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Abstract 

 
Lately, hash function security has received 

increased attention. Especially after the recent attacks 
that were presented for SHA-1 and MD5, the need for 
a new and more robust hash function has become 
imperative. Even though many solutions have been 
proposed as replacements, the transition to a new 
function could be costly and complex. In this paper, we 
introduce a mode of operation that can be applied to 
any existing or future hash function in order to 
improve its collision resistance. In particular, we use 
steganography, the art of hiding a message into 
another message, to create a scheme, named Σ-Hash, 
which enforces the security of hashing algorithms. We 
will demonstrate how, apart from hash function 
security, Σ-Hash can also be used for securing Open 
Source code from tampering attacks and other 
applications. 
 
1. Introduction 
 

Cryptographic hash functions are nowadays an 
essential part to the majority of cryptographic 
protocols. A hash function is a process that takes an 
input of arbitrary size and returns a fixed size output, 
which is called hash value or message digest. It gives a 
solution to the “commitment scheme”, where Alice has 
a solution to a problem and she wants to prove that the 
problem is solved without giving the solution away. In 
that case, she will hash her solution and send the hash 
to Bob, who can then generate the same hash if he 
finds the same solution.  Currently, the most 
commonly used hashing algorithms are MD5 [2] and 
SHA-1 [1], which are both based on MD4 [3].  

Hash functions should have the following 
cryptographic properties: first, pre-image resistance 

dictates that given the hash value h, it should be 
computationally infeasible to find any message m so 
that h=hash(m). Moreover, a hash function should also 
be second pre-image resistant, which means that given 
a message m1 it should be hard to find a message 
m2≠m1 so that hash(m1)=hash(m2). Finally, collision 
resistance impairs that it should be hard to find two 
different messages m1, m2 so that hash(m1)=hash(m2). 

Most popular hash functions, such as MD5 and 
SHA-1 construct a hash value by applying a variant of 
the Merkle-Damgård construction [5],[6] to a 
compression function. According to this scheme, a 
long message is broken into equal-sized blocks with 
the final block being padded to the allowable block 
size. Then, a compression function is operated on the 
blocks to produce the fixed size hash value. If the 
compression function is collision-resistant then so will 
be the hash function [5],[6]. Even though the Merkle-
Damgård construction ensures to some point the 
security of hash functions, it also has some 
vulnerabilities that can be exploited to attack such 
algorithms. Examples of such attacks include length 
extension and herding attacks.  

The aforementioned characteristics of hash 
functions as well as the fact that hashes are relatively 
easy to compute for any given input, make them a very 
attractive solution for a number of applications. These 
include authentication, message integrity and digital 
signatures. For example, a message can be hashed in 
order to verify its authenticity. Similarly, files, 
including executables or even source code, are hashed 
so that users that download them can also verify their 
integrity.  

Recently, various attacks [12],[13],[14] to these 
algorithms were presented provoking discussions in 
order to propose a new, safer hashing algorithm. Apart 
from the obvious problem of security and collisions 



another issue has also emerged: existing applications 
and cryptographic algorithms should be able to easily 
migrate to a new possible function, a task that may not 
be easy. The hash transition problem, as it is referred 
to, has various aspects which have been examined in 
[7]. Randomized hashing [8] is a mode of operation 
that has been proposed for strengthening hash 
functions. It has been designed mainly for use in 
digital signatures schemes, without requiring any 
alterations in the existing algorithms and their 
implementation. It suggests converting existing hash 
functions into keyed functions, indexed by a random 
value.  

Lately, especially with the emergence of the open 
source movement, it is very common for users to 
download open source programs, compile them locally 
and then execute them. This has led to a new form of 
attack, usually called source code tampering, where a 
malicious user alters the source code or even inserts 
arbitrary pieces into it. A user downloading such code 
has no way of knowing if the original source code has 
been tampered with and of course, cannot be expected 
to review every single line of code that he downloads. 
Hash functions provide a means for integrity checking 
which can mostly detect and correct errors introduced 
by the network. A malicious user that is able to modify 
the source code remotely he will as easily be able to 
also modify its hash value. Such kind of attacks may 
be countered with the use of digital signature. 
However, the use of digital signatures brings along all 
the known issues of public key cryptography: 
performance and communication overhead, key 
management issues, not to mention the growing 
number of identity theft and phishing incidents.  

Here, motivated by source code tampering attacks, 
we introduce a mode of operation for hash functions, 
inspired by randomized hashing, that uses 
steganography to enhance collision resistance of 
current and future hashing algorithms. Steganography 
is used to hide a secret message into another message. 
It derives from the combination of the Hellenic words 
Stegano (sealed) and Graphy (writing) and it means 
secret writing. Secret information can be embedded 
into any object that is characterized by redundancy. 
Thus, various steganographic algorithms have been 
proposed to hide information in images, sound, video 
or even plain text. In this paper we use steganographic 
functions to produce hash values that are more 
resistant to collisions. This mode of operation, called 
Σ-Hash (Sigma Hash), can be used in conjunction with 
any hashing algorithm. Due to the properties of the 
steganographic algorithms that can be used it is hard 
for an attacker to produce collisions for Σ-Hash. 

The structure of this paper is as follows: in section 2 
we briefly examine some of the recent attacks on hash 
functions. Subsequently we present the basics of 
steganography. In section 4 the proposed Σ-Hash 
scheme is presented and analyzed. Finally, we provide 
some concluding remarks. 
 
2. Attacks to Hash Functions 
 

As we have already mentioned, even though hash 
functions are carefully designed to satisfy the required 
security properties, they are still vulnerable to collision 
attacks. Due to their nature, it will always be possible 
to find two different inputs that will produce the same 
output. Using the birthday paradox [16] an attacker can 
find a collision for a hash function of range r in r1/2 
operations. This is considered the simplest attacking 
method, equivalent to a brute force attack. A birthday 
attack is considered computationally infeasible for 
modern algorithms as for example 280 operations are 
required for SHA-1. Moreover, the length extension 
property of the Merkle-Damgård transformation allows 
the use of padding in order to create collisions.  

Nevertheless, other more efficient techniques have 
been proposed that can identify collisions in fewer 
steps. The first attack in SHA-0 was presented by 
Wang [4] in 1997. Earlier, in 1993 some form of 
collisions for MD5 had been found [12]. Recently, 
Wang’s team discovered collisions in MD4, MD5, 
HAVAL-128, and RIPEMD [13], while the authors in 
[9] presented a technique that can be used to find 
collisions in SHA-0 with a 251 complexity. An 
extension of this technique enabled the authors to find 
collisions in some reduced versions of SHA-1, 
showing that modern hash algorithms may indeed be 
vulnerable. Finally, Wang et al showed in [14] that a 
collision can be found in SHA-1 with 269 
computations.  

Even though these attacks are only theoretical, they 
demonstrate that the currently most widely used hash 
algorithms are indeed vulnerable and eventually, faster 
and more practical attacks will be discovered. 
Actually, in the case of MD5, the authors of [15] 
managed to create two X.509 certificates with different 
public keys but the same MD5 hash, showing that a 
practical attack is feasible. 

 
3. Steganography 
 

Steganography dates back thousands of years as it 
was widely used before any cryptographic system was 
developed. Herodotus describes one of the first cases 
of using steganography in the ancient world. Many 



similar examples have met the public eye since then, 
which proves the fact that information hiding in some 
cases is essential. 

Steganography concerns itself with ways of 
embedding a secret message into a cover object, 
without altering the properties of the cover object 
evidently. The embedding procedure is typically 
related with a key, usually called a stego-key. Without 
knowledge of this key it will be difficult for a third 
party to extract the message or even detect its 
existence. Once the cover object has data embedded in 
it, it is called a stego object. Thus, for example, we 
might embed information in a cover-sound giving a 
stego-sound; or embed information in a cover-image 
giving a stego-image.  

There has been a rapid growth of interest in this 
subject over the past years. This is due partly to the 
fact that the entertainment industry has become 
interested in techniques for hiding encrypted 
watermarks inside their products (e.g. CDs, DVDs) 
and partly to various restrictions which governments 
established regarding cryptography that made people 
and business study and advance methods of hiding 
their private information in seemingly innocent cover 
data. Methods that have been proposed include hiding 
messages inside unused space in sound, image and 
video files, TCP/IP headers, between file system gaps 
and bad sectors, inside executables and "fake spam" 
emails and even inside white spaces in text or HTML 
code. In general, any object which demonstrates 
increased redundancy can be used to hide information. 
Steganographic techniques can be classified into two 
main categories: substitution techniques, which 
involve the substitution of redundant bytes of the cover 
message and transform domain techniques, which 
embed information in the transform space of the signal 
(e.g. in the frequency or spatial domain). Other 
categories include spread spectrum, distortion as well 
as statistical techniques [11].  

Image steganography usually involves hiding 
information in the Least Significant Bits (LSB) in the 
spatial or frequency domain. It exploits human vision 
in the following way: the eye can only discern about 1 
million colors, so in a 24 bit per pixel image, changing 
the value of the LSB in a pixel or in a DCT coefficient 
will not cause a discernible difference under regular 
viewing. Audio steganography works in a similar way 
as image steganography and exploits human hearing 
capabilities. Again, data can be hidden into the LSB. 
Other methods for audio steganography include 
spreading the signal into the unused frequency 
spectrum (using Direct Sequence Spread Spectrum), 
introducing echo into a signal or by using the phase 
coding method, similar to the echo method and relies 

on the relative insensitivity of the human ear to phase 
changes.  

Text based steganography uses methods that are 
similar to those for image and audio steganography. 
However, in many cases, hidden messages in texts 
need to be carefully protected since an abnormality in 
natural language can be easily detected. Techniques 
with such characteristics include syntactic and 
semantic manipulation of a given text or aesthetic 
manipulation, such as the white space method. The 
later involves adding spaces or tabs at the end of words 
or lines. This modification only slightly affects text’s 
appearance. For example, the following HTML code 
can be used to add binary 0 or 1, by adding a space 
after the keyword “region”, as shown. An extra space 
can represent binary 1 and its absence binary 0. 
<region id="Image" width="176" height="144" /> 
<region   id="Image" width="176" height="144” /> 

Additionally, markup languages, like HTML, can 
be used to store data. One can store binary values 
based on the simplicity of such languages as well as 
the freedom to rearrange tags without changing the 
displayed page. Programming languages like C or Java 
have stricter rules and thus less redundancy. However, 
one could always use steganographic methods that are 
based on aesthetic changes. For example, white space 
steganography could be used as most compilers 
disregard spaces and tabs. Moreover, one could 
operate steganographic functions on source code 
comments, or even insert carefully coded comments in 
order to hide a message.  

The amount of data that can be hidden in a cover 
object is often referred to as embedding capacity. The 
embedding capacity is directly related with the secrecy 
of the message. Usually, the distortions in the cover 
object caused by the steganographic algorithm become 
more obvious as a user tries to add more hidden data. 
Evidently, there is a point of balance when the 
embedded data do not alter the cover object 
significantly enough to arouse suspicion.  
 
4. The Σ-Hash Scheme 
 

The proposed scheme combines Steganography and 
hash functions in order to improve the collision 
resistance of the latter. In this section we will describe 
in detail the proposed method. 

 
4.1. Hashing 

 
The Σ-Hash scheme involves three steps: hashing, 

embedding and Σ-Hashing, which corresponds to 
hashing the stego-object. Let M denote the original 



message that will be Σ-Hashed. During the first step M 
is hashed using any hashing algorithm fh, to produce 
the hash value H:   

fh (M) = H 
In the second step we embed the hash value H to M. 

This can be done by using any known steganographic 
algorithm fs. The stego-key for the embedding process 
will be again the hash value H that was produced in the 
first step. The output of this step will be a stego-object 
called MS as follows:   

fs (M, H, H) = MS
By choosing H as a key we eliminate the need for a 

key exchange and maintenance, as the hash value will 
be exchanged anyway. Furthermore, the 
steganographic process ensures that the secret 
message, in our case the hash value, will be spread 
across the original message, regardless of its size and 
without affecting its appearance and functionality. 
Thus, the original object will remain functional, 
regardless of the embedded message.  

In the third step the stego-object MS is hashed using 
any hashing algorithm, possibly the same as in the first 
step:  

fh (MS) = HS 
where HS is the hash value of the stego-object. 

We have now computed two different hash values 
for seemingly the same object. The first one, H, is the 
usual hash value, while the second one, HS, is 
computed over an alternate version of the original 
object, which contains a secret message, embedded to 
it using steganography. The final hash function that 
will be used is produced by XOR-ing H and HS: 

Σ-Hash = H XOR HS  
Σ-Hash is distributed along with the stego-object MS 
and can be verified according to the steps described in 
section 4.2. Figure 1 depicts how this public mode of 
Σ-Hash functions. 

 
Figure 1. Σ-Hash public mode 
 

Alternatively, a user may choose to keep H private 
and only publish HS. In this case: 

Σ-Hash = HS 
This private mode, viewed in Figure 2, can be used 
from the author of M, to monitor possible attempts for 
collision attacks, as we describe in section 4.3.  In the 
next section we will present how a Σ-Hash can be 
verified. 
 
4.2. Verifying 
 

In order to verify the validity of the given hash 
functions in terms of ensuring that there is no attempt 
for collision attack, three steps should be followed. 
Firstly, the given object, MS is hashed in order to 
produce HS’ which is then XOR-ed with Σ-Hash:  

fh (MS) = HS’ 
H’ = Σ-Hash XOR HS’ 

In the case of the private mode there is no need for 
XOR-ing as H’ is already known to be equal to H and 
kept private. 
 

 
Figure 2. Σ-Hash private mode 
 

As we mentioned in the previous section H’ is used 
as the key for embedding random data to M. Thus, in 
order to retrieve H, which is stored as a secret message 
using steganography, the inverse steganographic 
function fs

-1 is performed, using H’ as the stego-key:  
fs

-1(MS, H’) = H 
Evidently, H’ should be equal with H, otherwise a 

collision attack has been attempted. 
 
4.3. Attacking Σ-Hash 
 

We consider an attacker that wishes to attack Σ-
Hash in terms of collision resistance. Such an attacker 
would initially have two choices: find a collision for 
the hash of M or for the hash of MS. In any case this 
would mean that M’ or MS’ should be found so that: 

H’ = fh (M’) = fh (M) = H  or 
HS’ = fh (MS’) = fh (MS) = HS  

respectively.  



Considering the first choice, an attacker computes 
M’ that produces the same hash value with M. In this 
case the embedding of H to M’ would produce a 
significantly different stego-object MS’ ≠ MS. Robust 
steganographic algorithms ensure that the hidden data 
are not embedded into a specific area of the cover 
object but instead are equally and randomly spread into 
it. Thus, even slight variations in the contents of the 
cover object can produce different stego-objects. The 
hash value of a different stego-object MS’ would be 
different from HS and so would be the final Σ-Hash 
value.  

We argue here that a steganographic algorithm fed 
with the same key and secret message but slightly 
different input should produce alternate outputs. In 
detail, inputs should different significantly enough to 
be regarded as two separate objects. For instance we 
consider two images that only differ in some least 
significant bits. If we attempt to embed the same 
information in these images, using the same key and 
the LSB algorithm, the stego-object will be identical in 
both cases. However, one could easily regard the two 
original images as identical. Thus, if significant bits in 
cover objects are different then steganography will 
produce different outputs. Especially in text based 
steganography, where two different cover objects are 
most likely expected to also vary in length, the stego-
object will always be different. This fact also ensures 
that HS. will also be different from H since MS is 
similarly significantly differ from M. 

Similarly, an attacker may choose to find a collision 
for HS by carefully choosing a different stego-object 
MS’ so that: fh (MS’) = HS. In that case the inverse 
steganographic operation on MS’ will give off a 
different secret message than the expected hash value 
H. As the stego-object will be different from the 
original one, the steganographic algorithm will fail to 
provide the original hidden message. Again, even if the 
stego-object has only slightly been altered, the 
fundamental properties of steganography ensure that 
the original hidden message cannot be retrieved. 

Evidently, an attacker should be able to overcome 
the difficulties set by steganography in order to 
successfully attack Σ-Hash. Efficient steganographic 
algorithms ensure that alterations to cover-objects 
result in different stego-objects and alterations to 
stego-objects make original hidden messages 
impossible to retrieve. An attacker would have to find 
a collision for H that also produces the same stego-
object MS, something that is considered hard, having in 
mind the attacks we described in section 2. It should 
also be mentioned that it is hard even to extract M from 
MS as most steganographic functions are not reversible.  

 

4.4. Applications 
 

Naturally, Σ-Hash can be used to enforce hash 
function security. Its use can be applied to all known 
applications of hashing algorithms as long as the 
verification process is altered to match the one 
required by Σ-Hash.  

As we have already mentioned, Σ-Hash was 
originally designed as a solution to source code 
tampering. An attacker able to modify the source code 
will also be able to modify the hash that will be used to 
verify its integrity. Thus, an unsuspicious user may 
download and execute arbitrary code without realising 
that the original code has been modified. However, if 
Σ-Hash is used, the attacker will not be able to 
successfully compute the new Σ-Hash value as he does 
not have knowledge of the cover object. In detail, the 
attacker can only alter the stego object as MS is only 
published. Suppose that he has also found a collision 
for HS. When a user will try to verify Σ-Hash, he will 
not be able to extract the correct information from MS, 
and thus verification will fail. Similarly, Σ-Hash can be 
used to prevent phishing attacks. This can be done by 
using it to verify the hash value of a phishing web 
page. A phishing site will always be slightly different 
compared to the original page and thus the secret 
message, that is H, will not be extracted correctly. In 
such cases steganography is used as a second layer of 
verification which is hard to bypass. 
 
5. Remarks 
 

In this paper we introduced Σ-Hash, a novel mode 
of operation for hashing algorithms that uses 
steganography to achieve better collision resistance. 
We presented the details of our scheme, which can be 
used with any existing or future hash function, and 
analyzed how collisions are avoided. Practically, 
steganography makes the process of finding collisions 
computationally even harder, while the overhead that it 
produces is relatively small as most steganographic 
algorithms have small complexity.  

Currently we are working on a proof of concept 
implementation of Σ-Hash that will enable us to 
experiment with further applications. We have 
demonstrated that our scheme can be used to avoid 
source code tampering, or phishing attacks. We intend 
to present further applications of Σ-Hash, using a real 
world implementation with commonly used hash 
algorithms. Finally, we will provide suggestions for 
specific steganographic algortihms which are optimal 
for using with Σ-Hash. 
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