
Using Steganography to Improve Hash Functions’ Collision Resistance

Emmanouel Kellinis1 and Konstantinos Papapanagiotou2
1KPMG LLP,

One Canada Square, London E14 5AG, United Kingdom
emmanouel.kellinis@kpmg.co.uk

2Dept. of Informatics and Telecommunications, University of Athens,
Panepistimiopolis, Ilissia, Greece, GR15784

conpap@di.uoa.gr

Abstract

Lately, hash function security has received

increased attention. Especially after the recent attacks
that were presented for SHA-1 and MD5, the need for
a new and more robust hash function has become
imperative. Even though many solutions have been
proposed as replacements, the transition to a new
function could be costly and complex. In this paper, we
introduce a mode of operation that can be applied to
any existing or future hash function in order to
improve its collision resistance. In particular, we use
steganography, the art of hiding a message into
another message, to create a scheme, named Σ-Hash,
which enforces the security of hashing algorithms. We
will demonstrate how, apart from hash function
security, Σ-Hash can also be used for securing Open
Source code from tampering attacks and other
applications.

1. Introduction

Cryptographic hash functions are nowadays an
essential part to the majority of cryptographic
protocols. A hash function is a process that takes an
input of arbitrary size and returns a fixed size output,
which is called hash value or message digest. It gives a
solution to the “commitment scheme”, where Alice has
a solution to a problem and she wants to prove that the
problem is solved without giving the solution away. In
that case, she will hash her solution and send the hash
to Bob, who can then generate the same hash if he
finds the same solution. Currently, the most
commonly used hashing algorithms are MD5 [2] and
SHA-1 [1], which are both based on MD4 [3].

Hash functions should have the following
cryptographic properties: first, pre-image resistance

dictates that given the hash value h, it should be
computationally infeasible to find any message m so
that h=hash(m). Moreover, a hash function should also
be second pre-image resistant, which means that given
a message m1 it should be hard to find a message
m2≠m1 so that hash(m1)=hash(m2). Finally, collision
resistance impairs that it should be hard to find two
different messages m1, m2 so that hash(m1)=hash(m2).

Most popular hash functions, such as MD5 and
SHA-1 construct a hash value by applying a variant of
the Merkle-Damgård construction [5],[6] to a
compression function. According to this scheme, a
long message is broken into equal-sized blocks with
the final block being padded to the allowable block
size. Then, a compression function is operated on the
blocks to produce the fixed size hash value. If the
compression function is collision-resistant then so will
be the hash function [5],[6]. Even though the Merkle-
Damgård construction ensures to some point the
security of hash functions, it also has some
vulnerabilities that can be exploited to attack such
algorithms. Examples of such attacks include length
extension and herding attacks.

The aforementioned characteristics of hash
functions as well as the fact that hashes are relatively
easy to compute for any given input, make them a very
attractive solution for a number of applications. These
include authentication, message integrity and digital
signatures. For example, a message can be hashed in
order to verify its authenticity. Similarly, files,
including executables or even source code, are hashed
so that users that download them can also verify their
integrity.

Recently, various attacks [12],[13],[14] to these
algorithms were presented provoking discussions in
order to propose a new, safer hashing algorithm. Apart
from the obvious problem of security and collisions

another issue has also emerged: existing applications
and cryptographic algorithms should be able to easily
migrate to a new possible function, a task that may not
be easy. The hash transition problem, as it is referred
to, has various aspects which have been examined in
[7]. Randomized hashing [8] is a mode of operation
that has been proposed for strengthening hash
functions. It has been designed mainly for use in
digital signatures schemes, without requiring any
alterations in the existing algorithms and their
implementation. It suggests converting existing hash
functions into keyed functions, indexed by a random
value.

Lately, especially with the emergence of the open
source movement, it is very common for users to
download open source programs, compile them locally
and then execute them. This has led to a new form of
attack, usually called source code tampering, where a
malicious user alters the source code or even inserts
arbitrary pieces into it. A user downloading such code
has no way of knowing if the original source code has
been tampered with and of course, cannot be expected
to review every single line of code that he downloads.
Hash functions provide a means for integrity checking
which can mostly detect and correct errors introduced
by the network. A malicious user that is able to modify
the source code remotely he will as easily be able to
also modify its hash value. Such kind of attacks may
be countered with the use of digital signature.
However, the use of digital signatures brings along all
the known issues of public key cryptography:
performance and communication overhead, key
management issues, not to mention the growing
number of identity theft and phishing incidents.

Here, motivated by source code tampering attacks,
we introduce a mode of operation for hash functions,
inspired by randomized hashing, that uses
steganography to enhance collision resistance of
current and future hashing algorithms. Steganography
is used to hide a secret message into another message.
It derives from the combination of the Hellenic words
Stegano (sealed) and Graphy (writing) and it means
secret writing. Secret information can be embedded
into any object that is characterized by redundancy.
Thus, various steganographic algorithms have been
proposed to hide information in images, sound, video
or even plain text. In this paper we use steganographic
functions to produce hash values that are more
resistant to collisions. This mode of operation, called
Σ-Hash (Sigma Hash), can be used in conjunction with
any hashing algorithm. Due to the properties of the
steganographic algorithms that can be used it is hard
for an attacker to produce collisions for Σ-Hash.

The structure of this paper is as follows: in section 2
we briefly examine some of the recent attacks on hash
functions. Subsequently we present the basics of
steganography. In section 4 the proposed Σ-Hash
scheme is presented and analyzed. Finally, we provide
some concluding remarks.

2. Attacks to Hash Functions

As we have already mentioned, even though hash
functions are carefully designed to satisfy the required
security properties, they are still vulnerable to collision
attacks. Due to their nature, it will always be possible
to find two different inputs that will produce the same
output. Using the birthday paradox [16] an attacker can
find a collision for a hash function of range r in r1/2
operations. This is considered the simplest attacking
method, equivalent to a brute force attack. A birthday
attack is considered computationally infeasible for
modern algorithms as for example 280 operations are
required for SHA-1. Moreover, the length extension
property of the Merkle-Damgård transformation allows
the use of padding in order to create collisions.

Nevertheless, other more efficient techniques have
been proposed that can identify collisions in fewer
steps. The first attack in SHA-0 was presented by
Wang [4] in 1997. Earlier, in 1993 some form of
collisions for MD5 had been found [12]. Recently,
Wang’s team discovered collisions in MD4, MD5,
HAVAL-128, and RIPEMD [13], while the authors in
[9] presented a technique that can be used to find
collisions in SHA-0 with a 251 complexity. An
extension of this technique enabled the authors to find
collisions in some reduced versions of SHA-1,
showing that modern hash algorithms may indeed be
vulnerable. Finally, Wang et al showed in [14] that a
collision can be found in SHA-1 with 269
computations.

Even though these attacks are only theoretical, they
demonstrate that the currently most widely used hash
algorithms are indeed vulnerable and eventually, faster
and more practical attacks will be discovered.
Actually, in the case of MD5, the authors of [15]
managed to create two X.509 certificates with different
public keys but the same MD5 hash, showing that a
practical attack is feasible.

3. Steganography

Steganography dates back thousands of years as it
was widely used before any cryptographic system was
developed. Herodotus describes one of the first cases
of using steganography in the ancient world. Many

similar examples have met the public eye since then,
which proves the fact that information hiding in some
cases is essential.

Steganography concerns itself with ways of
embedding a secret message into a cover object,
without altering the properties of the cover object
evidently. The embedding procedure is typically
related with a key, usually called a stego-key. Without
knowledge of this key it will be difficult for a third
party to extract the message or even detect its
existence. Once the cover object has data embedded in
it, it is called a stego object. Thus, for example, we
might embed information in a cover-sound giving a
stego-sound; or embed information in a cover-image
giving a stego-image.

There has been a rapid growth of interest in this
subject over the past years. This is due partly to the
fact that the entertainment industry has become
interested in techniques for hiding encrypted
watermarks inside their products (e.g. CDs, DVDs)
and partly to various restrictions which governments
established regarding cryptography that made people
and business study and advance methods of hiding
their private information in seemingly innocent cover
data. Methods that have been proposed include hiding
messages inside unused space in sound, image and
video files, TCP/IP headers, between file system gaps
and bad sectors, inside executables and "fake spam"
emails and even inside white spaces in text or HTML
code. In general, any object which demonstrates
increased redundancy can be used to hide information.
Steganographic techniques can be classified into two
main categories: substitution techniques, which
involve the substitution of redundant bytes of the cover
message and transform domain techniques, which
embed information in the transform space of the signal
(e.g. in the frequency or spatial domain). Other
categories include spread spectrum, distortion as well
as statistical techniques [11].

Image steganography usually involves hiding
information in the Least Significant Bits (LSB) in the
spatial or frequency domain. It exploits human vision
in the following way: the eye can only discern about 1
million colors, so in a 24 bit per pixel image, changing
the value of the LSB in a pixel or in a DCT coefficient
will not cause a discernible difference under regular
viewing. Audio steganography works in a similar way
as image steganography and exploits human hearing
capabilities. Again, data can be hidden into the LSB.
Other methods for audio steganography include
spreading the signal into the unused frequency
spectrum (using Direct Sequence Spread Spectrum),
introducing echo into a signal or by using the phase
coding method, similar to the echo method and relies

on the relative insensitivity of the human ear to phase
changes.

Text based steganography uses methods that are
similar to those for image and audio steganography.
However, in many cases, hidden messages in texts
need to be carefully protected since an abnormality in
natural language can be easily detected. Techniques
with such characteristics include syntactic and
semantic manipulation of a given text or aesthetic
manipulation, such as the white space method. The
later involves adding spaces or tabs at the end of words
or lines. This modification only slightly affects text’s
appearance. For example, the following HTML code
can be used to add binary 0 or 1, by adding a space
after the keyword “region”, as shown. An extra space
can represent binary 1 and its absence binary 0.
<region id="Image" width="176" height="144" />
<region id="Image" width="176" height="144” />

Additionally, markup languages, like HTML, can
be used to store data. One can store binary values
based on the simplicity of such languages as well as
the freedom to rearrange tags without changing the
displayed page. Programming languages like C or Java
have stricter rules and thus less redundancy. However,
one could always use steganographic methods that are
based on aesthetic changes. For example, white space
steganography could be used as most compilers
disregard spaces and tabs. Moreover, one could
operate steganographic functions on source code
comments, or even insert carefully coded comments in
order to hide a message.

The amount of data that can be hidden in a cover
object is often referred to as embedding capacity. The
embedding capacity is directly related with the secrecy
of the message. Usually, the distortions in the cover
object caused by the steganographic algorithm become
more obvious as a user tries to add more hidden data.
Evidently, there is a point of balance when the
embedded data do not alter the cover object
significantly enough to arouse suspicion.

4. The Σ-Hash Scheme

The proposed scheme combines Steganography and
hash functions in order to improve the collision
resistance of the latter. In this section we will describe
in detail the proposed method.

4.1. Hashing

The Σ-Hash scheme involves three steps: hashing,

embedding and Σ-Hashing, which corresponds to
hashing the stego-object. Let M denote the original

message that will be Σ-Hashed. During the first step M
is hashed using any hashing algorithm fh, to produce
the hash value H:

fh (M) = H
In the second step we embed the hash value H to M.

This can be done by using any known steganographic
algorithm fs. The stego-key for the embedding process
will be again the hash value H that was produced in the
first step. The output of this step will be a stego-object
called MS as follows:

fs (M, H, H) = MS
By choosing H as a key we eliminate the need for a

key exchange and maintenance, as the hash value will
be exchanged anyway. Furthermore, the
steganographic process ensures that the secret
message, in our case the hash value, will be spread
across the original message, regardless of its size and
without affecting its appearance and functionality.
Thus, the original object will remain functional,
regardless of the embedded message.

In the third step the stego-object MS is hashed using
any hashing algorithm, possibly the same as in the first
step:

fh (MS) = HS
where HS is the hash value of the stego-object.

We have now computed two different hash values
for seemingly the same object. The first one, H, is the
usual hash value, while the second one, HS, is
computed over an alternate version of the original
object, which contains a secret message, embedded to
it using steganography. The final hash function that
will be used is produced by XOR-ing H and HS:

Σ-Hash = H XOR HS
Σ-Hash is distributed along with the stego-object MS
and can be verified according to the steps described in
section 4.2. Figure 1 depicts how this public mode of
Σ-Hash functions.

Figure 1. Σ-Hash public mode

Alternatively, a user may choose to keep H private
and only publish HS. In this case:

Σ-Hash = HS
This private mode, viewed in Figure 2, can be used
from the author of M, to monitor possible attempts for
collision attacks, as we describe in section 4.3. In the
next section we will present how a Σ-Hash can be
verified.

4.2. Verifying

In order to verify the validity of the given hash
functions in terms of ensuring that there is no attempt
for collision attack, three steps should be followed.
Firstly, the given object, MS is hashed in order to
produce HS’ which is then XOR-ed with Σ-Hash:

fh (MS) = HS’
H’ = Σ-Hash XOR HS’

In the case of the private mode there is no need for
XOR-ing as H’ is already known to be equal to H and
kept private.

Figure 2. Σ-Hash private mode

As we mentioned in the previous section H’ is used
as the key for embedding random data to M. Thus, in
order to retrieve H, which is stored as a secret message
using steganography, the inverse steganographic
function fs

-1 is performed, using H’ as the stego-key:
fs

-1(MS, H’) = H
Evidently, H’ should be equal with H, otherwise a

collision attack has been attempted.

4.3. Attacking Σ-Hash

We consider an attacker that wishes to attack Σ-
Hash in terms of collision resistance. Such an attacker
would initially have two choices: find a collision for
the hash of M or for the hash of MS. In any case this
would mean that M’ or MS’ should be found so that:

H’ = fh (M’) = fh (M) = H or
HS’ = fh (MS’) = fh (MS) = HS

respectively.

Considering the first choice, an attacker computes
M’ that produces the same hash value with M. In this
case the embedding of H to M’ would produce a
significantly different stego-object MS’ ≠ MS. Robust
steganographic algorithms ensure that the hidden data
are not embedded into a specific area of the cover
object but instead are equally and randomly spread into
it. Thus, even slight variations in the contents of the
cover object can produce different stego-objects. The
hash value of a different stego-object MS’ would be
different from HS and so would be the final Σ-Hash
value.

We argue here that a steganographic algorithm fed
with the same key and secret message but slightly
different input should produce alternate outputs. In
detail, inputs should different significantly enough to
be regarded as two separate objects. For instance we
consider two images that only differ in some least
significant bits. If we attempt to embed the same
information in these images, using the same key and
the LSB algorithm, the stego-object will be identical in
both cases. However, one could easily regard the two
original images as identical. Thus, if significant bits in
cover objects are different then steganography will
produce different outputs. Especially in text based
steganography, where two different cover objects are
most likely expected to also vary in length, the stego-
object will always be different. This fact also ensures
that HS. will also be different from H since MS is
similarly significantly differ from M.

Similarly, an attacker may choose to find a collision
for HS by carefully choosing a different stego-object
MS’ so that: fh (MS’) = HS. In that case the inverse
steganographic operation on MS’ will give off a
different secret message than the expected hash value
H. As the stego-object will be different from the
original one, the steganographic algorithm will fail to
provide the original hidden message. Again, even if the
stego-object has only slightly been altered, the
fundamental properties of steganography ensure that
the original hidden message cannot be retrieved.

Evidently, an attacker should be able to overcome
the difficulties set by steganography in order to
successfully attack Σ-Hash. Efficient steganographic
algorithms ensure that alterations to cover-objects
result in different stego-objects and alterations to
stego-objects make original hidden messages
impossible to retrieve. An attacker would have to find
a collision for H that also produces the same stego-
object MS, something that is considered hard, having in
mind the attacks we described in section 2. It should
also be mentioned that it is hard even to extract M from
MS as most steganographic functions are not reversible.

4.4. Applications

Naturally, Σ-Hash can be used to enforce hash
function security. Its use can be applied to all known
applications of hashing algorithms as long as the
verification process is altered to match the one
required by Σ-Hash.

As we have already mentioned, Σ-Hash was
originally designed as a solution to source code
tampering. An attacker able to modify the source code
will also be able to modify the hash that will be used to
verify its integrity. Thus, an unsuspicious user may
download and execute arbitrary code without realising
that the original code has been modified. However, if
Σ-Hash is used, the attacker will not be able to
successfully compute the new Σ-Hash value as he does
not have knowledge of the cover object. In detail, the
attacker can only alter the stego object as MS is only
published. Suppose that he has also found a collision
for HS. When a user will try to verify Σ-Hash, he will
not be able to extract the correct information from MS,
and thus verification will fail. Similarly, Σ-Hash can be
used to prevent phishing attacks. This can be done by
using it to verify the hash value of a phishing web
page. A phishing site will always be slightly different
compared to the original page and thus the secret
message, that is H, will not be extracted correctly. In
such cases steganography is used as a second layer of
verification which is hard to bypass.

5. Remarks

In this paper we introduced Σ-Hash, a novel mode
of operation for hashing algorithms that uses
steganography to achieve better collision resistance.
We presented the details of our scheme, which can be
used with any existing or future hash function, and
analyzed how collisions are avoided. Practically,
steganography makes the process of finding collisions
computationally even harder, while the overhead that it
produces is relatively small as most steganographic
algorithms have small complexity.

Currently we are working on a proof of concept
implementation of Σ-Hash that will enable us to
experiment with further applications. We have
demonstrated that our scheme can be used to avoid
source code tampering, or phishing attacks. We intend
to present further applications of Σ-Hash, using a real
world implementation with commonly used hash
algorithms. Finally, we will provide suggestions for
specific steganographic algortihms which are optimal
for using with Σ-Hash.

6. References

[1] NIST, Secure hash standard. Federal Information
Processing Standard, FIPS-180-1, April 1995.
[2] R. Rivest, The MD5 Message-Digest Algorithm. RFC
1321, IETF, April 1992.
[3] R. Rivest, The MD4 Message-Digest Algorithm. RFC
1320, IETF, April 1992.
[4] X. Y. Wang. The Collision attack on SHA-0. In
Chinese, to appear on www.infosec.edu.cn, 1997.
[5] R.C. Merkle, A Certified Digital Signature. In
Advances in Cryptology - CRYPTO '89 Proceedings,
Lecture Notes in Computer Science Vol. 435, G. Brassard,
ed, Springer-Verlag, 1989, pp. 218-238.
[6] I. Damgård, A Design Principle for Hash Functions. In
Advances in Cryptology - CRYPTO '89 Proceedings,
Lecture Notes in Computer Science Vol. 435, G. Brassard,
ed, Springer-Verlag, 1989, pp. 416-427.
[7] S. M. Bellovin and E. K. Rescorla, Deploying a New
Hash Algorithm, NIST Hash Function Workshop, October
2005.
[8] S. Halevi and H. Krawczyk, Strengthening Digital
Signatures via Randomized Hashing, Internet Draft, IETF,
May 2005.
[9] E. Biham, R. Chen, A. Joux, P. Carribault, W. Jalby
and C. Lemuet. Collisions in SHA-0 and Reduced SHA-1.
Advances in Cryptology–Eurocrypt’05, pp.36-57, May 2005.

[10] X. Wang, D. Feng, X. Lai, and H. Yu, “Collisions for
hash functions md4, md5, haval-128 and ripemd,”
Cryptology ePrint Archive, Report 2004/199, 2004.
Available at: http://eprint.iacr.org/
[11] S. Katzenbeisser, F. A. P. Petitcolas, Information
Hiding Techniques for Steganography and Digital
Watermarking. Artech House, 2000.
[12] B. den Boer and A. Bosselaers, Collisions for the
Compression Function of MD5. EUROCRYPT 1993,
pp293–304.
[13] X. Y. Wang, X. J. Lai, D. G. Feng, H. Chen, X. Y. Yu.
Cryptanalysis for Hash Functions MD4 and RIPEMD.
Advances in Cryptology–Eurocrypt’05, pp.1-18, Springer-
Verlag, May 2005.
[14] X. Wang, Y. Yin, H. Yu, Finding Collisions in the Full
SHA-1. In Advances in Cryptology - CRYPTO '05, 2005.
[15] A. Lenstra, X. Wang and B. de Weger, Colliding X.509
Certificates, Cryptology ePrint Archive, Report 2005/067,
2005. Available at: http://eprint.iacr.org/
[16] M. Bellare, T. Kohno, Hash Function Balance and its
Impact on Birthday Attacks. Advances in Cryptology-
EUROCRYPT 04. Springer-Verlag, C. Cachin and J.
Camenisch eds., 2004.

http://eprint.iacr.org/

	1. Introduction
	2. Attacks to Hash Functions
	3. Steganography
	4. The Σ-Hash Scheme
	4.1. Hashing
	4.2. Verifying
	4.3. Attacking Σ-Hash
	4.4. Applications
	5. Remarks
	6. References

