Provably Secure FFT Hashing

(+ comments on "probably secure" hash functions)

Vadim Lyubashevsky
 Daniele Micciancio (University of California, San Diego)

Chris Peikert (MIT)

Alon Rosen
(Harvard University)

Our Hash Function A (Very) High Level Description

- Key: 3 random polynomials

Input: 3 polynomials with small coefficients
\lrcorner Function: compute sum of products
All arithmetic performed modulo p and $\beta^{n}+1$ (β is the indeterminate in the polynomials)

- Function is very efficient, parallelizable, and provably collision-resistant.

Efficiency and Security

Efficiency:

- Input has b bits
- $O(b \log (b))$ time to compute the hash

Security (2 modes of the function):

- "Bulk mode"

Large output
Finding collisions at least as hard as solving a certain lattice problem in the worst case.

- "Nano mode"
- Small output

Same structure as the bulk mode

- Finding collisions equivalent to solving a certain (different) lattice problem in the average case

Diffiusion and Confusion

Diffusion and Confusion

\rightarrow For Diffusion, we use the Fast Fourier Transform
Idea already appeared in [S91,S92,SV93]

- For Confusion, simply use linear combinations
\lrcorner By using results in [M02,PR06,LM06], we can build a provably secure compression function.

Performing the Compression (Step 0, Entering Input)

$\begin{array}{llll}x, 1, & x, 2 & \cdots & x \\ x_{1, n}\end{array}$
 $\begin{array}{llll}x, 2] & x+2, & \cdots & x \\ x_{22}, n\end{array}$
 x 3.3$]$
 \lrcorner Compressing a string of length $m n(m=3)$

x

Each $X_{i, j}$ is in $\{0, \ldots, d\}$
\lrcorner So domain is of size $(d+1)^{\mathrm{mn}} \quad\left((d+1)^{3 n}\right)$
$\lrcorner A \| l$ operations performed in the field $Z_{p} \quad(p \gg d)$

Performing the Compression (Step 1, Diffiusion)

\lrcorner Step 1: multiply $x_{i, j}$ by wi-1

- (Just a trick to do multiplication modulo $\beta^{n}+1$)
$-w$ is an element in \mathbb{Z}_{p}^{*} of order $2 n$
Thus, W^{2} is a primitive $n^{\text {th }}$ root of unity in \mathbb{Z}_{p}^{*}

Performing the Compression (Step 2, Diffiusion)

\lrcorner Step 2: Compute the Fast Fourier Transform of each grouping

- Use w^{2} as the primitive $n^{\text {th }}$ root of unity in \mathbb{Z}_{p}^{*}
$\lrcorner y_{i, j}=\Sigma_{1 \leq k \leq n}\left(X_{i, j}, W^{j-1}\right) W^{2 j(k-1)}$

Performing the Compression (Step 3, Confusion)

- Step 3: Multiply $y_{i, j}$ by $a_{i, j}$
- The $a_{i, j}$ are uniformly random in Z_{p}
- They are the hash function key

Performing the Compression (Step 4, Confusion)

Step 4: $z_{j}=\sum_{1 \leq i \leq n} a_{i, j} y_{i, j}$
Output size: p^{n}

Equivalent Hash Function

- Input: x_{1}, \ldots, x_{m} in $Z_{p}[\beta] /<\beta^{n}+1>\quad(m=3)$
- Each coefficient of X_{i} is in $\{0, \ldots, d\}$
\lrcorner Hash key: $\mathrm{a}_{1, \ldots, \mathrm{a}_{m}}$ in $Z_{p}[\beta] /<\beta^{n}+1>$
- Output: $z=a_{1} x_{1}+\ldots+a_{m} x_{m}$
\lrcorner This function is completely equivalent security-wise to the one presented and it's much easier to understand.

Security Guarantee

Input: x_{1}, \ldots, x_{m} in $Z_{p}[\beta] /<\beta^{n}+1>\quad(m=3)$

- Each coefficient of X_{i} is in $\{0, \ldots, \mathrm{~d}\}$

\lrcorner Output: $z=a_{1} x_{1}+\ldots+\mathrm{a}_{m} x_{m}$
- Theorem [M02,PR06,LM06]:
- For appropriate values of $p, n, \mathrm{~d}, \mathrm{~m}$, finding a collision for random a_{1}, \ldots, a_{m} implies solving the approximate Shortest Vector Problem for all lattices in a certain class.

The Function in Practice ("Bulk Mode")

\lrcorner Can build a compression function whose security is based on a worst-case problem
I It's efficient, but ... the output is big.
\lrcorner Sample parameters and security:

- Domain: $\approx 65,000$ bits
- Range: $\approx 28,000$ bits

Security: Finding collisions implies approximating Shortest Vector to within factor ≈ 232 in any 1024 dimensional lattice in a certain class of lattices.

- Could be used to hash large filles, but impractical for other purposes

Why such a large range?

Recall the hash function:

- Each coefficient of x_{i} is in $\{0, \ldots, d\}$

Domain is of size $(d+1)^{\mathrm{mn}}(\mathrm{mn} \lg (d+1)$ bits $)$
\perp Hash key: $\mathrm{a}_{1, \ldots, a_{m}}$ in $Z_{\mathrm{p}}[\beta] /<\beta^{n}+1>$

- Output: $z=a_{1} x_{1}+\ldots+\mathrm{a}_{\mathrm{m}} \mathrm{X}_{\mathrm{m}}$

Range is of size $p^{n}(n \lg (p)$ bits)
In the proof of security, p has to be large

Making the Range Smaller

\lrcorner Making the range smaller:

- Make p smaller
- Still the same structure as provably secure function
- Lose proof of security, but finding collisions still seems to be hard
\lrcorner By lowering p, can get:
- Domain=1024 bits, Range=513 bits

Finding collisions is equivalent to a certain averagecase (no longer worst-case) lattice problem

Equivalent Lattice Problem

\lrcorner Let $\mathrm{a}=\left(\mathrm{a}_{1}, \ldots, \mathrm{a}_{n}\right)$ be a random vector $\left(0 \leq a_{j}<p\right)$. Define Rot(a) as:

$\operatorname{Rot}(a)$

a_{1}	a_{2}	a_{3}	\ldots	a_{n}
$-a_{n}$	a_{1}	a_{2}	\ldots	a_{n-1}
$-a_{n-1}$	$-a_{n}$	a_{1}	\ldots	a_{n-2}
\ldots	\cdots	\cdots	\cdots	\cdots
$-a_{2}$	$-a_{3}$	$-a_{4}$	\cdots	a_{1}

Equivalent Lattice Problem

\lrcorner Lattice generated by the rows off matrix B

- Problem: find vector in lattice with small inf. norm

Equivalent Lattice Problem

\lrcorner Hardness of SVP for previous lattice depends on what Rot $\left(g_{j}\right)$ is. If Rot $\left(g_{j}\right)$ is as we defined it, then finding, collisions in the hash function is equivalent to finding a vector in the lattice with inf: norm $\leq d$
\lrcorner Note: If Rot(g_{i}) is a random matrix, then we get a version of a wellstudied (and believed to be hard) problem

- Great for security ... but we don't know how to make efficient hash function equivalent to the hardness of that problem
\lrcorner To get equivalency to an efficient hash function, Rot $\left(g_{j}\right)$ needs to have some "algebraic structure".

Algebraic Structure of B

\lrcorner The lattice generated by B has a lot of "algebraic" structure.

- The structure does not seem to be useful for standard lattice algorithms (e.g. LLL)
But other attacks exploiting the structure may be possible (for example, defining Rot(a) slightly dififerently makes the SVP problem very easy).
- But the fact that we have a proof that works for larger values of p gives some evidence that the algebraic structure is not exploitable for smaller p's as well

Sample Parameters for Hash Function

- Input: $X_{1, \ldots,} X_{m}$ in $Z_{p}[\beta] /<\beta n+1>$
- Each coefficient of x_{i} is in $\{0, \ldots$, d $d\}$
- Hash key: $a_{1,}, \ldots, a_{m}$ in $Z_{p}[\beta] /<\beta^{n}+1>$

Output: $z=a_{1} x_{1}+\ldots+a_{m} x_{m}$
$n=64, m=8, d=3, p=257$

- Domain $=1024$ bits, Range $=513$ bits

Takes ≈ 15 times longer than SHA-256 (we're in the initial stages of implementation)

Conclusion

- Presented an approach for using FFT to construct efficient, provably colilision-resistant hash functions.
\lrcorner Using this approach:
\triangle Constructed an efficient hash function, which may be useful for hashing large filles, whose security is based on a worst-case problem.
- Constructed an efficient hash function whose security is based on an average-case lattice problem.

Comments on Probably Secure Hash Functions

LASH-k (from this workshop)
$\square k=$ output length (e.g. $k=160,256,384,512)$

- We can break compression function for e.g. $k=232,368,1056,2096,10248$,....
- "Lunch-time" attack ... Iiterally

