an efficient hash function, Rot(gRot(gii) needs to) needs to
have some have some ““algebraic structurealgebraic structure””..

Algebraic Structure of Algebraic Structure of BB

The lattice generated by The lattice generated by BB has a lot of has a lot of
““algebraicalgebraic”” structure.structure.
The structure does not seem to be useful for The structure does not seem to be useful for
standard lattice algorithms (e.g. LLL)standard lattice algorithms (e.g. LLL)
But other attacks exploiting the structure may But other attacks exploiting the structure may
be possible (for example, defining be possible (for example, defining Rot(aRot(a) slightly) slightly
differently makes the SVP problem very easy). differently makes the SVP problem very easy).
But the fact that we have a proof that works for But the fact that we have a proof that works for
larger values of p gives some evidence that the larger values of p gives some evidence that the
algebraic structure is not exploitable for smaller algebraic structure is not exploitable for smaller
pp’’ss as well as well

Sample Parameters for Hash Sample Parameters for Hash
FunctionFunction

Input: Input: xx11,,……,,xxmm in in ZZpp[[ββ]/<]/<ββnn+1> +1>
Each coefficient of Each coefficient of xxii is in {0,is in {0,……,d},d}

Hash key: Hash key: aa11,,……,,aamm in in ZZpp[[ββ]/<]/<ββnn+1> +1>
Output: Output: zz = = aa11xx11++……++aammxxmm

n=64, m=8, d=3, p=257n=64, m=8, d=3, p=257
Domain=1024 bits, Range=513 bitsDomain=1024 bits, Range=513 bits
Takes Takes ≈≈ 15 times longer than SHA15 times longer than SHA--256 (we256 (we’’re in re in
the initial stages of implementation)the initial stages of implementation)

ConclusionConclusion

Presented an approach for using FFT to Presented an approach for using FFT to
construct efficient, provably collisionconstruct efficient, provably collision--resistant resistant
hash functions .hash functions .

Using this approach:Using this approach:
Constructed an efficient hash function, which may be Constructed an efficient hash function, which may be
useful for hashing large files, whose security is based useful for hashing large files, whose security is based
on a worston a worst--case problem.case problem.
Constructed an efficient hash function whose security Constructed an efficient hash function whose security
is based on an averageis based on an average--case lattice problem.case lattice problem.

Comments on Probably Secure Comments on Probably Secure
Hash FunctionsHash Functions

LASHLASH--k (from this workshop) k (from this workshop)
k = output length (e.g. k=160,256,384,512)k = output length (e.g. k=160,256,384,512)

We can break compression function for We can break compression function for
e.g. k=232, 368, 1056, 2096, 10248,e.g. k=232, 368, 1056, 2096, 10248,……

““LunchLunch--timetime”” attack attack …… literallyliterally

	Provably Secure FFT Hashing�(+ comments on “probably secure” hash functions)
	Our Hash Function�A (Very) High Level Description
	Efficiency and Security
	Diffusion and Confusion
	Diffusion and Confusion
	Performing the Compression�(Step 0, Entering Input)
	Performing the Compression�(Step 1, Diffusion)
	Performing the Compression�(Step 2, Diffusion)
	Performing the Compression�(Step 3, Confusion)
	Performing the Compression�(Step 4, Confusion)
	Equivalent Hash Function
	Security Guarantee
	The Function in Practice�(“Bulk Mode”)
	Why such a large range?
	Making the Range Smaller
	Equivalent Lattice Problem
	Equivalent Lattice Problem
	Equivalent Lattice Problem
	Algebraic Structure of B
	Sample Parameters for Hash Function
	Conclusion
	Comments on Probably Secure Hash Functions

