

Merkle Damgard Revisited: how to Construct a hash Function

Jean-Sebastien Coron Yevgeniy Dodis Cecile Malinaud Prashant Puniya

The Random Oracle Methodology

- "Paradigm for designing secure and efficient protocols" (BR'93).
- Assume existence of a publicly accessible ideal random function and prove protocol security.
- Replace ideal random function by an actual "secure hash function" (such as SHA-1) to deploy protocol.
- Hope that nothing breaks down!

Is SHA-1 Really Random?

Is SHA-1 obscure enough to successfully replace a random oracle?

 No. Practical hash functions usually iteratively apply a fixed length compression function to the input (called the Merkle Damgard construction).

Merkle Damgård Construction (strengthened)

Why Merkle Damgard?

 Gives a collision resistant hash function if the round function is collision-resistant.
 Need MD strengthening for variable length input.
 Based on the design principle of using simple things to build complex ones.

Is Merkle-Damgard Really Random?

♦ No!

- Consider the MAC construction H(k||m).
 - k is the MAC key
 - m is the message
- This construction is secure if H is a monolithic random function.

• But a simple, generic attack possible when H follows the MD paradigm (MD strengthening doesn't help).

 $-MAC_{k}(m, z) = f(MAC_{k}(m), z)$

– This is part of the motivation for HMAC.

• Works no matter how good the round function f is!

Image: second secon

Extension attack

∀z, from H(x₁,...,x_ℓ) anybody can compute H(x₁,...,x,z) without knowing x₁,...,x.

 Conclusion: Irrespective of the round function, MD cannot be used as a monolithic RO.

Our Motivation

- Gap in design of a monolithic random function and an iterative construction.
- SHA-1 cannot be "secure as a random oracle", no matter how good its compression function is.
- Not clear what one means by being "secure as a random oracle".
 - Should be programmable, plaintext-aware, ...

Our Results

- A definition of "implementing a random oracle" from a fixed-length building block f (assumed to be an ideal black-box random function).
 - Guarantees security against all generic attacks
- Constructions that "implement a random function" consistent with our definition.
- Practical and easily implementable extensions of existing MD based constructions.
- Extensions to ideal cipher model

Plan of talk

- 1. First we give our definition of "secure extension of RO".
- 2. We give four secure constructions of RO from a fixed length black box random function.
- 3. Then we give secure constructions of RO from an ideal block cipher.

Our Definition

Indifferentiability (Maurer et al) turns out to be the right notion.

 C_H is secure if $\exists S_f$ s.t. no D can tell apart the above two scenarios <u>Note</u> : S_f cannot see the queries made by the distinguisher D to the RO H

Why this Definition?

- Let P be a protocol secure in ROM with a monolithic RO H.
- Let A be an adversary attacking the protocol
 P.
- Let C_H be a random oracle construction (based on black-box function f) satisfying the above definition.

Why This Definition? (contd.)

New Adversary in Ideal ROM

Why a new definition?

- Do any of the existing definitions (pseudorandomness, collision-resistance etc) Suffice?
- No. We need to preserve all properties of
 the monolithic RO such as programmability,
 extractability etc.
- Consider the construction $C_H(x) = f(h(x))$:
 - f is a fixed length random function
 - h is a collision-resistant hash function
 - Seems like secure "hash-then-sign" paradigm

Why a new definition? (contd.)

- ◆ Indeed, C_H(x) = f(h(x)) works for achieving collision-resistance and pseudorandomness
 ◆ But does not give extractability:
 - From f-queries can get h(x), but cannot get x!
- Consider distinguisher D who computes h(x) = y (for arbitrary x) and then queries f(y):
 - In the real model, $f(y) = f(h(x)) = C_H(x)$

- In the ideal model, need $S_f(y) = H(h^{-1}(y))!$ (notice, S_f does not see x!)

Our Question

- What we know:
 - Existing Constructions (MD) are insecure.
 - Have formal definition of secure extension.
- What we need:
 - Secure construction of a variable length RO from a fixed length black-box random function.
 - Make as few changes to MD as possible.

New Constructions

- We propose four modifications to plain Merkle-Damgard construction:
- 1. MD applied to *Prefix-free Encoding* of input.
- 2. Chopping the output of plain MD.
- 3. Apply an *independent RO* (the NMAC construction)
- 4. *HMAC construction* : Efficiently implement NMAC using a single RO.
- Describe them below explaining how they avoid extension attack

Prefix free Encoding

- Apply the plain Merkle-Damgard construction to a prefix free encoding of the input.
- Foils extension attack because no final output of MD = intermediate output of MD.

Prefix free Encoding (contd.)

- ◆ *Example 1* : Prepend number of blocks.
 - (note, MD strengthening appends number of blocks)
 - Advantage : Great input bandwidth.
 - Disadvantage : Online processing impossible.
- *Example 2* : append 0 to internal blocks and 1 in last block.
 - Advantage : Online processing possible.
 - *Disadvantage* : Poor input bandwidth.

Chop construction

 Dropping a sufficient (ω(log n)) number of output bits in plain MD gives a secure construction.

 Avoids Extension attack by hiding part of the output of last f from the adversary.

Chop construction (contd.)

♦ Already used in the design of SHA-384 (which is

same as SHA-512 with 128 dropped bits).

- Advantages :
 - Can be processed in an online fashion.
- Disadvantages:
 - Has exact security $O(q^2/2^{-s})$ (where s is the number of chopped bits). And is thus inapplicable for short output length hash functions.
 - Poor output bandwidth.

NMAC construction

- Proposed by (Bellare et al) as a secure MAC construction.
- Uses two *independent* secure "random" functions f and g.
- Extension attack avoided since adversary learns nothing about internal outputs from final output.

NMAC construction (contd.)

Advantages :

- Optimal output bandwidth
- Good exact security

Disadvantages :

- Need to get two good and independent fixed length hash functions.
- Could try domain separation techniques by appending 0 (internal blocks) or 1 (last block), but this maps us back to "wasteful" prefix free.

HMAC construction

- Same as NMAC, except get the second function g from f itself.
 - In fact, we'll reuse the same IV!
- But prepend an extra block of 0s to the input (and adjust the output to right length)!
- This gives us two black-box calls to plain SHA-1!

- Essentially, call SHA-1(SHA-1($0^k x$)).

HMAC construction (contd.)

- Has good output bandwidth.
- ♦ Has good exact security.
- Can be processed in an online fashion.
- Can be viewed as making two black-box calls to plain MD construction (the second one being on constant length input).
 - Very easy to use in practice!
 - No need to change internal implementation!
- \diamond No reason not to use S

Formal Proof: an intuition

• The simulator S_f for f in the ideal RO model:

- Keeps track of all chains formed by the adversary's queries.
- First query gives S_f message length
- Responds to all queries randomly until the last round (knows ℓ in advance).
- Matches the response in the last round with $H(x_1 \parallel ... \parallel x_{\ell})$.
- Prefix freeness ensures that the distinguisher cannot use H queries to get internal MD values directly.
- Random responses prevent collisions amongst chains.

<u>Chain Table</u>

 $H(x_1,\ldots,x_\ell)$

 $\{IV, \ell, y_1\}$ $\{y_1, x_1, y_2\}$... $\{y_{\ell-1}, x_{\ell-1}, y_\ell\}$ $\{y_\ell, x_\ell, H(x_1, \dots, x_\ell)\}$

Going a little deeper

- Compression function used in hash function constructions not designed from scratch.
- Most of the times (and in particular in SHA-1) it is based on a block cipher.
- Davies Myers construction:

Davies Myers Construction

Ideal cipher constructions

- Obvious approach would be to prove DM const. applied to ideal cipher gives an ideal random function (under indifferentiablity).
 - i.e. $f(x || y) = E_x(y) \oplus y$ is RO if E is IC.
- Doesn't hold true (requires one to invert a random function)
- All of our 4 suggestions still secure in the ideal cipher model when Davies Myers is used for f.

Going even deeper?

- Have to stop somewhere (still need ideal assumptions or else no need for RO!).
- Better design principle.
 - Can concentrate on the building block and not worry about "generic attacks".
- Word of caution: do not address
 - Weaknesses in compression function (still "black magic" ☺)
 - Exponential attacks, such as Joux multicollision attack.

Concluding..

- We have managed to achieve the following two goals:
 - Propose a new design criterion for hash functions aimed to resist *all generic attacks*.
 - Suggest minimal and easily implementable changes to current hash function constructions.
- All design effort can now be concentrated on getting a good compression function or block cipher.

A new Design Criteria for Hash-Functions

Jean-Sébastien Coron¹, Yevgeniy Dodis^{*2}, Cécile Malinaud³, and Prashant Puniya^{**2}

¹ University of Luxembourg, coron@clipper.ens.fr

² New-York University, {dodis,puniya}@cs.nyu.edu

³ Gemplus Card International, cecile.malinaud@normalesup.org

Abstract. The most common way of constructing a hash function (e.g., SHA-1) is to iterate a compression function on the input message. The compression function is usually designed from scratch or made out of a block-cipher. In this paper, we introduce a new security notion for hash-functions, stronger than collision-resistance. Under this notion, the arbitrary length hash function H must behave as a random oracle when the fixed-length building block is viewed as an ideal primitive. This enables to eliminate all possible generic attacks against iterative hash-functions. In this paper, we show that the current design principle behind hash functions such as SHA-1 and MD5 the (strengthened) Merkle-Damgård transformation — does not satisfy this security notion. We provide several constructions that provably satisfy this notion; those new constructions introduce minimal changes to the plain Merkle-Damgård construction and are easily implementable in practice. This paper is a modified version of a paper that appeared in Crypto 2005.

1 Introduction

HASH FUNCTION DESIGN. The most common way of constructing a hash function is to iterate a compression function on the input message. The compression function is usually designed from scratch or made out of a block-cipher. More precisely, an *arbitrary-length* hash function is built by first heuristically constructing a *fixed-length* building block, such as a fixed-length compression function or a block cipher, and then iterating this building block in some manner to extend the input domain arbitrarily. For example, SHA-1 [17], MD5 [19], as well as all the other hash function we know of, are constructed by applying some variant of the Merkle-Damgård construction to an underlying compression function $f : \{0, 1\}^{n+\kappa} \to \{0, 1\}^n$ (see Figure 5):

Function $H(m_1, \ldots, m_\ell)$: let $y_0 = 0^n$ (more generally, some fixed *IV* value can be used) for i = 1 to ℓ do $y_i \leftarrow f(y_{i-1}, m_i)$ return y_ℓ

When the number of κ -bit message blocks ℓ is not fixed, one essentially appends an extra block $m_{\ell+1}$ containing the binary representation $\langle |m| \rangle$ of the length of the message (prepended by 1 and a string of 0's in order to make everything a multiple of κ ; the exact details will not matter for our discussion). The fixed-length compression function f can either be constructed from scratch or made out of a block-cipher E via the Davies-Meyer construction (see [32] and Figure 9): $f(x, y) = E_y(x) \oplus x$. For example, the SHA-1 compression function was designed specifically for hashing, but a block-cipher can nevertheless be derived from it, as illustrated in [21].

It is well known that this construction is vulnerable to a so-called message expansion attack: given the hash of m, one can easily compute the hash of m || y for any arbitrary block

^{*} Supported by NSF CAREER Award CCR-0133806 and TC Grant No. CCR-0311095.

^{**} Supported by NSF Cybertrust/DARPA Grant No. CNS-0430425.

y. Let us illustrate this attack with a well known example. A common suggestion to construct a MAC algorithm is to simply include a secret key k as part of the input of the hash function, and take for example MAC(k, m) = H(k||m). It is easy to see that this construction is secure when H is modelled as a random oracle [4], as no adversary can output a MAC forgery except with negligible probability. However, this MAC scheme is completely insecure for any Merkle-Damgård construction considered so far (including Merkle-Damgård strengthening used in current hash functions such as SHA-1, and any of the 64 block-cipher based variants of iterative hash-functions considered in [30, 9], no matter which (ideal) compression function f (or a block cipher E) is used. Namely, given MAC(k,m) = H(k||m), one can extend the message m with any single arbitrary block y and deduce MAC(k, m||y) = H(k||m||y) without knowing the secret key k (even with Merkle-Damgård strengthening, one could still forge the MAC by more or less setting $y = \langle |m| \rangle$, where the actual block depends on the exact details of the strengthening). This (well known) example illustrates that the construction of a MAC from an iterated hash function requires a specific analysis, and cannot be derived from the security of this MAC with a monolithic hash function H. One can view this "message expansion attack" as a generic attack since it applies for any compression function or blockcipher used in the Merkle-Damgård construction.

We believe that a good design criteria for hash-functions should eliminate all possible generic attacks. It is well known that for the particular case of MACs one should use the HMAC nested construction [8] in order to avoid the previous message expansion attack. However, there may exist other applications and protocols which may be secure when the hash function H is seen as a monolithic hash function, but completely insecure when an iterative Merkle-Damgård hash function is used instead. More precisely, a proof in the random oracle model [4] indicates that no attacker can break the scheme when when H is seen as a "monolithic" random oracle, but it does not say anything when an iterated hash function built from a some smaller building block f is used instead. Since the real implementation of H as an iterated hash function has much more structure than a random monolithic hash function would have, this structure could possibly help the attacker and somehow invalidate the proof in the random oracle model. To put this into a different perspective, all the ad-hoc (and hopefully "secure") design effort for widely used hash functions such as SHA-1 has been placed into the design of the fixed-length building block f (or E). On the other hand, even if f (or E) were assumed to be ideal, the current proofs in the random oracle model do not guarantee the security of the resulting system when such iterated hash function H is used! To summarize, we believe that a good design criteria for hash functions is to eliminate all possible generic attacks right from the beginning, and not to rely on ad-hoc constructions in order to eliminate those generic attacks.

OUR GOALS. Our goal is two-fold. First, we would like to obtain a design criteria for hashfunctions that would rule out all possible generic attacks. In other words, an adversary should not be able to take advantage of the iterative structure of the hash-function. Second, while the design criteria we seek should not be too specific to some variant of the Merkle-Damgård transformation, we would like to give secure constructions which resemble what is done in practice as much as possible. Unfortunately, we already argued that the current design principle behind hash functions such as SHA-1 and MD5 — the (strengthened) Merkle-Damgård transformation — will *not* be secure for our ambitious goal. Therefore, instead of giving new and practically unmotivated constructions, our secondary goal is to come up with *minimal* and *easily implementable in practice* changes to the plain Merkle-Damgård construction, which would satisfy our security definition.

OUR RESULTS. This paper is a modified version of a paper to appear at Crypto 2005 [13]. First, we give a satisfactory definition of what it means to implement an arbitrary-length hash-function that resists all possible generic attacks. Intuitively, an iterative hash-function should behave as a truly random hash function, that is, it should "emulate" a random oracle. The random oracle model has been introduced by Bellare and Rogaway as a "paradigm for

designing efficient protocols" [4]. It assumes that all parties, including the adversary, have access to a public, truly random hash function H. This model has been proven extremely useful for designing simple, efficient and highly practical solutions for many problems. We provide a formal definition of what is means to emulate a random oracle H from a fixedlength building block f or E. Our definition is based on the indifferentiability framework of Maurer et al. [24]. The key property of this definition is that if a particular construction of H from f (or E) meets this definition, then any application proven secure assuming H is a random oracle would remain secure if we plug in our construction (although still assuming that the underlying fixed-length primitive f or E was ideal). In other words, we can safely use our implementation of H as if we were using a monolithic random oracle H. This implies that our implementation of H will rule out all possible generic attacks.

Having a good security definition, we provide several provable constructions. We start by giving four modifications to the (insecure) plain Merkle-Damgård construction which yield a secure random oracle *H* taking *arbitrary-length* input, from a compression function viewed as a random oracle taking *fixed-length* input. This result can be viewed as a secure *domain extender* for the random oracle, which is an interesting result of independent interest. We remark that domain extenders are well studied for such primitives as collision-resistant hash functions [14, 26], pseudorandom functions [8], MACs [1, 25] and universal one-way hash functions [7, 31]. Although the above works also showed that some variants of Merkle-Damgård yield secure domain extenders for the corresponding primitive in question, these results are not sufficient to claim a domain extender for the random oracle.

Our secure modifications to the plain Merkle-Damgård construction are the following. (1) *Prefix-Free Encoding*: we show that if the inputs to the plain MD construction are guaranteed to be *prefix-free*, then the plain MD construction is secure. (2) Dropping Some Output Bits: we show that by dropping a non-trivial number of output bits from the plain MD chaining, we get a secure random oracle H even if the input is not encoded in the prefix-free manner. (3) Using NMAC construction (see Figure 8a): we show that by applying an independent hash function q to the output of the plain MD chaining (as in the NMAC construction [8]), then once again we get a secure construction of an arbitrary-length random oracle H, in the random oracle model for f and q. (4) Using HMAC Construction (see Figure 8b): we show a slightly modified variant of the NMAC construction allowing us to conveniently build the function q from the compression function f itself (as in [8] when going from NMAC to HMAC)! In this latter variant, one implements a secure hash function H by making two black-box calls to the plain Merkle-Damgård construction (with the same fixed IV and a given compression function f): first on $(\ell + 1)$ -block input $0^{\kappa} m_1 \dots m_{\ell}$, getting an n-bit output y, and then on one-block κ -bit input y' (obtained by either truncating or padding y depending on whether or not $\kappa > n$), getting the final output.

However, in practice most hash-function constructions are block-cipher based, either explicitly as in [30] or implicitly as for SHA-1. Therefore, we consider the question of designing an arbitrary-length random oracle H from an ideal block cipher E, specifically concentrating on using the Merkle-Damgård construction with the Davies-Meyer compression function $f(x, y) = E_y(x) \oplus x$, since this is the most practically relevant construction. We show that all of the four fixes to the plain MD chaining which worked when f was a fixed-length random oracle, are still secure (in the ideal cipher model) when we plug in $f(x, y) = E_y(x) \oplus x$ instead. Specifically, we can either use a prefix-free encoding, or drop a non-trivial number of output bits (this has already been used in practice in the design of hash functions SHA-348 and SHA-224 [18], both obtained by dropping some output bits from SHA-512 and SHA-256), or apply an independent random oracle g to the output of plain MD chaining, or use the optimized HMAC construction which allows us to build this function g from the ideal cipher itself.

2 Definitions

In this section, we introduce the main notations and definitions used throughout the paper. Our security notion for secure hash-function is based on the notion of indifferentiability of systems, introduced by Maurer *et al.* in [24]. This is an extension of the classical notion of indistinguishability, when one or more oracles are publicly available, such as random oracles or ideal ciphers. This notion is based on ideas from the Universal Composition framework introduced by Canetti in [10] and on the model of Pfitzmann and Waidner [29]. The indifferentiability notion in [24] is given in the framework of random systems providing interfaces to other systems, but equivalently we use this notion in the framework of Interactive Turing Machines (as in [10]).

We define an *ideal primitive* as an algorithmic entity which receives inputs from one of the parties and deliver its output immediately to the querying party. The ideal primitives that we consider in this paper are random oracles and ideal ciphers. A random oracle [4] is an ideal primitive which provides a random output for each new query. Identical input queries are given the same answer. An *ideal cipher* is an ideal primitive that models a random blockcipher $E : \{0,1\}^{\kappa} \times \{0,1\}^n \to \{0,1\}^n$. Each key $k \in \{0,1\}^{\kappa}$ defines a random permutation $E_k = E(k, \cdot)$ on $\{0,1\}^n$. The ideal primitive provides oracle access to E and E^{-1} ; that is, on query (0, k, m), the primitive answers $c = E_k(m)$, and on query (1, k, c), the primitive answers m such that $c = E_k(m)$.

We now proceed to the definition of indifferentiability [24] :

Definition 1. A Turing machine C with oracle access to an ideal primitive \mathcal{G} is said to be $(t_D, t_S, q, \varepsilon)$ indifferentiable from an ideal primitive \mathcal{F} if there exists a simulator S, such that for any distinguisher D it holds that :

$$\left|\Pr\left[D^{C,\mathcal{G}}=1\right]-\Pr\left[D^{\mathcal{F},S}=1\right]\right|<\varepsilon$$

The simulator has oracle access to \mathcal{F} and runs in time at most t_S . The distinguisher runs in time at most t_D and makes at most q queries. Similarly, $C^{\mathcal{G}}$ is said to be (computationally) indifferentiable from \mathcal{F} if ε is a negligible function of the security parameter k (for polynomially bounded t_D and t_S).

As illustrated in Figure 1, the role of the simulator is to simulate the ideal primitive \mathcal{G} so that no distinguisher can tell whether it is interacting with C and \mathcal{G} , or with \mathcal{F} and S; in other words, the output of S should look "consistent" with what the distinguisher can obtain from \mathcal{F} . Note that the simulator does not see the distinguisher's queries to \mathcal{F} ; however, it can call \mathcal{F} directly when needed for the simulation.

Fig. 1. The indifferentiability notion: the distinguisher D either interacts with algorithm C and ideal primitive \mathcal{G} , or with ideal primitive \mathcal{F} and simulator S. Algorithm C has oracle access to \mathcal{G} , while simulator S has oracle access to \mathcal{F} .

In the rest of the paper, the algorithm C will represent the construction of an iterative hash-function (such as the Merkle-Damgård construction recalled in the introduction). The

ideal primitive \mathcal{G} will represent the underlying primitive used to build the hash-function. \mathcal{G} will be either a random oracle (when the compression function is modelled as a random oracle), or an ideal block-cipher (when the compression function is based on a block-cipher). The ideal primitive \mathcal{F} will represent the random oracle that the construction C should emulate. Therefore, one obtains the following setting : the distinguisher has oracle access to both the block-cipher and the hash-function, and these oracles are implemented in one of the following two ways: either the block-cipher E is chosen at random and the hash-function C is constructed from it, or the hash-function H is chosen at random and the block-cipher is implemented by a simulator S with oracle access to H. Those two cases should be indistinguishable, that is the distinguisher should not be able to tell whether the block-cipher was chosen at random and the iterated hash-function constructed from it, or the hash-function was chosen at random and the block-cipher then "tailored" to match that hash-function.

It is shown in [24] that if $C^{\mathcal{G}}$ is indifferentiable from \mathcal{F} , then $C^{\mathcal{G}}$ can replace \mathcal{F} in any cryptosystem, and the resulting cryptosystem is at least as secure in the \mathcal{G} model as in the \mathcal{F} model. For example, if a block-cipher based iterative hash function is indifferentiable from a random oracle in the ideal cipher model, then the iterative hash-function can replace the random oracle in any cryptosystem, and the resulting cryptosystem remains secure in the ideal cipher model if the original scheme was secure in the random oracle model.

Fig. 2. The environment \mathcal{E} interacts with cryptosystem \mathcal{P} and attacker \mathcal{A} . In the \mathcal{G} model (left), \mathcal{P} has oracle access to C whereas \mathcal{A} has oracle access to \mathcal{G} . In the \mathcal{F} model, both \mathcal{P} and \mathcal{A}' have oracle access to \mathcal{F}

We use the definition of [24] to specify what it means for a cryptosystem to be at least as secure in the \mathcal{G} model as in the \mathcal{F} model. A cryptosystem is modelled as an Interactive Turing Machine with an interface to an adversary \mathcal{A} and to a public oracle. The cryptosystem is run by an *environment* \mathcal{E} which provides a binary output and also runs the adversary. In the \mathcal{G} model, cryptosystem \mathcal{P} has oracle access to C whereas attacker \mathcal{A} has oracle access to \mathcal{G} . In the \mathcal{F} model, both \mathcal{P} and \mathcal{A} have oracle access to \mathcal{F} . The definition is illustrated in Figure 2.

Definition 2. A cryptosystem is said to be at least as secure in the \mathcal{G} model with algorithm C as in the \mathcal{F} model, if for any environment \mathcal{E} and any attacker \mathcal{A} in the \mathcal{G} model, there exists an attacker \mathcal{A}' in the \mathcal{F} model, such that

$$\left| \Pr\left[\mathcal{E}(\mathcal{P}^{\mathcal{C}}, \mathcal{A}^{\mathcal{G}}) = 1 \right] - \Pr\left[\mathcal{E}(\mathcal{P}^{\mathcal{F}}, \mathcal{A'}^{\mathcal{F}}) = 1 \right] \right|$$

is a negligible function of the security parameter k. Similarly, a cryptosystem is said to be computationally at least as secure, etc., if \mathcal{E} , \mathcal{A} and \mathcal{A}' are polynomial-time in k.

The following theorem from [24] shows that security is preserved when replacing an ideal primitive by an indifferentiable one :

Theorem 1. Let \mathcal{P} be a cryptosystem with oracle access to an ideal primitive \mathcal{F} . Let C be an algorithm such that $C^{\mathcal{G}}$ is indifferentiable from \mathcal{F} . Then cryptosystem \mathcal{P} is at least as secure in the \mathcal{G} model with algorithm C as in the \mathcal{F} model.

Proof. We only provide a proof sketch; see [24] for a full proof. Let \mathcal{P} be any cryptosystem, modelled as an Interactive Turing Machine. Let \mathcal{E} be any environment, and \mathcal{A} be any attacker in the \mathcal{G} model. In the \mathcal{G} model, \mathcal{P} has oracle access to C whereas \mathcal{A} has oracle access to ideal primitive \mathcal{G} ; moreover environment \mathcal{E} interacts with both \mathcal{P} and \mathcal{A} . This is illustrated in Figure 3 (left part).

Fig. 3. Construction of attacker \mathcal{A}' from attacker \mathcal{A} and simulator \mathcal{S} .

Since $C^{\mathcal{G}}$ is indifferentiable from \mathcal{F} (see Figure 1), one can replace (C, \mathcal{G}) by (\mathcal{F}, S) with only a negligible modification of the environment's output distribution. As illustrated in Figure 3, by merging attacker \mathcal{A} and simulator \mathcal{S} , one obtains an attacker \mathcal{A}' in the \mathcal{F} model, and the difference in \mathcal{E} 's output distribution is negligible.

3 Domain Extension for Random Oracles

In this section, we show how to construct an iterative hash-function indifferentiable from a random oracle, from a compression function viewed as a random oracle. We start with two simple and intuitive constructions that do not work.

3.1 H(x) = f(h(x)) for Random Oracle f and Collision-Resistant One-way Hash-function h

One could hope to emulate a random oracle (with arbitrary-length input) by taking :

$$C^f(x) = f(h(x))$$

where $f : \{0,1\}^n \to \{0,1\}^n$ is modelled as a random oracle and $h : \{0,1\}^* \to \{0,1\}^n$ is any collision-resistant one-way hash-function (not modelled as a random oracle). However, we show that such C^f is not indifferentiable from a random oracle; namely, we construct a distinguisher that can fool any simulator.

As illustrated in Figure 4, the distinguisher first generates an arbitrary m and computes u = h(m). Then it queries v = f(u) to random oracle f and queries $z = C^f(m)$ to C^f . It then checks that z = v and outputs 1 in this case, and 0 otherwise. It is easy to see that the distinguisher always output 1 when interacting with C^f and f, but outputs 0 with

Fig. 4. The simulator cannot output H(m) since it only receives h(m) and cannot recover m from h(m).

overwhelming probability when interacting with H and any simulator S. Namely, when the distinguisher interacts with H and S, the simulator only receives u = h(m); therefore, in order to output v such that v = H(m), the simulator must either recover m from h(m) (and then query H(m)) or guess the value of H(m), which can be done with only negligible probability.

3.2 Plain Merkle-Damgård Construction

We show that the plain Merkle-Damgård construction (see Figure 5) fails to emulate a random oracle (taking arbitrary-length input) when the compression function f is viewed as a random oracle (taking fixed-length input). For simplicity, we only consider the usual Merkle-Damgård variant, although the discussion easily extends to the strengthened variant which appends the message length $\langle |m| \rangle$ at the last block :

> Function $\mathrm{MD}^{f}(m_{1}, \ldots, m_{\ell})$: let $y_{0} = 0^{n}$ (more generally, some fixed IV value can be used) for i = 1 to ℓ do $y_{i} \leftarrow f(y_{i-1}, m_{i})$ return $y_{\ell} \in \{0, 1\}^{n}$.

where for all i, $|m_i| = \kappa$ and $f : \{0, 1\}^{n+\kappa} \to \{0, 1\}^n$.

Fig. 5. The plain Merkle-Damgård Construction

We have already mentioned in introduction a counter-example based on MAC. Namely, we showed that MAC(k, m) = H(k||m) provides a secure MAC in the random oracle model for H, but is completely insecure when H is replaced by the previous Merkle-Damgård construction MD^{f} , because of the message extension attack. In the following, we give a more direct refutation based on the definition of indifferentiability, using again the message extension attack.

We consider only one-block messages or two-block messages. For such messages, we have that $MD^{f}(m_{1}) = f(0, m_{1})$ and $MD^{f}(m_{1}, m_{2}) = f(f(0, m_{1}), m_{2})$. We build a distinguisher that can fool any simulator as follows. The distinguisher first makes a MD^{f} -query for m_{1} and receives $u = MD^{f}(m_{1})$. Then it makes a query for $v = f(u, m_{2})$ to random oracle f. The distinguisher then makes a MD^f -query for (m_1, m_2) and eventually checks that $v = \text{MD}^f(m_1, m_2)$; in this case it outputs 1, and 0 otherwise. It is easy to see that the distinguisher always outputs 1 when interacting with MD^f and f. However, when the distinguisher interacts with H and S (who must simulate f), we observe that S has no information about m_1 (because S does not see the distinguisher's H-queries). Therefore, the simulator cannot answer v such that $v = H(m_1, m_2)$, except with negligible probability.

3.3 Prefix-free Merkle-Damgård

In this section, we show that if the inputs to the plain MD construction are guaranteed to be prefix-free, then the plain MD construction is secure. Namely, prefix-free encoding enables to eliminate the message expansion attack described previously. This "fix" is similar to the fix for the CBC-MAC [3], which is also insecure in its plain form. Thus, the plain MD construction can be safely used for any application of the random oracle H where the length of the inputs is fixed or where one uses domain separation (e.g., prepending $0, 1, \ldots$ to differentiate between inputs from different domains). For other applications, one must specifically ensure that prefix-freeness is satisfied.

A prefix-free code over the alphabet $\{0,1\}^{\kappa}$ is an efficiently computable injective function $g: \{0,1\}^{\kappa} \to (\{0,1\}^{\kappa})^{*}$ such that for all $x \neq y$, g(x) is not a prefix of g(y). Moreover, it must be easy to recover x given only g(x). We provide two examples of prefix-free encodings. The first one consists in prepending the message size in bits as the first block. The last block is then padded with the bit one followed by zeroes.

Function $g_1(m)$: let N be the message length of m in bits. write m as (m_1, \ldots, m_ℓ) where for all $i, |m_i| = \kappa$ and with the last block m_ℓ padded with 10^r . let $g_1(m) = (\langle N \rangle, m_1, \ldots, m_\ell)$ where $\langle N \rangle$ is a κ -bit binary encoding of N.

An important drawback of this encoding is that the message length must be known in advance; this can be a problem for streaming applications in which a large message must be processed on the fly. Our second encoding g_2 does not suffer from this drawback, but requires to waste one bit per block of the message :

Function $g_2(m)$: write m as (m_1, \ldots, m_ℓ) where for all i, $|m_i| = \kappa - 1$ and with the last block m_ℓ padded with 10^r . let $g_2(m) = (0|m_1, \ldots, 0|m_{\ell-1}, 1|m_\ell)$.

Given any prefix-free encoding g, we consider the following construction of the iterative hash-function pf-MD^f_g : $\{0,1\}^* \to \{0,1\}^n$, using the Merkle-Damgård hash-function MD^f : $(\{0,1\}^{\kappa})^* \to \{0,1\}^n$ defined previously.

```
Function pf-MD<sup>f</sup><sub>g</sub>(m) :
let g(m) = (m_1, \dots, m_\ell)
y \leftarrow MD^f(m_1, \dots, m_\ell)
return y
```

Theorem 2. The previous construction is (t_D, t_S, q, ϵ) -indifferentiable from a random oracle, in the random oracle model for the compression function, for any t_D , with $t_S = \ell \cdot \mathcal{O}(q^2)$ and $\epsilon = 2^{-n} \cdot \ell^2 \cdot \mathcal{O}(q^2)$, where ℓ is the maximum length of a query made by the distinguisher D.

Proof. Due to lack of space, we only provide a proof sketch for a particular prefix-free encoding which has a simpler proof; the proof for any prefix-free encoding will be provided in the full version of this paper.

The particular prefix-free encoding that we consider consists in adding the message-length as part of the input of f; moreover, the index of the current block is also included as part of the input of f, so that f can be viewed as an independent random oracle for each block m_i . Specifically, we construct an iterative hash-function $C^f : (\{0,1\}^{\kappa})^* \to \{0,1\}^n$ from a compression function $f : \{0,1\}^{n+\kappa+2\cdot t} \to \{0,1\}^n$ as follows :

Function
$$C^f(m_1, \ldots, m_\ell)$$
:
let $y_0 = 0^n$
for $i = 1$ to ℓ do $y_i \leftarrow f(y_{i-1}, m_i, \langle \ell \rangle, \langle i \rangle)$
return y_ℓ

where for all i, $|m_i| = \kappa$. The string $\langle \ell \rangle$ is a *t*-bit binary encoding of the message length ℓ , and $\langle i \rangle$ is a *t*-bit encoding of the block index. The construction is shown in Figure 6.

Fig. 6. Merkle-Damgård with a particular prefix-free encoding.

In the following, we show that C^f is indifferentiable from a random oracle, in the random oracle model for f. Since the block-length ℓ is part of the input of the compression function f, we have that C^f behaves independently for messages of different length. Therefore, we can restrict ourselves to messages of fixed length ℓ , *i.e.* it suffices to show that for all ℓ , the construction C^f with message length ℓ is indifferentiable from random oracle $H_{\ell} : (\{0,1\}^{\kappa})^{\ell} \to \{0,1\}^n$.

We consider for all $1 \leq j \leq \ell$ the function $C_j^f : (\{0,1\}^{\kappa})^j \to \{0,1\}^n$ outputting the intermediate value y_j in C^f . From the definition of C^f , we have for all $2 \leq j \leq \ell$:

$$C_j^f(m_1,\ldots,m_j) = f(C_{j-1}^f(m_1,\ldots,m_{j-1}),m_j,\langle\ell\rangle,\langle j\rangle)$$
(1)

We provide a recursive proof that for all j, the construction C_j^f is indifferentiable from a random oracle. The result for C^f will follow for $j = \ell$. The property clearly holds for j = 1. Assuming now that it holds for j-1, we show that it holds for j. We use the following lemma :

Lemma 1. Let $h_1 : \{0,1\}^a \to \{0,1\}^n$ and $h_2 : \{0,1\}^{n+\kappa} \to \{0,1\}^n$. The construction $\mathbb{R}^{h_1,h_2} = h_2(h_1(x),y)$ is indifferentiable from a random oracle, in the random oracle model for h_1 and h_2 .

Replacing C_{j-1}^f by h_1 and $f(\cdot, \langle \ell \rangle, \langle j \rangle)$ by h_2 in equation (1), one then obtains that C_j^f is indifferentiable from a random oracle (see Figure 7 for an illustration).

We now proceed to the proof of lemma 1; due to lack of space, we only provide a proof sketch. One must construct a simulator S such that interacting with $(R, (h_1, h_2))$ is indistinguishable from interacting with (H, S), where H is a random oracle. Our simulator is defined as follows :

Fig. 7. The output of first two blocks is replaced by a random oracle using Lemma 1.

Simulator S:

On h_1 -query x, return a random $v \in \{0, 1\}^n$. On h_2 -query (v', y), check if $v' = h_2(x')$ for some previously queried x'.

In this case, query (x', y) to H and output H(x', y).

Otherwise return a random output.

The distinguisher either interacts with $(R, (h_1, h_2))$ or with (H, S). We denote by F the event that a collision occurs for h_1 , that is $h_1(x) = h_1(x')$ for some distinct queries x, x'. We denote by F' the event that the distinguisher makes a h_2 -query (v', y) such that $v' = h_1(x)$ and (x, y) was previously queried to R, but x was never queried directly to h_1 by the distinguisher. We claim that conditioned on the complement of $F \vee F'$, the simulation of S is perfect (see the full paper for a complete justification). The distinguishing probability is then at most $\Pr[F \vee F']$; for a distinguisher making at most q queries, this gives:

$$\Pr[F \lor F'] \le \frac{2q^2}{2^n}$$

which shows a negligible distinguishing probability.

3.4 The Chop Solution

In this section, we show that by removing a fraction of the output of the plain Merkle-Damgård construction MD^f , one obtains a construction indifferentiable from a random oracle. This "fix" is similar to the method used by Dodis et al. [15] to overcome the problem of using plain MD chaining for randomness extraction from high-entropy distributions, and to the suggestion of Lucks [23] to increase the resilience of plain MD chaining to multi-collision attacks. It is also already used in practice in the design of hash functions SHA-348 and SHA-224 [18] (both obtained by dropping some output bits from SHA-512 and SHA-256). Here we show that by dropping a non-trivial number of output bits from the plain MD chaining, one gets a secure random oracle H even if the input is not encoded in the prefix-free manner. For example, such dropping prevents the "extension" attacks we saw in the MAC application, since the attacker cannot guess the value of the dropped bits, and cannot extend the output of the MAC to a valid MAC of a longer message.

Formally, given a compression function $f : \{0,1\}^{n+\kappa} \to \{0,1\}^n$, the new construction chop-MD^f_s is defined as follows :

Function chop-MD^f_s(m) : let $m = (m_1, ..., m_\ell)$ $y \leftarrow MD^f(m_1, ..., m_\ell)$ return the first n - s bits of y. **Theorem 3.** The chop- MD_s^f construction is (t_D, t_S, q, ϵ) indifferentiable from a random oracle, for any t_D , with $t_S = \ell \cdot \mathcal{O}(q^2)$ and $\epsilon = 2^{-s} \cdot \ell^2 \cdot \mathcal{O}(q^2)$. Here ℓ is the maximum length of a query made by the distinguisher D.

While really simple, the drawback of this method is that its exact security is proportional to $q^2 2^{-s}$, where s is the number of chopped bits and q is the number of oracle queries. Thus, to achieve adequate security level the value of s has to be relatively high, which means that short-output hash functions such as SHA-1 and MD5 cannot be fixed using this method. However, functions such as SHA-512 can naturally be fixed (say, by setting s = 256).

3.5 The NMAC and HMAC constructions

The NMAC construction [8], which is the basis of the popular HMAC construction, applies an *independent* hash function g to the output of the plain MD chaining. It has been shown very valuable in the design of MACs [8], and recently also randomness extractors [15]. Here we show that if g is modelled as another fixed-length random oracle *independent* from the random oracle f (used for the compression function), then once again one gets a secure construction of an arbitrary-length random oracle H, even if plain MD chaining is applied without prefix-free encoding. Intuitively, applying g gives another way to hide the output of the plain MD chaining, and thus prevent the "extension" attack described earlier.

Formally, given $f : \{0,1\}^{n+\kappa} \to \{0,1\}^n$ and $g : \{0,1\}^n \to \{0,1\}^{n'}$, the function NMAC^{f,g} is defined as (see Figure 8a):

Function NMAC^{f,g}(m) : let $m = (m_1, \dots, m_\ell)$ $y \leftarrow MD^f(m_1, \dots, m_\ell)$ $Y \leftarrow g(y)$ return Y

Theorem 4. The construction $NMAC^{f,g}$ is (t_D, t_S, q, ϵ) indifferentiable from a random oracle for any t_D , $t_S = \ell \cdot \mathcal{O}(q^2)$ and $\epsilon = 2^{-\min(n,n')}\ell^2 \mathcal{O}(q^2)$, in the random oracle model for fand g, where ℓ is the maximum message length queried by the distinguisher.

To practically instantiate this suggestion, we would like to implement f and g from a single compression function. This problem is analogous to the problem in going from NMAC to HMAC in [8], although our solution is slightly different. One simple way for achieving this is to use domain separation: e.g., by prepending 0 for calls to f and 1 — for calls to g. However, with this modeling we are effectively using the prefix-free encoding mapping $m_1m_2...m_\ell$ to $0m_10m_2...0m_\ell 10^\kappa$, which appears slightly wasteful. Additionally, this also forces us to go into the lower-level implementation details for the compression function, which we would like to avoid. Instead, our solution consists in applying two black-box calls to the plain Merkle-Damgård construction MD^f (with the same f and IV): first to the input $0^\kappa m_1 \ldots m_\ell$, getting an n-bit output y, and again to κ -bit copy y' of y, where y' = fix(y) (see Figure 8b):

Function HMAC^f(m) :
let
$$m = (m_1, ..., m_\ell)$$

let $m_0 = 0^{\kappa}$
 $y \leftarrow \text{MD}^f(m_0, m_1, ..., m_\ell)$
if $n < \kappa$ then $y' \leftarrow y \parallel 0^{\kappa - n}$
else $y' \leftarrow y|_{\kappa}$
 $Y \leftarrow \text{MD}^f(y')$
return Y
denoted as $y' = fix(y)$

Intuitively, we are almost using the NMAC construction with g(y) = f(IV, y') (where y' is obtained from y as above), except we prepend a fixed block $m_0 = 0^{\kappa}$ to our message (that has negligible impact on efficiency). This latter tweak is done to ensure that there are no inter-dependencies between using the same IV on y' and the first message block (which would have been under adversarial control had we not prepended m_0). Indeed, it is very unlikely that "high-entropy" y' will ever be equal to $m_0 = 0^{\kappa}$, so the analysis for NMAC can be easily extended for this optimization.

Theorem 5. The construction $HMAC^f$ is (t_D, t_S, q, ϵ) indifferentiable from a random oracle for any t_D , $t_S = \ell \cdot \mathcal{O}(q^2)$ and $\epsilon = 2^{-\min(n,\kappa)} \cdot \ell^2 \cdot \mathcal{O}(q^2)$, in the random oracle model for f, where ℓ is the maximum message length queried by the distinguisher.

Fig. 8. The NMAC and HMAC constructions

4 Constructions using Ideal Cipher

In practice, most hash-function constructions are block-cipher based, either explicitly as in [30] or implicitly as for SHA-1. Therefore, we consider the question of designing an arbitrarylength random oracle H from an ideal block cipher $E: \{0,1\}^{\kappa} \times \{0,1\}^n \to \{0,1\}^n$, specifically concentrating on using the Merkle-Damgård construction with the Davies-Meyer compression function $f(x,y) = E_y(x) \oplus x$ (see Figure 9), since this is the most practically relevant construction. We notice that the question of designing a *collision-resistant* hash function H from an ideal block cipher was explicitly considered by Preneel, Govaerts and Vandewalle in [30], and latter formalized and extended by Black, Rogaway and Shrimpton [9]. Specifically, the authors of [9] actually considered 64 block-cipher variants of the Merkle-Damgård transform (which included the Davies-Mever variant among them), and formally showed that exactly 20 of these variations (including the Davies-Meyer variant) are collision-resistant when the block cipher E is modeled as an ideal cipher. However, while our work will also model E as an ideal cipher, our security goal is considerably stronger than mere collision-resistance. Indeed, we already pointed out that none of the 64 variants above can withstand the "extension" attack on the MAC application, even with the Merkle-Damgård strengthening. And even when restricting to a fixed number of blocks ℓ (which invalidates the "extension" attack),

collision-resistance is completely insufficient for our purposes. For example, the authors of [9] show the collision-resistance when using the plain MD chaining with fixed IV and compression function $f(x, y) = E_y(x)$. On the other hand, it is easy to see that this method does not provide a secure random oracle H according to our definition.

Fig. 9. The Davies-Meyer Compression function

From a different direction, if we could show that the Davies-Meyer compression function $f(x, y) = E_y(x) \oplus x$ is a secure random oracle when E is an ideal block-cipher, then we could directly apply any of the three fixes discussed above. Unfortunately, this is again not the case: intuitively, the above construction allows anybody to compute x from $f(x, y) \oplus x$ and y (since $x = E_y^{-1}(f(x, y) \oplus x)$), which should not be the case if f was a true random oracle. Thus, we need a direct proof to argue the security of the Davies-Meyer construction. Luckily, using such direct proofs we indeed argue that all of the fixes to the plain MD chaining which worked when f was a fixed-length random oracle, are still secure when $f(x, y) = E_y(x) \oplus x$ is used instead. Namely, we can either use a prefix-free encoding, or drop a non-trivial number of output bits, or apply an independent random oracle g to the output of plain MD chaining. With respect to this latter fix, we also show that we can implement this independent g using the ideal cipher itself, similarly to the case with an ideal compression function f.

Formally, given a block-cipher $E: \{0,1\}^{\kappa} \times \{0,1\}^n \to \{0,1\}^n$, the plain Merkle-Damgård hash-function with Davies-Meyer's compression function is defined as :

Function $\text{MD}^{E}(m_{1}, \ldots, m_{\ell})$: let $y_{0} = 0^{n}$ (more generally, some fixed IV value can be used) for i = 1 to ℓ do $y_{i} \leftarrow E_{m_{i}}(y_{i-1}) \oplus y_{i-1}$ return $y_{\ell} \in \{0, 1\}^{n}$.

where for all i, $|m_i| = \kappa$. The block-cipher based iterative hash-functions pf-MD^E_g, chop-MD^E_s, NMAC^E_g and HMAC^E are then defined as in section 3, using MD^E instead of MD^f. The proof of the following theorem is given in the full version of this paper.

Theorem 6. The block-cipher based constructions $pf \cdot MD_g^E$, $chop \cdot MD_s^E$, $NMAC_g^E$ and $HMAC^E$ are (t_D, t_S, q, ϵ) -indifferentiable from a random oracle, in the ideal cipher model for E, for any t_D and $t_S = \ell \cdot \mathcal{O}(q^2)$, with $\epsilon = 2^{-n} \cdot \ell^2 \cdot \mathcal{O}(q^2)$ for $pf \cdot MD_g^E$, $\epsilon = 2^{-s} \cdot \ell^2 \cdot \mathcal{O}(q^2)$ for $chop \cdot MD_s^E$, $\epsilon = 2^{-\min(n,n')} \cdot \ell^2 \cdot \mathcal{O}(q^2)$ for $NMAC_g^E$ and $\epsilon = 2^{-\min(\kappa,n)} \cdot \ell^2 \cdot \mathcal{O}(q^2)$ for $HMAC^E$. Here ℓ is the maximum message length queried by the distinguisher.

5 Conclusion

In this paper, we have introduced a new security notion for hash-functions that enables to eliminate all possible generic attacks. We have noticed that the current iterative hash functions like SHA-1 and MD5 do not satisfy our security notion, and showed several practically motivated, easily implementable and provably secure fixes to the plain Merkle-Damgård transformation. Specifically, one can either ensure that all the inputs appear in the prefix-free form, or drop a nontrivial number of the output bits (this has already been used in practice in the design of hash functions SHA-348 and SHA-224 [18], both obtained by dropping some output bits from SHA-512 and SHA-256), or, — when the above methods are not applicable apply an independent fixed-length hash function to the output, which, as we illustrated, can be conveniently implemented using the corresponding building block itself.

We do not claim that the constructions in the paper are the best possible to achieve this security notion. However, we strongly believe that this notion should be a design criteria for future hash functions, as it eliminates a weakness in current hash-function design, and can be implemented efficiently and with minimal changes. We believe that it is important to eliminate all possible generic attacks right from the beginning, and not to rely on adhoc external constructions to eliminate these attacks. Therefore, we encourage the research community to investigate other possible constructions satisfying this security notion.

References

- J. H. An, M. Bellare, Constructing VIL-MACs from FIL-MACs: Message Authentication under Weakened Assumptions, CRYPTO 1999, pages 252-269.
- Mihir Bellare, Alexandra Boldyreva and Adriana Palacio. An Uninstantiable Random-Oracle-Model Scheme for a Hybrid-Encryption Problem. Proceedings of Eurocrypt 2004.
- M. Bellare, J. Kilian, and P. Rogaway. The Security of Cipher Block Chaining. In Crypto '94, pages 341–358, 1994. LNCS No. 839.
- M. Bellare and P. Rogaway, Random oracles are practical : a paradigm for designing efficient protocols. Proceedings of the First Annual Conference on Computer and Communications Security, ACM, 1993.
- 5. M. Bellare and P. Rogaway, The exact security of digital signatures How to sign with RSA and Rabin. Proceedings of Eurocrypt'96, LNCS vol. 1070, Springer-Verlag, 1996, pp. 399-416.
- M. Bellare and P. Rogaway, Optimal Asymmetric Encryption, Proceedings of Eurocrypt'94, LNCS vol. 950, Springer-Verlag, 1994, pp. 92–111.
- M. Bellare and P. Rogaway, Collision-Resistant Hashing: Towards Making UOWHFs Practical, In Crypto '97, LNCS Vol. 1294.
- M. Bellare, R. Canetti, and H. Krawczyk, Pseudorandom Functions Re-visited: The Cascade Construction and Its Concrete Security, In Proc. 37th FOCS, pages 514-523. IEEE, 1996.
- J. Black, P. Rogaway, T. Shrimpton, Black-Box Analysis of the Block-Cipher-Based Hash-Function Constructions from PGV, in Advances in Cryptology - CRYPTO 2002, California, USA.
- R. Canetti, Universally Composable Security: A New Paradigm for Cryptographic Protocols, proceedings of the 42nd Symposium on Foundations of Computer Science (FOCS), 2001. Cryptology ePrint Archive, Report 2000/067, http://eprint.iacr.org/.
- R. Canetti, O. Goldreich and S. Halevi, The random oracle methodology, revisited, STOC' 98, ACM, 1998.
- Ran Canetti, Oded Goldreich and Shai Halevi. On the random oracle methodology as applied to Length-Restricted Signature Schemes. In *Proceedings of Theory of Cryptology Conference*, pp. 40–57, 2004.
- 13. J.S. Coron, Y. Dodis, C. Malinaud and P. Puniya, Merkle-Damgård Revisited : how to Construct a Hash Function, Proceedings of Crypto 2005.
- I. Damgård, A Design Principle for Hash Functions, In Crypto '89, pages 416-427, 1989. LNCS No. 435.
- Y. Dodis, R. Gennaro, J. Håstad, H. Krawczyk, and T. Rabin, Randomness Extraction and Key Derivation Using the CBC, Cascade and HMAC Modes, Advances in Cryptology - CRYPTO, August 2004.
- Y. Dodis, R. Oliveira, K. Pietrzak, On the Generic Insecurity of the Full Domain Hash, Advances in Cryptology - CRYPTO, August 2005.
- FIPS 180-1, Secure hash standard, Federal Information Processing Standards Publication 180-1, U.S. Department of Commerce/N.I.S.T., National Technical Information Service, Springfield, Virginia, April 17 1995 (supersedes FIPS PUB 180).

- 18. National Institute of Standards and Technology (NIST). Secure hash standard. FIPS 180-2. August 2002.
- RFC 1321, The MD5 message-digest algorithm, Internet Request for Comments 1321, R.L. Rivest, April 1992.
- 20. Shafi Goldwasser and Yael Tauman. On the (In)security of the Fiat-Shamir Paradigm. In Proceedings of the 44th Annual IEEE Symposium on Foundations of Computer Science (2003), 102-114.
- H. Handschuh and D. Naccache, SHACAL, In B. Preneel, Ed., First Open NESSIE Workshop, Leuven, Belgium, November 13-14, 2000
- 22. M. Luby and C. Rackoff, *How to construct pseudo-random permutations from pseudo-random functions*, SIAM J. Comput., Vol. 17, No. 2, April 1988.
- 23. Stefan Lucks. Design Principles for Iterated Hash Functions, available at E-Print Archive, http://eprint.iacr.org/2004/253.
- U. Maurer, R. Renner, and C. Holenstein, Indifferentiability, Impossibility Results on Reductions, and Applications to the Random Oracle Methodology, Theory of Cryptography - TCC 2004, Lecture Notes in Computer Science, Springer-Verlag, vol. 2951, pp. 21-39, Feb 2004.
- Ueli Maurer and Johan Sjodin. Single-key AIL-MACs from any FIL-MAC, In ICALP 2005, July 2005.
- R. Merkle, One way hash functions and DES, Advances in Cryptology, Proc. Crypto'89, LNCS 435, G. Brassard, Ed., Springer-Verlag, 1990, pp. 428-446.
- Jesper Buus Nielsen. Separating Random Oracle Proofs from Complexity Theoretic Proofs: The Non-Committing Encryption Case. In Advances in Cryptology - Crypto 2002 Proceedings (2002), 111 -126
- 28. PKCS #1 v2.1, RSA Cryptography Standard (draft), document available at www.rsa security.com/rsalabs/pkcs.
- B. Pfitzmann and M. Waidner, A model for asynchronous reactive systems and its application to secure message transmission. In IEEE Symposium on Security and Privacy, pages 184-200. IEEE Computer Society Press, 2001.
- B. Preneel, R. Govaerts and J. Vandewalle, Hash Functions Based on Block Ciphers: A Synthetic Approach, in Advances in Cryptology - CRYPTO '93, Santa Barbara, California, USA.
- V. Shoup, A composition theorem for universal one-way hash functions, In Eurocrypt '00, pp. 445– 452, LNCS Vol. 1807.
- 32. R. Winternitz, A secure one-way hash function built from DES, in Proceedings of the IEEE Symposium on Information Security and Privacy, pages 88-90. IEEE Press, 1984.