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The Random Oracle 
Methodology
♦ “Paradigm for designing secure and 

efficient protocols” (BR’93).
♦Assume existence of a publicly accessible 

ideal random function and prove protocol 
security.

♦Replace ideal random function by an actual 
“secure hash function” (such as SHA-1) to 
deploy protocol.

♦Hope that nothing breaks down!



Is SHA-1 Really Random?
♦ Is SHA-1 obscure enough to successfully 

replace a random oracle?
♦ No. Practical hash functions usually 

iteratively apply a fixed length 
compression function to the input (called the 
Merkle Damgard construction).
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Why Merkle Damgard?

♦Gives a collision resistant hash function if 
the round function is collision-resistant.
– Need MD strengthening for variable length input.

♦Based on the design principle of using 
simple things to build complex ones. 



Is Merkle-Damgard Really 
Random?
♦ No!
♦ Consider the MAC construction H(k||m).

– k is the MAC key
– m is the message

♦ This construction is secure if H is a monolithic 
random function.

♦ But a simple, generic attack possible when H
follows the MD paradigm (MD strengthening doesn’t help).
– MACk( m , z ) = f ( MACk( m ) , z )
– This is part of the motivation for HMAC.

♦ Works no matter how good the round function f is!



Extension attack
♦∀z, from H(x1,…,x     ) anybody can 

compute H(x1,…,x ,z) without knowing 
x1,…,x .

♦Conclusion: Irrespective of the round 
function, MD cannot be used as a 
monolithic RO.
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Our Motivation

♦Gap in design of a monolithic random 
function and an iterative construction.

♦SHA-1 cannot be “secure as a random 
oracle”, no matter how good its 
compression function is.

♦Not clear what one means by being “secure 
as a random oracle”. 
– Should be programmable, plaintext-aware, …



Our Results
♦ A definition of “implementing a random oracle” 

from a fixed-length building block f (assumed to be an 

ideal black-box random function).
– Guarantees security against all generic attacks

♦ Constructions that “implement a random function” 
consistent with our definition.

♦ Practical and easily implementable extensions of 
existing MD based constructions.

♦ Extensions to ideal cipher model



Plan of talk

1. First we give our definition of “secure 
extension of RO”.

2. We give four secure constructions of RO 
from a fixed length black box random 
function.

3. Then we give secure constructions of RO 
from an ideal block cipher.



Our Definition
♦ Indifferentiability (Maurer et al) turns out to be 

the right notion.
Fixed input length
random function

Construction of
a variable length

RO from f
Monolithic variable

length RO
Simulator for f
in the H model
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CH is secure if ∃ Sf s.t. no D can tell apart the above two scenarios

Note : Sf cannot see the queries made by the distinguisher D to the RO H



Why this Definition?

♦Let P be a protocol secure in ROM with a 
monolithic RO H.

♦Let A be an adversary attacking the protocol 
P.

♦Let CH be a random oracle construction (based 

on black-box function f) satisfying the above 
definition.



Why This Definition? (contd.)
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Why a new definition?

♦ Do any of the existing definitions (pseudo-

randomness, collision-resistance etc) suffice?
♦ No. We need to preserve all properties of 

the monolithic RO such as programmability, 
extractability etc.

♦ Consider the construction CH(x) = f(h(x)):
– f is a fixed length random function
– h is a collision-resistant hash function
– Seems like secure “hash-then-sign” paradigm 



Why a new definition? (contd.)

♦ Indeed, CH(x) = f(h(x)) works for achieving 
collision-resistance and pseudorandomness

♦But does not give extractability:
– From f-queries can get h(x), but cannot get x!

♦Consider distinguisher D who computes 
h(x) = y (for arbitrary x) and then queries f(y):
– In the real model, f(y) = f(h(x)) = CH(x)
– In the ideal model, need Sf(y) = H(h-1 (y))!

(notice, Sf does not see x!)



Our Question

♦What we know:
– Existing Constructions (MD) are insecure.
– Have formal definition of secure extension.

♦What we need:
– Secure construction of a variable length RO 

from a fixed length black-box random function.
– Make as few changes to MD as possible.



New Constructions

♦ We propose four modifications to plain 
Merkle-Damgard construction:

1. MD applied to Prefix-free Encoding of input.
2. Chopping the output of plain MD.
3. Apply an independent RO (the NMAC construction)

4. HMAC construction : Efficiently implement 
NMAC using a single RO.

♦ Describe them below explaining how they 
avoid extension attack



Prefix free Encoding

♦Apply the plain Merkle-Damgard 
construction to a prefix free encoding of the 
input.

♦Foils extension attack because no final 
output of MD = intermediate output of MD.



Prefix free Encoding (contd.)

♦ Example 1 : Prepend number of blocks. 
(note, MD strengthening appends number of blocks)

– Advantage : Great input bandwidth.
– Disadvantage : Online processing impossible.

♦ Example 2 : append 0 to internal blocks and 1 in 
last block.
– Advantage : Online processing possible.
– Disadvantage : Poor input bandwidth.
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Chop construction

♦Dropping a sufficient (ω(log n)) number of 
output bits in plain MD gives a secure 
construction.

♦Avoids Extension attack by hiding part of 
the output of last f from the adversary.
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Chop construction (contd.)

♦Already used in the design of SHA-384 (which is 

same as SHA-512 with 128 dropped bits).
♦Advantages :

– Can be processed in an online fashion.
♦Disadvantages:

– Has exact security O(q2/2-s) (where s is the number of 
chopped bits). And is thus inapplicable for short 
output length hash functions.

– Poor output bandwidth.



NMAC construction
♦ Proposed by (Bellare et al) as a secure MAC 

construction.
♦ Uses two independent secure “random” functions f

and g.
♦ Extension attack avoided since adversary learns 

nothing about internal outputs from final output.
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NMAC construction (contd.)

♦Advantages : 
– Optimal output bandwidth
– Good exact security

♦Disadvantages :
– Need to get two good and independent fixed 

length hash functions.
– Could try domain separation techniques by 

appending 0 (internal blocks) or 1 (last block), but this 
maps us back to “wasteful” prefix free.



HMAC construction
♦ Same as NMAC, except get the second function g

from f itself. 
– In fact, we’ll reuse the same IV!

♦ But prepend an extra block of 0s to the input (and 
adjust the output to right length)!

♦ This gives us two black-box calls to plain SHA-1!
– Essentially, call SHA-1(SHA-1(0kx)).
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HMAC construction (contd.)

♦Has good output bandwidth.
♦Has good exact security.
♦Can be processed in an online fashion.
♦Can be viewed as making two black-box 

calls to plain MD construction (the second one 
being on constant length input).

– Very easy to use in practice!
– No need to change internal implementation!

♦No reason not to use ☺



Formal Proof: an intuition

♦ The simulator Sf for f in the ideal RO model:
– Keeps track of all chains formed by the adversary’s queries.
– First query gives Sf message length
– Responds to all queries randomly until the last round (knows     in advance).
– Matches the response in the last round with H(x1 ||…||     ).

♦ Prefix freeness ensures that the distinguisher cannot use H
queries to get internal MD values directly.

♦ Random responses prevent collisions amongst chains.
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Going a little deeper

♦Compression function used in hash function 
constructions not designed from scratch.

♦Most of the times (and in particular in SHA-1) it is 
based on a block cipher.

♦Davies Myers construction:
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Davies Myers Construction



Ideal cipher constructions
♦ Obvious approach would be to prove DM const. 

applied to ideal cipher gives an ideal random 
function (under indifferentiablity).

– i.e. f(x ||y) = Ex(y) ⊕ y is RO if E is IC.
♦ Doesn’t hold true (requires one to invert a random function)

♦ All of our 4 suggestions still secure in the ideal 
cipher model when Davies Myers is used for f.



Going even deeper?
♦Have to stop somewhere (still need ideal 

assumptions or else no need for RO!).
♦Better design principle.

– Can concentrate on the building block and not 
worry about “generic attacks”.

♦Word of caution: do not address
– Weaknesses in compression function (still 

“black magic” )
– Exponential attacks, such as Joux multi-

collision attack.



Concluding..
♦We have managed to achieve the following 

two goals:
– Propose a new design criterion for hash 

functions aimed to resist all generic attacks.
– Suggest minimal and easily implementable 

changes to current hash function constructions.
♦All design effort can now be concentrated 

on getting a good compression function or 
block cipher.
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Abstract. The most common way of constructing a hash function (e.g., SHA-1) is
to iterate a compression function on the input message. The compression function is
usually designed from scratch or made out of a block-cipher. In this paper, we introduce
a new security notion for hash-functions, stronger than collision-resistance. Under this
notion, the arbitrary length hash function H must behave as a random oracle when the
fixed-length building block is viewed as an ideal primitive. This enables to eliminate
all possible generic attacks against iterative hash-functions. In this paper, we show
that the current design principle behind hash functions such as SHA-1 and MD5 —
the (strengthened) Merkle-Damg̊ard transformation — does not satisfy this security
notion. We provide several constructions that provably satisfy this notion; those new
constructions introduce minimal changes to the plain Merkle-Damg̊ard construction
and are easily implementable in practice. This paper is a modified version of a paper
that appeared in Crypto 2005.

1 Introduction

Hash Function Design. The most common way of constructing a hash function is to
iterate a compression function on the input message. The compression function is usually
designed from scratch or made out of a block-cipher. More precisely, an arbitrary-length hash
function is built by first heuristically constructing a fixed-length building block, such as a
fixed-length compression function or a block cipher, and then iterating this building block in
some manner to extend the input domain arbitrarily. For example, SHA-1 [17], MD5 [19], as
well as all the other hash function we know of, are constructed by applying some variant of the
Merkle-Damg̊ard construction to an underlying compression function f : {0, 1}n+κ → {0, 1}n

(see Figure 5):

Function H(m1, . . . , mℓ) :
let y0 = 0n (more generally, some fixed IV value can be used)
for i = 1 to ℓ do yi ← f(yi−1, mi)
return yℓ

When the number of κ-bit message blocks ℓ is not fixed, one essentially appends an extra block
mℓ+1 containing the binary representation 〈|m|〉 of the length of the message (prepended by
1 and a string of 0’s in order to make everything a multiple of κ; the exact details will not
matter for our discussion). The fixed-length compression function f can either be constructed
from scratch or made out of a block-cipher E via the Davies-Meyer construction (see [32] and
Figure 9): f(x, y) = Ey(x) ⊕ x. For example, the SHA-1 compression function was designed
specifically for hashing, but a block-cipher can nevertheless be derived from it, as illustrated
in [21].

It is well known that this construction is vulnerable to a so-called message expansion

attack : given the hash of m, one can easily compute the hash of m‖y for any arbitrary block
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y. Let us illustrate this attack with a well known example. A common suggestion to construct
a MAC algorithm is to simply include a secret key k as part of the input of the hash function,
and take for example MAC(k, m) = H(k‖m). It is easy to see that this construction is secure
when H is modelled as a random oracle [4], as no adversary can output a MAC forgery
except with negligible probability. However, this MAC scheme is completely insecure for any
Merkle-Damg̊ard construction considered so far (including Merkle-Damg̊ard strengthening
used in current hash functions such as SHA-1, and any of the 64 block-cipher based variants
of iterative hash-functions considered in [30, 9]), no matter which (ideal) compression function
f (or a block cipher E) is used. Namely, given MAC(k, m) = H(k‖m), one can extend the
message m with any single arbitrary block y and deduce MAC(k, m‖y) = H(k‖m‖y) without
knowing the secret key k (even with Merkle-Damg̊ard strengthening, one could still forge
the MAC by more or less setting y = 〈|m|〉, where the actual block depends on the exact
details of the strengthening). This (well known) example illustrates that the construction of a
MAC from an iterated hash function requires a specific analysis, and cannot be derived from
the security of this MAC with a monolithic hash function H . One can view this “message
expansion attack” as a generic attack since it applies for any compression function or block-
cipher used in the Merkle-Damg̊ard construction.

We believe that a good design criteria for hash-functions should eliminate all possible
generic attacks. It is well known that for the particular case of MACs one should use the
HMAC nested construction [8] in order to avoid the previous message expansion attack.
However, there may exist other applications and protocols which may be secure when the
hash function H is seen as a monolithic hash function, but completely insecure when an
iterative Merkle-Damg̊ard hash function is used instead. More precisely, a proof in the random
oracle model [4] indicates that no attacker can break the scheme when when H is seen as
a “monolithic” random oracle, but it does not say anything when an iterated hash function
built from a some smaller building block f is used instead. Since the real implementation
of H as an iterated hash function has much more structure than a random monolithic hash
function would have, this structure could possibly help the attacker and somehow invalidate
the proof in the random oracle model. To put this into a different perspective, all the ad-hoc
(and hopefully “secure”) design effort for widely used hash functions such as SHA-1 has been
placed into the design of the fixed-length building block f (or E). On the other hand, even
if f (or E) were assumed to be ideal, the current proofs in the random oracle model do not
guarantee the security of the resulting system when such iterated hash function H is used!
To summarize, we believe that a good design criteria for hash functions is to eliminate all
possible generic attacks right from the beginning, and not to rely on ad-hoc constructions in
order to eliminate those generic attacks.

Our Goals. Our goal is two-fold. First, we would like to obtain a design criteria for hash-
functions that would rule out all possible generic attacks. In other words, an adversary should
not be able to take advantage of the iterative structure of the hash-function. Second, while the
design criteria we seek should not be too specific to some variant of the Merkle-Damg̊ard trans-
formation, we would like to give secure constructions which resemble what is done in practice
as much as possible. Unfortunately, we already argued that the current design principle be-
hind hash functions such as SHA-1 and MD5 — the (strengthened) Merkle-Damg̊ard trans-
formation — will not be secure for our ambitious goal. Therefore, instead of giving new and
practically unmotivated constructions, our secondary goal is to come up with minimal and
easily implementable in practice changes to the plain Merkle-Damg̊ard construction, which
would satisfy our security definition.

Our results. This paper is a modified version of a paper to appear at Crypto 2005 [13].
First, we give a satisfactory definition of what it means to implement an arbitrary-length
hash-function that resists all possible generic attacks. Intuitively, an iterative hash-function
should behave as a truly random hash function, that is, it should “emulate” a random oracle.
The random oracle model has been introduced by Bellare and Rogaway as a “paradigm for



designing efficient protocols” [4]. It assumes that all parties, including the adversary, have
access to a public, truly random hash function H . This model has been proven extremely
useful for designing simple, efficient and highly practical solutions for many problems. We
provide a formal definition of what is means to emulate a random oracle H from a fixed-
length building block f or E. Our definition is based on the indifferentiability framework of
Maurer et al. [24]. The key property of this definition is that if a particular construction of
H from f (or E) meets this definition, then any application proven secure assuming H is a
random oracle would remain secure if we plug in our construction (although still assuming
that the underlying fixed-length primitive f or E was ideal). In other words, we can safely
use our implementation of H as if we were using a monolithic random oracle H . This implies
that our implementation of H will rule out all possible generic attacks.

Having a good security definition, we provide several provable constructions. We start by
giving four modifications to the (insecure) plain Merkle-Damg̊ard construction which yield a
secure random oracle H taking arbitrary-length input, from a compression function viewed as a
random oracle taking fixed-length input. This result can be viewed as a secure domain extender
for the random oracle, which is an interesting result of independent interest. We remark that
domain extenders are well studied for such primitives as collision-resistant hash functions [14,
26], pseudorandom functions [8], MACs [1, 25] and universal one-way hash functions [7, 31].
Although the above works also showed that some variants of Merkle-Damg̊ard yield secure
domain extenders for the corresponding primitive in question, these results are not sufficient
to claim a domain extender for the random oracle.

Our secure modifications to the plain Merkle-Damg̊ard construction are the following. (1)
Prefix-Free Encoding : we show that if the inputs to the plain MD construction are guaranteed
to be prefix-free, then the plain MD construction is secure. (2) Dropping Some Output Bits :
we show that by dropping a non-trivial number of output bits from the plain MD chaining, we
get a secure random oracle H even if the input is not encoded in the prefix-free manner. (3)
Using NMAC construction (see Figure 8a): we show that by applying an independent hash
function g to the output of the plain MD chaining (as in the NMAC construction [8]), then
once again we get a secure construction of an arbitrary-length random oracle H , in the random
oracle model for f and g. (4) Using HMAC Construction (see Figure 8b): we show a slightly
modified variant of the NMAC construction allowing us to conveniently build the function
g from the compression function f itself (as in [8] when going from NMAC to HMAC)! In
this latter variant, one implements a secure hash function H by making two black-box calls
to the plain Merkle-Damg̊ard construction (with the same fixed IV and a given compression
function f): first on (ℓ + 1)-block input 0κm1 . . . mℓ, getting an n-bit output y, and then on
one-block κ-bit input y′ (obtained by either truncating or padding y depending on whether
or not κ > n), getting the final output.

However, in practice most hash-function constructions are block-cipher based, either ex-
plicitly as in [30] or implicitly as for SHA-1. Therefore, we consider the question of designing
an arbitrary-length random oracle H from an ideal block cipher E, specifically concentrat-
ing on using the Merkle-Damg̊ard construction with the Davies-Meyer compression function
f(x, y) = Ey(x)⊕x, since this is the most practically relevant construction. We show that all
of the four fixes to the plain MD chaining which worked when f was a fixed-length random
oracle, are still secure (in the ideal cipher model) when we plug in f(x, y) = Ey(x)⊕x instead.
Specifically, we can either use a prefix-free encoding, or drop a non-trivial number of output
bits (this has already been used in practice in the design of hash functions SHA-348 and
SHA-224 [18], both obtained by dropping some output bits from SHA-512 and SHA-256),
or apply an independent random oracle g to the output of plain MD chaining, or use the
optimized HMAC construction which allows us to build this function g from the ideal cipher
itself.



2 Definitions

In this section, we introduce the main notations and definitions used throughout the paper.
Our security notion for secure hash-function is based on the notion of indifferentiability of
systems, introduced by Maurer et al. in [24]. This is an extension of the classical notion of
indistinguishability, when one or more oracles are publicly available, such as random oracles
or ideal ciphers. This notion is based on ideas from the Universal Composition framework
introduced by Canetti in [10] and on the model of Pfitzmann and Waidner [29]. The indif-
ferentiability notion in [24] is given in the framework of random systems providing interfaces
to other systems, but equivalently we use this notion in the framework of Interactive Turing
Machines (as in [10]).

We define an ideal primitive as an algorithmic entity which receives inputs from one of
the parties and deliver its output immediately to the querying party. The ideal primitives
that we consider in this paper are random oracles and ideal ciphers. A random oracle [4] is an
ideal primitive which provides a random output for each new query. Identical input queries
are given the same answer. An ideal cipher is an ideal primitive that models a random block-
cipher E : {0, 1}κ × {0, 1}n → {0, 1}n. Each key k ∈ {0, 1}κ defines a random permutation
Ek = E(k, ·) on {0, 1}n. The ideal primitive provides oracle access to E and E−1; that is, on
query (0, k, m), the primitive answers c = Ek(m), and on query (1, k, c), the primitive answers
m such that c = Ek(m).

We now proceed to the definition of indifferentiability [24] :

Definition 1. A Turing machine C with oracle access to an ideal primitive G is said to be
(tD, tS , q, ε) indifferentiable from an ideal primitive F if there exists a simulator S, such that
for any distinguisher D it holds that :

∣

∣Pr
[

DC,G = 1
]

− Pr
[

DF ,S = 1
]∣

∣ < ε

The simulator has oracle access to F and runs in time at most tS. The distinguisher runs in
time at most tD and makes at most q queries. Similarly, CG is said to be (computationally) in-
differentiable from F if ε is a negligible function of the security parameter k (for polynomially
bounded tD and tS).

As illustrated in Figure 1, the role of the simulator is to simulate the ideal primitive G
so that no distinguisher can tell whether it is interacting with C and G, or with F and S; in
other words, the output of S should look “consistent” with what the distinguisher can obtain
from F . Note that the simulator does not see the distinguisher’s queries to F ; however, it can
call F directly when needed for the simulation.

C G F S

D

Fig. 1. The indifferentiability notion: the distinguisher D either interacts with algorithm C and ideal
primitive G, or with ideal primitive F and simulator S. Algorithm C has oracle access to G, while
simulator S has oracle access to F .

In the rest of the paper, the algorithm C will represent the construction of an iterative
hash-function (such as the Merkle-Damg̊ard construction recalled in the introduction). The



ideal primitive G will represent the underlying primitive used to build the hash-function. G
will be either a random oracle (when the compression function is modelled as a random or-
acle), or an ideal block-cipher (when the compression function is based on a block-cipher).
The ideal primitive F will represent the random oracle that the construction C should em-
ulate. Therefore, one obtains the following setting : the distinguisher has oracle access to
both the block-cipher and the hash-function, and these oracles are implemented in one of the
following two ways: either the block-cipher E is chosen at random and the hash-function C

is constructed from it, or the hash-function H is chosen at random and the block-cipher is
implemented by a simulator S with oracle access to H . Those two cases should be indistin-
guishable, that is the distinguisher should not be able to tell whether the block-cipher was
chosen at random and the iterated hash-function constructed from it, or the hash-function
was chosen at random and the block-cipher then “tailored” to match that hash-function.

It is shown in [24] that if CG is indifferentiable from F , then CG can replace F in any
cryptosystem, and the resulting cryptosystem is at least as secure in the G model as in the
F model. For example, if a block-cipher based iterative hash function is indifferentiable from
a random oracle in the ideal cipher model, then the iterative hash-function can replace the
random oracle in any cryptosystem, and the resulting cryptosystem remains secure in the
ideal cipher model if the original scheme was secure in the random oracle model.

C G F

P A P A'

ε ε

Fig. 2. The environment E interacts with cryptosystem P and attacker A. In the G model (left), P
has oracle access to C whereas A has oracle access to G. In the F model, both P and A′ have oracle
access to F

We use the definition of [24] to specify what it means for a cryptosystem to be at least as
secure in the G model as in the F model. A cryptosystem is modelled as an Interactive Turing
Machine with an interface to an adversary A and to a public oracle. The cryptosystem is run
by an environment E which provides a binary output and also runs the adversary. In the G
model, cryptosystem P has oracle access to C whereas attacker A has oracle access to G. In
the F model, both P and A have oracle access to F . The definition is illustrated in Figure 2.

Definition 2. A cryptosystem is said to be at least as secure in the G model with algorithm
C as in the F model, if for any environment E and any attacker A in the G model, there
exists an attacker A′ in the F model, such that

∣

∣

∣
Pr

[

E(PC ,AG) = 1
]

− Pr
[

E(PF ,A′F) = 1
]∣

∣

∣

is a negligible function of the security parameter k. Similarly, a cryptosystem is said to be
computationally at least as secure, etc., if E, A and A′ are polynomial-time in k.

The following theorem from [24] shows that security is preserved when replacing an ideal
primitive by an indifferentiable one :



Theorem 1. Let P be a cryptosystem with oracle access to an ideal primitive F . Let C be an
algorithm such that CG is indifferentiable from F . Then cryptosystem P is at least as secure
in the G model with algorithm C as in the F model.

Proof. We only provide a proof sketch; see [24] for a full proof. Let P be any cryptosystem,
modelled as an Interactive Turing Machine. Let E be any environment, and A be any attacker
in the G model. In the G model, P has oracle access to C whereas A has oracle access to
ideal primitive G; moreover environment E interacts with both P and A. This is illustrated
in Figure 3 (left part).

C G F S

P A P A

ε ε

D D

A'

Fig. 3. Construction of attacker A′ from attacker A and simulator S .

Since CG is indifferentiable from F (see Figure 1), one can replace (C,G) by (F , S) with
only a negligible modification of the environment’s output distribution. As illustrated in
Figure 3, by merging attacker A and simulator S, one obtains an attacker A′ in the F model,
and the difference in E ’s output distribution is negligible. ⊓⊔

3 Domain Extension for Random Oracles

In this section, we show how to construct an iterative hash-function indifferentiable from a
random oracle, from a compression function viewed as a random oracle. We start with two
simple and intuitive constructions that do not work.

3.1 H(x) = f(h(x)) for Random Oracle f and Collision-Resistant One-way
Hash-function h

One could hope to emulate a random oracle (with arbitrary-length input) by taking :

Cf (x) = f(h(x))

where f : {0, 1}n → {0, 1}n is modelled as a random oracle and h : {0, 1}∗ → {0, 1}n is
any collision-resistant one-way hash-function (not modelled as a random oracle). However,
we show that such Cf is not indifferentiable from a random oracle; namely, we construct a
distinguisher that can fool any simulator.

As illustrated in Figure 4, the distinguisher first generates an arbitrary m and computes
u = h(m). Then it queries v = f(u) to random oracle f and queries z = Cf (m) to Cf .
It then checks that z = v and outputs 1 in this case, and 0 otherwise. It is easy to see
that the distinguisher always output 1 when interacting with Cf and f , but outputs 0 with



f H S
h

f

C(m)    =    f(h(m)) 

C

H(m)    =   S(h(m))

Fig. 4. The simulator cannot output H(m) since it only receives h(m) and cannot recover m from
h(m).

overwhelming probability when interacting with H and any simulator S. Namely, when the
distinguisher interacts with H and S, the simulator only receives u = h(m); therefore, in order
to output v such that v = H(m), the simulator must either recover m from h(m) (and then
query H(m)) or guess the value of H(m), which can be done with only negligible probability.

3.2 Plain Merkle-Damg̊ard Construction

We show that the plain Merkle-Damg̊ard construction (see Figure 5) fails to emulate a ran-
dom oracle (taking arbitrary-length input) when the compression function f is viewed as a
random oracle (taking fixed-length input). For simplicity, we only consider the usual Merkle-
Damg̊ard variant, although the discussion easily extends to the strengthened variant which
appends the message length 〈|m|〉 at the last block :

Function MDf (m1, . . . , mℓ) :
let y0 = 0n (more generally, some fixed IV value can be used)
for i = 1 to ℓ do yi ← f(yi−1, mi)
return yℓ ∈ {0, 1}n.

where for all i, |mi| = κ and f : {0, 1}n+κ → {0, 1}n.

IV

m1 m2

ff f
y1 y2

yℓ

mℓ

Fig. 5. The plain Merkle-Damg̊ard Construction

We have already mentioned in introduction a counter-example based on MAC. Namely, we
showed that MAC(k, m) = H(k‖m) provides a secure MAC in the random oracle model for
H , but is completely insecure when H is replaced by the previous Merkle-Damg̊ard construc-
tion MDf , because of the message extension attack. In the following, we give a more direct
refutation based on the definition of indifferentiability, using again the message extension
attack.

We consider only one-block messages or two-block messages. For such messages, we have
that MDf (m1) = f(0, m1) and MDf (m1, m2) = f(f(0, m1), m2). We build a distinguisher
that can fool any simulator as follows. The distinguisher first makes a MDf -query for m1

and receives u = MDf (m1). Then it makes a query for v = f(u, m2) to random oracle



f . The distinguisher then makes a MDf -query for (m1, m2) and eventually checks that v =
MDf (m1, m2); in this case it outputs 1, and 0 otherwise. It is easy to see that the distinguisher
always outputs 1 when interacting with MDf and f . However, when the distinguisher interacts
with H and S (who must simulate f), we observe that S has no information about m1 (because
S does not see the distinguisher’s H-queries). Therefore, the simulator cannot answer v such
that v = H(m1, m2), except with negligible probability.

3.3 Prefix-free Merkle-Damg̊ard

In this section, we show that if the inputs to the plain MD construction are guaranteed
to be prefix-free, then the plain MD construction is secure. Namely, prefix-free encoding
enables to eliminate the message expansion attack described previously. This “fix” is similar
to the fix for the CBC-MAC [3], which is also insecure in its plain form. Thus, the plain
MD construction can be safely used for any application of the random oracle H where the
length of the inputs is fixed or where one uses domain separation (e.g., prepending 0, 1, . . .

to differentiate between inputs from different domains). For other applications, one must
specifically ensure that prefix-freeness is satisfied.

A prefix-free code over the alphabet {0, 1}κ is an efficiently computable injective function
g : {0, 1}∗ → ({0, 1}κ)∗ such that for all x 6= y, g(x) is not a prefix of g(y). Moreover, it must
be easy to recover x given only g(x). We provide two examples of prefix-free encodings. The
first one consists in prepending the message size in bits as the first block. The last block is
then padded with the bit one followed by zeroes.

Function g1(m) :
let N be the message length of m in bits.
write m as (m1, . . . , mℓ) where for all i, |mi| = κ

and with the last block mℓ padded with 10r.
let g1(m) = (〈N〉, m1, . . . , mℓ) where 〈N〉 is a κ-bit binary encoding of N .

An important drawback of this encoding is that the message length must be known in
advance; this can be a problem for streaming applications in which a large message must be
processed on the fly. Our second encoding g2 does not suffer from this drawback, but requires
to waste one bit per block of the message :

Function g2(m) :
write m as (m1, . . . , mℓ) where for all i, |mi| = κ− 1

and with the last block mℓ padded with 10r.
let g2(m) = (0|m1, . . . , 0|mℓ−1, 1|mℓ).

Given any prefix-free encoding g, we consider the following construction of the iterative
hash-function pf-MDf

g : {0, 1}∗ → {0, 1}n, using the Merkle-Damg̊ard hash-function MDf :
({0, 1}κ)∗ → {0, 1}n defined previously.

Function pf-MDf
g (m) :

let g(m) = (m1, . . . , mℓ)

y ← MDf (m1, . . . , mℓ)
return y

Theorem 2. The previous construction is (tD, tS , q, ǫ)-indifferentiable from a random oracle,
in the random oracle model for the compression function, for any tD, with tS = ℓ · O(q2) and
ǫ = 2−n · ℓ2 · O(q2), where ℓ is the maximum length of a query made by the distinguisher D.

Proof. Due to lack of space, we only provide a proof sketch for a particular prefix-free
encoding which has a simpler proof; the proof for any prefix-free encoding will be provided
in the full version of this paper.



The particular prefix-free encoding that we consider consists in adding the message-length
as part of the input of f ; moreover, the index of the current block is also included as part
of the input of f , so that f can be viewed as an independent random oracle for each block
mi. Specifically, we construct an iterative hash-function Cf : ({0, 1}κ)∗ → {0, 1}n from a
compression function f : {0, 1}n+κ+2·t→ {0, 1}n as follows :

Function Cf (m1, . . . , mℓ) :
let y0 = 0n

for i = 1 to ℓ do yi ← f(yi−1, mi, 〈ℓ〉, 〈i〉)
return yℓ

where for all i, |mi| = κ. The string 〈ℓ〉 is a t-bit binary encoding of the message length ℓ,
and 〈i〉 is a t-bit encoding of the block index. The construction is shown in Figure 6.

m1 m2 mℓ

fff
IV

〈1〉 〈2〉 〈ℓ〉

〈ℓ〉〈ℓ〉〈ℓ〉

Fig. 6. Merkle-Damg̊ard with a particular prefix-free encoding.

In the following, we show that Cf is indifferentiable from a random oracle, in the random
oracle model for f . Since the block-length ℓ is part of the input of the compression function
f , we have that Cf behaves independently for messages of different length. Therefore, we
can restrict ourselves to messages of fixed length ℓ, i.e. it suffices to show that for all ℓ, the
construction Cf with message length ℓ is indifferentiable from random oracle Hℓ : ({0, 1}κ)ℓ →
{0, 1}n.

We consider for all 1 ≤ j ≤ ℓ the function C
f
j : ({0, 1}κ)j → {0, 1}n outputting the

intermediate value yj in Cf . From the definition of Cf , we have for all 2 ≤ j ≤ ℓ :

C
f
j (m1, . . . , mj) = f(Cf

j−1(m1, . . . , mj−1), mj , 〈ℓ〉, 〈j〉) (1)

We provide a recursive proof that for all j, the construction C
f
j is indifferentiable from a

random oracle. The result for Cf will follow for j = ℓ. The property clearly holds for j = 1.
Assuming now that it holds for j−1, we show that it holds for j. We use the following lemma :

Lemma 1. Let h1 : {0, 1}a → {0, 1}n and h2 : {0, 1}n+κ → {0, 1}n. The construction
Rh1,h2 = h2(h1(x), y) is indifferentiable from a random oracle, in the random oracle model
for h1 and h2.

Replacing C
f
j−1 by h1 and f(·, 〈ℓ〉, 〈j〉) by h2 in equation (1), one then obtains that C

f
j is

indifferentiable from a random oracle (see Figure 7 for an illustration).

We now proceed to the proof of lemma 1; due to lack of space, we only provide a proof
sketch. One must construct a simulator S such that interacting with (R, (h1, h2)) is indistin-
guishable from interacting with (H, S), where H is a random oracle. Our simulator is defined
as follows :



IV

H

f f f

m1 m2 m3

〈ℓ〉 〈ℓ〉 〈ℓ〉

〈1〉 〈2〉 〈3〉

Fig. 7. The output of first two blocks is replaced by a random oracle using Lemma 1.

Simulator S :
On h1-query x, return a random v ∈ {0, 1}n.
On h2-query (v′, y), check if v′ = h2(x

′) for some previously queried x′.
In this case, query (x′, y) to H and output H(x′, y).
Otherwise return a random output.

The distinguisher either interacts with (R, (h1, h2)) or with (H, S). We denote by F the
event that a collision occurs for h1, that is h1(x) = h1(x

′) for some distinct queries x, x′. We
denote by F ′ the event that the distinguisher makes a h2-query (v′, y) such that v′ = h1(x) and
(x, y) was previously queried to R, but x was never queried directly to h1 by the distinguisher.
We claim that conditioned on the complement of F ∨ F ′, the simulation of S is perfect (see
the full paper for a complete justification). The distinguishing probability is then at most
Pr[F ∨ F ′]; for a distinguisher making at most q queries, this gives:

Pr[F ∨ F ′] ≤
2q2

2n

which shows a negligible distinguishing probability. ⊓⊔

3.4 The Chop Solution

In this section, we show that by removing a fraction of the output of the plain Merkle-
Damg̊ard construction MDf , one obtains a construction indifferentiable from a random oracle.
This “fix” is similar to the method used by Dodis et al. [15] to overcome the problem of using
plain MD chaining for randomness extraction from high-entropy distributions, and to the
suggestion of Lucks [23] to increase the resilience of plain MD chaining to multi-collision
attacks. It is also already used in practice in the design of hash functions SHA-348 and SHA-
224 [18] (both obtained by dropping some output bits from SHA-512 and SHA-256). Here we
show that by dropping a non-trivial number of output bits from the plain MD chaining, one
gets a secure random oracle H even if the input is not encoded in the prefix-free manner. For
example, such dropping prevents the “extension” attacks we saw in the MAC application,
since the attacker cannot guess the value of the dropped bits, and cannot extend the output
of the MAC to a valid MAC of a longer message.

Formally, given a compression function f : {0, 1}n+κ → {0, 1}n, the new construction
chop-MDf

s is defined as follows :

Function chop-MDf
s (m) :

let m = (m1, . . . , mℓ)

y ← MDf (m1, . . . , mℓ)
return the first n− s bits of y.



Theorem 3. The chop-MDf
s construction is (tD, tS , q, ǫ) indifferentiable from a random or-

acle, for any tD, with tS = ℓ · O(q2) and ǫ = 2−s · ℓ2 · O(q2). Here ℓ is the maximum length
of a query made by the distinguisher D.

While really simple, the drawback of this method is that its exact security is proportional
to q22−s, where s is the number of chopped bits and q is the number of oracle queries. Thus,
to achieve adequate security level the value of s has to be relatively high, which means that
short-output hash functions such as SHA-1 and MD5 cannot be fixed using this method.
However, functions such as SHA-512 can naturally be fixed (say, by setting s = 256).

3.5 The NMAC and HMAC constructions

The NMAC construction [8], which is the basis of the popular HMAC construction, applies an
independent hash function g to the output of the plain MD chaining. It has been shown very
valuable in the design of MACs [8], and recently also randomness extractors [15]. Here we
show that if g is modelled as another fixed-length random oracle independent from the random
oracle f (used for the compression function), then once again one gets a secure construction
of an arbitrary-length random oracle H , even if plain MD chaining is applied without prefix-
free encoding. Intuitively, applying g gives another way to hide the output of the plain MD
chaining, and thus prevent the “extension” attack described earlier.

Formally, given f : {0, 1}n+κ → {0, 1}n and g : {0, 1}n → {0, 1}n
′

, the function NMACf,g

is defined as (see Figure 8a):

Function NMACf,g(m) :
let m = (m1, . . . , mℓ)
y ←MDf (m1, . . . , mℓ)
Y ← g(y)
return Y

Theorem 4. The construction NMACf,g is (tD, tS , q, ǫ) indifferentiable from a random ora-
cle for any tD, tS = ℓ · O(q2) and ǫ = 2−min(n,n′)ℓ2O(q2), in the random oracle model for f

and g, where ℓ is the maximum message length queried by the distinguisher.

To practically instantiate this suggestion, we would like to implement f and g from a
single compression function. This problem is analogous to the problem in going from NMAC
to HMAC in [8], although our solution is slightly different. One simple way for achieving this is
to use domain separation: e.g., by prepending 0 for calls to f and 1 — for calls to g. However,
with this modeling we are effectively using the prefix-free encoding mapping m1m2 . . . mℓ to
0m10m2 . . . 0mℓ10κ, which appears slightly wasteful. Additionally, this also forces us to go
into the lower-level implementation details for the compression function, which we would like
to avoid. Instead, our solution consists in applying two black-box calls to the plain Merkle-
Damg̊ard construction MDf (with the same f and IV ) : first to the input 0κm1 . . . mℓ, getting
an n-bit output y, and again to κ-bit copy y′ of y, where y′ = fix(y) (see Figure 8b):

Function HMACf (m) :
let m = (m1, . . . , mℓ)
let m0 = 0κ

y ← MDf (m0, m1, . . . , mℓ)
if n < κ then y′ ← y ‖ 0κ−n

else y′ ← y|κ

}

denoted as y′ = fix(y)

Y ← MDf (y′)
return Y



Intuitively, we are almost using the NMAC construction with g(y) = f(IV, y′) (where
y′ is obtained from y as above), except we prepend a fixed block m0 = 0κ to our message
(that has negligible impact on efficiency). This latter tweak is done to ensure that there are no
inter-dependencies between using the same IV on y′ and the first message block (which would
have been under adversarial control had we not prepended m0). Indeed, it is very unlikely
that “high-entropy” y′ will ever be equal to m0 = 0κ, so the analysis for NMAC can be easily
extended for this optimization.

Theorem 5. The construction HMACf is (tD, tS , q, ǫ) indifferentiable from a random oracle
for any tD, tS = ℓ · O(q2) and ǫ = 2−min(n,κ) · ℓ2 · O(q2), in the random oracle model for f ,
where ℓ is the maximum message length queried by the distinguisher.
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Fig. 8. The NMAC and HMAC constructions

4 Constructions using Ideal Cipher

In practice, most hash-function constructions are block-cipher based, either explicitly as in
[30] or implicitly as for SHA-1. Therefore, we consider the question of designing an arbitrary-
length random oracle H from an ideal block cipher E : {0, 1}κ×{0, 1}n → {0, 1}n, specifically
concentrating on using the Merkle-Damg̊ard construction with the Davies-Meyer compression
function f(x, y) = Ey(x) ⊕ x (see Figure 9), since this is the most practically relevant con-
struction. We notice that the question of designing a collision-resistant hash function H from
an ideal block cipher was explicitly considered by Preneel, Govaerts and Vandewalle in [30],
and latter formalized and extended by Black, Rogaway and Shrimpton [9]. Specifically, the
authors of [9] actually considered 64 block-cipher variants of the Merkle-Damg̊ard transform
(which included the Davies-Meyer variant among them), and formally showed that exactly
20 of these variations (including the Davies-Meyer variant) are collision-resistant when the
block cipher E is modeled as an ideal cipher. However, while our work will also model E as an
ideal cipher, our security goal is considerably stronger than mere collision-resistance. Indeed,
we already pointed out that none of the 64 variants above can withstand the “extension”
attack on the MAC application, even with the Merkle-Damg̊ard strengthening. And even
when restricting to a fixed number of blocks ℓ (which invalidates the “extension” attack),



collision-resistance is completely insufficient for our purposes. For example, the authors of [9]
show the collision-resistance when using the plain MD chaining with fixed IV and compres-
sion function f(x, y) = Ey(x). On the other hand, it is easy to see that this method does not
provide a secure random oracle H according to our definition.

f E

m2

Ym1

m2

m1 Y

Fig. 9. The Davies-Meyer Compression function

From a different direction, if we could show that the Davies-Meyer compression function
f(x, y) = Ey(x)⊕ x is a secure random oracle when E is an ideal block-cipher, then we could
directly apply any of the three fixes discussed above. Unfortunately, this is again not the
case: intuitively, the above construction allows anybody to compute x from f(x, y) ⊕ x and
y (since x = E−1

y (f(x, y) ⊕ x)), which should not be the case if f was a true random oracle.
Thus, we need a direct proof to argue the security of the Davies-Meyer construction. Luckily,
using such direct proofs we indeed argue that all of the fixes to the plain MD chaining which
worked when f was a fixed-length random oracle, are still secure when f(x, y) = Ey(x)⊕ x is
used instead. Namely, we can either use a prefix-free encoding, or drop a non-trivial number
of output bits, or apply an independent random oracle g to the output of plain MD chaining.
With respect to this latter fix, we also show that we can implement this independent g using
the ideal cipher itself, similarly to the case with an ideal compression function f .

Formally, given a block-cipher E : {0, 1}κ×{0, 1}n → {0, 1}n, the plain Merkle-Damg̊ard hash-
function with Davies-Meyer’s compression function is defined as :

Function MDE(m1, . . . , mℓ) :
let y0 = 0n (more generally, some fixed IV value can be used)
for i = 1 to ℓ do yi ← Emi

(yi−1)⊕ yi−1

return yℓ ∈ {0, 1}n.

where for all i, |mi| = κ. The block-cipher based iterative hash-functions pf-MDE
g , chop-MDE

s ,

NMACE
g and HMACE are then defined as in section 3, using MDE instead of MDf . The proof

of the following theorem is given in the full version of this paper.

Theorem 6. The block-cipher based constructions pf-MDE
g , chop-MDE

s , NMACE
g and HMACE

are (tD, tS , q, ǫ)-indifferentiable from a random oracle, in the ideal cipher model for E, for any
tD and tS = ℓ ·O(q2), with ǫ = 2−n · ℓ2 ·O(q2) for pf-MDE

g , ǫ = 2−s · ℓ2 ·O(q2) for chop-MDE
s ,

ǫ = 2−min(n,n′) · ℓ2 · O(q2) for NMACE
g and ǫ = 2−min(κ,n) · ℓ2 · O(q2) for HMACE. Here ℓ is

the maximum message length queried by the distinguisher.

5 Conclusion

In this paper, we have introduced a new security notion for hash-functions that enables to
eliminate all possible generic attacks. We have noticed that the current iterative hash func-
tions like SHA-1 and MD5 do not satisfy our security notion, and showed several practically



motivated, easily implementable and provably secure fixes to the plain Merkle-Damg̊ard trans-
formation. Specifically, one can either ensure that all the inputs appear in the prefix-free form,
or drop a nontrivial number of the output bits (this has already been used in practice in the
design of hash functions SHA-348 and SHA-224 [18], both obtained by dropping some out-
put bits from SHA-512 and SHA-256), or, — when the above methods are not applicable —
apply an independent fixed-length hash function to the output, which, as we illustrated, can
be conveniently implemented using the corresponding building block itself.

We do not claim that the constructions in the paper are the best possible to achieve this
security notion. However, we strongly believe that this notion should be a design criteria
for future hash functions, as it eliminates a weakness in current hash-function design, and
can be implemented efficiently and with minimal changes. We believe that it is important
to eliminate all possible generic attacks right from the beginning, and not to rely on ad-
hoc external constructions to eliminate these attacks. Therefore, we encourage the research
community to investigate other possible constructions satisfying this security notion.
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