
Collision Resistant Usage

of SHA-1 via

Message Pre-processing

Michael Szydlo

RSA Security

Yiqun Lisa Yin

Independent Consultant

Recent Advances

in Hash Collision Attacks

• Efficient collisions found for MD4, MD5
– Improved techniques include differential, message

modification approaches
– Other hash functions affected

• Wang, Yin, Yu focus on full SHA-1 (2005)

– Complexity of collision 269 now improved to 263

– Compare to design goal of 280

• Security community planning response

Standard Track Response

• Option #1: Upgrade hash function
– Completely new hash function
– Use SHA-256
– Truncate to SHA-256 output to 160 bits

• Option #2: Re-design affected protocols

– Incorporate randomness into hashing
– Randomized Hashing (Halevi, Krawczyk)

• Hr(m) = H(m XOR r||r||r…r)
• RSASign(m) = (r,RSA(r, Hr(m))

Considerations

• Upgrade Option
– New hash function design and standardization takes years
– Larger output of SHA-256 inconvenient
– Security of “Truncated SHA-256” must be explicitly studied

• Randomized Hashing Option
– Randomness is required and needs to be managed
– Possible changes in signature size
– Alter protocols such as those in PKCS#1

Message Pre-processing

• A simple message transformation

– Intuition: Add redundancy to message
– M’ = Φ(M), Φ is very simple function
– New derived hash function is

• SHApp(m) = SHA-1(Φ(M))

• Effects on applications
– Prevents all known collision attacks
– Φ stretches message length 33-100%

Two Candidate Transformations

• Message Whitening (word-wise)
– m1 m2 m3 m4 m5 … becomes
– m1 m2 …m12 0 0 0 0 m13 m14 … m24 0 0 0 0 m25…

– Each block contains whitened words

• Message Interleaving
– m1 m2 m3 m4 m5 … becomes
– m1 m1 m2 m2 m3 m3 …

– Each block contains duplicated words

Implementation Options

• Pre-processing within SHA-1 Function
– Change SHAUpdate() to SHAppUpdate()
– New function SHAppUpdate()

• expands m via Φ
• calls usual SHAUpdate() as black box

• Pre-processing outside SHA-1 Function

– Processing occurs first and then calls usual

SHA-1 as black box

• Two options are interoperable
– Which option is better depends on the application

Implementation and Security

Features

• Zero “API signature” change
– Output of SHApp(m) is automatically 160-bit

• Almost zero change to protocol
– Only need a new algorithm identifier for SHApp

• Security analysis
– Leverages on existing analysis of SHA-1
– Effects of pre-processing techniques can be quantified

Comparing Approaches

Truncate SHA-256 Random Hash Preprocess

Hash Output Truncation √

Change Signature Size √

Randomness Required √

Replace SHA1 Code √
Change Message

before Hashing √ √

Execution Cost
(time increase)

50-200%
Depends on SHA-256
slowdown on platform

(not %)
Depends on
random generation

33-100%
Depends
whitening
parameter

Components in Security Analysis

• Understand differential attack on SHA1
– Very specific message differentials employed
– Message modification changes message bits

• 1) Message redundancy reduces flexibility

– Expanded message as a code word
– Message whitening & interleaving changes code

– Fewer low hamming weight codes

• 2) Message modification don’t work
• Existing attacks can’t beat 280

Conclusions

• Message preprocessing is viable solution
to increasing secure life of SHA-1

• Technique can also be applied to MD5
• Long term solutions involve design of new

hash function from the ground up
• See paper for additional detail including

security analysis
– Available online at: http://eprint.iacr.org/2005/248

http://eprint.iacr.org/2005/248

Collision-Resistant usage of MD5 and SHA-1 via

Message Preprocessing

Michael Szydlo1 and Yiqun Lisa Yin2

1 RSA Laboratories, Bedford, MA 01730.
mszydlo@rsasecurity.com

2 Independent Security Consultant
yiqun@alum.mit.edu

Abstract. A series of recent papers have demonstrated collision attacks
on popularly used hash functions, including the widely deployed MD5
and SHA-1 algorithm. To assess this threat, the natural response has
been to evaluate the extent to which various protocols actually depend on
collision resistance for their security, and potentially schedule an upgrade
to a stronger hash function. Other options involve altering the protocol
in some way. This work suggests a different option. We present several
simple message pre-processing techniques and show how the techniques
can be combined with MD5 or SHA-1 so that applications are no longer
vulnerable to the known collision attacks. For some applications, this
may a viable alternative to upgrading the hash function.

Key words: SHA-1, MD5, padding, hash collision, signature

1 Introduction

The recent advances in cryptanalysis of hash functions have been spectacular,
and the collision attacks on MD5 and SHA-1 are of particular practical impor­
tance since these algorithms are so widely deployed. To assess the threat, the
first step is to re-examine which protocols actually depend on collision resistance
for their security. The most common type of vulnerable application is the use of
standard signatures to provide non-repudiation or certification services.

Applications which do not require collision resistance are unlikely to require
changes in the near future as a result of these recent collision results. For those
that do, changing the hash function is the simplest response, and the standard­
ized SHA-2[21] family (which includes SHA-256) is the leading candidate for
an upgrade. Although it has not received the same amount of analysis as earlier
hash functions, SHA-256 is expected to be significantly stronger. There has been
some progress analyzing SHA-256, for example [10] and [8]. These papers show
that SHA-256 also has “local collisions” (defined in [5]) with probability between
2−9 and 2−39. This implies that the security of SHA-256 is mainly hinged on its
message pre-processing.

mailto:yiqun@alum.mit.edu
mailto:mszydlo@rsasecurity.com

A second alternative is to re-design the protocols themselves, so they no
longer rely on collision resistance of the hash function. This can be done on a
case by case basis or in a more uniform fashion. For example, a recent Internet
Draft [9] proposes to change signature scheme protocols by use of a primitive
called “randomized hashing”. There are some architectural advantages to chang­
ing the signature scheme in such a modular way, replacing each hash invocation
with a random member of the hash family. Any protocol employing this solu­
tion will require a good source of randomness, and will also need to specify and
manage the random hash family member. This kind of solution can certainly be
considered viable when the additional resource of randomness is readily available.

This paper points out a third option: There are simple, alternate modes of
using MD5 or SHA-1, in a manner which renders them no longer susceptible
to the known collision attacks. These approaches essentially involve some light
message pre-processing code to effectively derive a new hash function from an old
one. Although the exact same standardized hash function is used, this technique
can be viewed as an indirect but convenient way of effectively upgrading the hash
function. Advantages include the fact that no additional resource of randomness
is needed and no change to the output length or truncation is required. In the
short term, some implementations might find this to be a compelling alternative
which will serve to extend the useful life of MD5 or SHA-1.

Organization

In Sections 2 we present some background material on the hash functions un­
der consideration, and in and Section 3 review the nature of the recent collision
attacks. In Section 4 we further motivate and present the basic message pre­
processing technique. In Section 5 we present the details of the construction.
Focusing primarily on SHA-1, we analyze the security in light of the known col­
lision attacks in Section 6. An alternate approach to message preprocessing is
described in Section 8. In Section 9, we provide analysis specific to MD5. Final
conclusions and recommendations are made in Section 10.

2 Background

2.1 The MDx Family of Hash Functions

The MDx family of hash functions includes MD4 (1990) and MD5 (1991), which
were designed by Ron Rivest to be one-way and collision resistant. SHA-0 (1993),
SHA-1, (1995) and SHA-2 (2001) were produced by the NSA and standardized
by NIST and follow similar design principles as Rivest’s algorithms. SHA-1 is
currently the FIPS Secure hash standard [20], and is the most widely deployed
hash function. An earlier version of this algorithm was SHA-0 [19], while the
SHA-2 family is intended for higher security levels. Until recently, SHA-1 was
considered to be as secure as its 160 bit output would allow, and MD5 also still
enjoys significant deployment.

The general approach behind the design of these hash function involves the
Merkle-Damg̊ard iterative structure, (see [6, 15]), to allow arbitrary length mes­
sages. The algorithms divide the input into fixed length blocks and process the
blocks sequentially by updating an initial state variable. Each block is combined
with the previous state in a compression function to calculate an updated state,
or chaining variable. When the entire message has been processed, the output is
the final state. The state vectors for MD5 and SHA-1 are 128 bits and 160 bits,
respectively.

Coron, et. al. [4] suggest a modification of the Merkle-Damg̊ard chaining
method. However, their work is orthogonal to ours since we focus on the com­
pression function, except in the IV message dependent approach of Section 8.

The compression functions consist of two basic components, message ex­
pansion and round operations. The compression function of SHA-1 operates on
512-bit message blocks, and utilizes a 160 bit state variable, represented by five
32-bit words, denoted A, B, C, D, E. The block of 512 bits is expanded to 2560
bits, represented by 80 words of 32 bits. Each of these words is used to update
the internal state in a round update function. MD5 follows a similar structure,
but uses a 128 bit state variable, and has 64 rounds instead of 80.

2.2 Collision Attacks on MD5 and SHA-1

Successful cryptanalysis of these hash functions has generally focused on finding
collisions, rather than on inverting the hash functions. Wang, et. al. announced
real collisions for MD4, MD5, RIPEMD HAVAL-128 in 2004 and 2005 in [22,
23, 25], and also introduced message modification techniques. These results have
been improved by Klima [13], and Naito et. al. [17], and as of writing, the
complexity of locating a collision in MD4 and MD5 are approximately 22 and
230 .

Regarding SHA-0 and SHA-1, early analysis in 1998 by Chabaud and Joux
used differential methods (local collisions and disturbance vectors) to find a
collision attack on SHA-0 of complexity 261 [5]. Biham and Chen found near
collisions on SHA-0 in complexity 240 [1]. The work of Biham, Joux, and Chen
included the first real collision of SHA-0 in [11, 3]. Additional work on reduced
round versions of SHA-1 appeared in [2, 18, 16]. Recently Wang, Yin, and Yu
described an improved attack on SHA-0 in [26], and finally, in [24] presented the
first attack on the full SHA-1, where they show that finding collisions is at most
of complexity 269. Improvements to these attacks were announced in [27] where
the attack complexity has been reduced to 263 .

2.3 From Random Collisions to Meaningful Collisions

An early critique had been the initial collisions found by researchers results have
involved just a few message blocks or short binary strings, without enough struc­
ture to be considered “meaningful” collisions. However, meaningful collisions can

be found for these hash functions, and regardless, general collision resistance is
a real design goal of hash function construction. For example, Lenstra et. al.
[14] have found collisions between two distinct X.509 certificates, and collisions
between two properly formatted postscript documents has been exhibited in [7].
Each of these examples involved the MD5 hash function. Examining these two
examples, we see that they exploit the relative freedom in the form of certifi­
cates and postscript documents, and one may still argue that collisions are likely
difficult to produce among messages of a suitably restricted form.

3 Analyzing the Recent Collision Attacks

In this section, we analyze the nature of the recent collision attacks on the MDx
family of the hash functions and motivate techniques that would be useful to
thwart such attacks. Throughout this paper, we will use M to denote a message
to be hashed. Both MD5 and SHA-1 break the message to be hashed into 512 bit
blocks. When we need to refer to a single block we denote it m, and m is often
partitioned into sixteen 32-bit message words denoted by m0, m1, ..., m15. When
referring to the expansion function internal to the compression function, we
denote the expanded message block by w. In the case of SHA-1, w is partitioned
into eighty 32-bit message words, denoted by w0, . . . w79. In the case of MD5, w
is expanded into 64 32-bit message words. We use C to denote the compression
function, and H to denote the complete hash function.

3.1 Basic Ideas in the Collision Attacks

We first briefly review some of the basic ideas behind these attacks. Focusing on a
single block, the general common strategy behind these collision attacks involves
finding a message difference Δ(w) = w−w� between two expanded messages such
that the probability that C(m) equals C(m�) is higher than expected. This is
possible when it can be arranged such that during the round computations of
the blocks m and m� the state vectors never deviate significantly, and can be
“corrected” with high enough probability.

The basic tool is the local collision, a series of a few rounds in which certain
small differences in the expanded message words will be absorbed with reasonable
probability. Due to the message expansion there will be many differing words of
m and m�, so these local collisions must be strung together. Disturbance vectors
describe how the local collisions are joined. The entire sequence of differences
in the state vectors is called a differential path. The overall success probability
depends on the simultaneous satisfaction of a set of conditions for each local
collision.

The structure of the various attacks consist of analysis of the local collisions,
search for a low Hamming weight disturbance vector, a brute force search on
input messages, and a variety of methods are used to boost the success proba­
bility, including specifying concrete conditions for the differential path, message

http:messagewords.We

modification so that some conditions always hold, and usage of two blocks to
construct collisions from near collisions. We remark that the above summary
most accurately describes the approaches for SHA-1, and the analysis of MD5
differs slightly.

3.2 Thwarting the Collision Attacks

From the summary of the attacks above we can see that there are several strate­
gies which one might employ to attempt to prevent the success of these ap­
proaches. The most obvious approach is to attempt to prevent the existence of
any “good” differential – a differential path that leads to (near) collisions and
holds with probability greater than 2−n/2 . An additional precaution would be to
restrain the power of the message modification techniques, thereby significantly
reducing the success probability of the attack. A third possibility is to consider
situations in which the Merkle-Damg̊ard iterative structure can not be exploited;
for example if single message bits were to affect multiple blocks.

4 Message Pre-processing Techniques

In this section we describe the general message preprocessing framework, and
discuss the streaming requirement that some applications may have.

4.1 Message Pre-processing Framework

The working assumption behind the general techniques we suggest for improving
the collision resistance is that the underlying hash function itself will not be
changed. Let M be a message string to be hashed, and let H be a standard
hash function, such as MD5, or SHA-1. Our objective is to define a derived hash
function H∗ which calls H as a subroutine. Our proposal is simply to preprocess
the message before it is hashed in a standard way. Formally, let φ : M → M∗

be a preprocessing function mapping strings to strings. For each such function,
a derived hash function H∗ may be defined by

H ∗(M) = H(φ(M)).

Of course, we are interested in cases where φ is a relatively simple function, and
the derived hash function H∗ is collision resistant with respect to known attacks,
even if H is not. The function φ must be chosen appropriately for a particular
H to ensure that H∗ is secure.

4.2 Streaming Data Requirement

Many applications are set up architecturally to incrementally digest a large mes­
sage as it becomes available. For example, with SHA-1, applications can repeat­
edly make a SHA-1Update function call as portions of the message stream in.

This requirement can be satisfied when the message pre-processing can also be
performed in a streaming fashion, for example, by dividing the message into
blocks and expanding each one. Formally, we call a φ a local expansion if φ

∗ ∗ ∗can be defined by φ(m0, m1, . . .mk) = m0, m1, . . .m k where each mi is of fixed
l ∗ ∗length and m = f(mi) for some expansion function f : {0, 1}l → {0, 1} , where i

l∗ > l. It is clear that when φ is a local expansion, the state of the preprocessing
function can be stored in the message digest context, so that a derived update
function could also call SHA-1Update as a subroutine.

5 Local Expansion Approaches

We now discuss two local expansion approaches to message preprocessing: mes­
sage whitening and message interleaving.

5.1 Message Whitening

In this approach, the basic idea is to alter the message by inserting fixed char­
acters at regular intervals. The motivation here is to decrease the flexibility
in finding good message differentials. These fixed characters can be taken to be
words filled with all zero bits, so we call the approach whitening. For a hash func­
tion with at 512-bit block size, sequential chunks of fewer than 512 bits can be
expanded into a full 512 bits. For example each sequence of (16 − t) 32-bit words
m = (m0, m1, . . . m15−t) could be expanded to m = (m0, m1, . . . m15−t, 0, . . . , 0),
where the last t words would be fixed as zeros. Each execution of the compression
function effectively only process (16 − t) message words rather than 16 message
words, so it is easy to calculate the performance slowdown. This approach is also
easy to implement, since such a preprocessing function φ is a local expansion, the
streaming requirement would be met. From a security standpoint, the intuition
is that processing fewer bits of message should allow the message to be better
mixed within the calculation.

A variant of this approach may select specific words to whiten to further
increase the difficulty of known attacks. Below, we discuss how whitening the
middle two words of SHA-1 significantly reduces the effect of message modifica­
tion techniques.

5.2 Message Self Interleaving

In this approach, the basic idea is to duplicate each message word so that each
bit appears twice after the preprocessing. Assuming the entire message M is
broken up into some number of 32-bit words: M = (m0, m1, . . .mk), then the
preprocessed message would be φ(m) = (m0, m0, m1, m1, . . .mk, mk) where each
word appears twice. As with the message whitening approach, message interleav­
ing causes fewer message bits to be fed into each message block, causing better
mixing. As φ is a local expansion, the streaming requirement is also met.

5.3 Generalized Local Expansion

The whitening and interleaving approaches discussed above have obvious minor
variations, such as choice of which bits to whiten. The frequency of message
interleaving could also be chosen word by word, rather than character by char­
acter. Both of these approaches, as well as the minor variants have the property
that the local expansion is a linear function. Thus, one way to generalize is to
consider an arbitrary linear function. Although we prefer simpler pre-processing
functions, one could certainly consider non-linear functions as well, effectively
using an arbitrary local expansion. Regardless of the specific function, these
approaches all attempt to increase security by increasing the structure of each
message block. This can make finding good differentials more difficult for the
attacker, as well as disrupt message modification techniques.

6 Security Analysis of Local Expansion Approaches

In this section, we further discuss why the message pre-processing techniques
described in the preceding section help prevent existing attacks. We focus our
discussions on SHA-1.

6.1 Intuition

The message whitening and message interleaving both operate by increasing the
structure within each block. For these approaches and their variants, we can
simply view the derived hash function as a modification of the original hash
function, except with a different message expansion rule.

Concretely, in the case of SHA-1, the message interleaving approach effec­
tively takes as input 256 bits of data instead of 512, and expands them to the
80 words required by the SHA-1 round operations. The amount of data required
by the whitening approach would depend on its calibration, i.e., how many bits
or words were whitened. Intuitively, this means that fewer data bits are pro­
cessed for each execution of the compression function, and hence the derived
hash function can offer a better mixing of the data bits.

In the following, we provide more quantitative analysis of the two message
pre-processing approaches by considering how they affect constructing good dif­
ferentials and performing message modification, both of which are critical in
existing collision attacks.

6.2 Insights from Coding Theory

One way to understand the effect of message whitening or message interleaving
is to study the code of expanded message words. For hash functions which employ
a linear message expansion rule the space of expanded messages is a linear code,
so we have a tool to reason about the existence of low Hamming weight vectors.

For example, for SHA-1 each block expands 16 × 32 bits into 80 × 32 bits.
512 2560The expansion function E{0, 1} → {0, 1} is defined word-wise by the

recurrence relation

wt = (wt−3 ⊕ wt−8 ⊕ wt−14 ⊕ wt−16) <<< 1. (1)

For MD5, the original message is simply repeated 3 times, so the expanded mes­
sage words of both MD5 and SHA1 can be viewed as linear codes of dimension
512. In either case, the code is generated by the 512 basis vectors E(1, 0, . . . , 0),
E(0, 1, . . . , 0), . . ., E(0, . . . , 0, 1).

Both the interleaving and whitening approaches work by restricting the form
of the 512-bit input message block, thus restricting full code of expanded message
words. The form of the whitened message is m ∗ = (m0, m1, . . .m15−t, 0, . . . 0) so
the restricted code is 512 − 32t dimensional, generated by basis vectors cor­
responding to the non-whitened bits. The form of an interleaved message is

∗ m = (m0, m0, m1, m1, ..., m7, m7), so this code is only 256 dimensional, gener­
ated by vectors of the form (1, 0, . . . ; 1, 0, . . . ; 0; . . .), where each generator con­
sists of zeros except for two matching 1 bits. When we view the collision attacks
as attempts to piece together local collisions in a manner consistent with this
linear code, it becomes clear that reducing the dimension of the code will make
these attacks less feasible.
Reducing Solutions to Linearized Hash Function: Another way to under­
stand the whitening and message interleaving is in terms of the set of solutions
to a linearized version of the hash function. This is the approach followed by
Oswald and Rijmen in [18]. Rather than focus on local collisions, they analyze
the difference between the linearized and actual SHA-1, so that each difference
in the expanded message word yields one or more conditions which will be only
probabilistically satisfied in the actual SHA-1. They search for low Hamming
weight code words Δ(w) which are also solutions to the linearized SHA-1 equa­
tion. The solutions yielding an output of 160 zeros are defined by an additional
160 linear constraints (see [18] for details), so it is natural to consider the code of
linear solutions, consisting of expanded message words which also satisfy these
160 constraints. This restricted code has dimension 512-160=352, and the colli­
sion attack first seeks a low Hamming weight code words, then a message pair
such that the conditions will be satisfied.

In this framework, our message interleaving approach corresponds to the
addition of 256 additional constraints, and the whitening approach corresponds
to the addition of 32t additional constraints. Although there is no simple way to
locate low Hamming weight codewords in an arbitrary code, the existence and
number of lower weight words decreases as the minimum relative distance goes
up. This ratio is simply the ratio of the code length to the code dimension, and
equals 352/2560 = 7.27 for the original code. This code, restricted with whitening
parameter t, has dimension 352 − 32t, so in case t = 4, the minimum relative
distance is increase to 8.88. If, instead, the code is restricted by the interleaving
approach, the dimension is reduced to 352 − 256 = 96, so the minimum relative
distance increases to 26.66. This heuristic does not preclude the existence of good

differentials, but it does provide a useful metric for how restricting the form of
messages will increase the difficulty of the known collision attacks.

6.3 Preventing Good Differentials

We now address more concretely the best known attacks on SHA-1. As discussed
earlier, a major step for constructing a good differential path for SHA-1 is to
find a disturbance vector with low Hamming weight. In this section, we consider
how message pre-processing affects constructing good differentials.

First, we review some basic facts of the SHA-1 disturbance vectors. A dis­
turbance vector dv is a set of 80 32-bit words dvi (i = 0, ..., 79), and dvi,j = 1
iff a local collision starts in step i bit j. Each local collision consists of 5 ad­
ditional changes in the expanded message word, called correction vectors (See
[5]). The correction vectors wc1, wc2, wc3, wc4, wc5 are automatically linearly
determined from dv, and the difference in the expanded messages is simply the
sum Δ(w) = dv + Σwci (mod 2). Although, only Δ(w) must be a code word
(i.e. satisfy the recurrence relation), in practical attacks dv itself is taken to be a
code word, so that the five {wci} and Δ(w) are automatically code words. The
Hamming weight of dv, denoted by HW (dv) is the central important factor in
determining the success of the collision attacks, an estimate of the complexity
of an attack on SHA-1 is about 23HW (dv). 1

In the attacks on SHA-1 [24, 27], disturbance vectors of low Hamming weight
were found by a heuristic search algorithm, and it is based on the following
intuition: If we view dv as an 80-by-32 0-1 matrix, then the non-zero entries
in a low Hamming dv are likely to be concentrated in one column. The search
algorithm proceeds by first choosing a 16-bit column in the matrix and expand­
ing backwards and forwards with message expansion. The best vector is then
chosen among all possible choices for the column. Using this heuristic search,
the lowest Hamming weight is reached when the 16-bit column takes the value
L = (100...000).

Now we are ready to analyze how the two pre-processing techniques affect
finding low Hamming weight disturbance vectors. For the message whitening

∗technique, each whitened message word m would yield an extra condition oni
the differential path, namely

Δm ∗ i = 0. (2)

For the interleaving techniques, the extra conditions on Δm∗ are

Δm ∗ = Δm ∗ 2i+1, for i = 0, 1, ..., 7. (3)2i

Experiments: We used the same heuristic search algorithm to find disturbance
vectors for “SHA-1 with message pre-processing”. Our assumption is that a good

1 It was the introduction of message modification techniques in [24] that allowed the
initial conditions in steps 1-20 to be automatically satisfied so that the limiting factor
was actually the Hamming weight in the final 60 words of dv.

http:SHA-1.As

�

disturbance vector follows similar patterns as the ones for the original SHA-1.
Starting with L, we computed 150 words of dv by expanding L forwards and
backwards with the recurrence relation E and compute many words of Δw from
dv. The words of this extended dv may be found in the rows of Table 5 in
reference [24]. The next step is to pick 80 words from the computed Δw such
as the above conditions due to whitening (or interleaving) are satisfied while
keeping the Hamming weight as small as possible. Using the numbering of [24],
and focusing on whitening with t = 2, we examined the values of Δw, and see
that there are no two consecutive zero words before step 55, and there are no
two consecutive words that are the same before step 53. This means that we
have to shift down by 40 words when choosing a good disturbance vector, in
order for Δw to satisfy the message pre-processing conditions. This would cause
a significant increase in the Hamming weight of the vector, so these experimental
results suggest that the Hamming weight of the disturbance vector (restricted to
steps 21-80) would go from 25 (for SHA-1) to over 80. Even if advanced message
modification such as that announced in [27] progresses to 32 steps, the hamming
weight for the remaining 48 steps would be sufficient.

We remark that the conditions on Δm∗ given in the above two equations are i
necessary conditions for the differential path to be constructed, since they are
derived from the pair of input message words mi and mi. This is in contrast
to the three conditions on the disturbance vectors in the original attack on
SHA-0 [5] as well several works on SHA-1 [3, 24]. Those conditions are for easier
construction of a valid path from the disturbance vector, and so they are not
necessary conditions. That’s why these conditions can be removed as in the
attack on the full SHA-1 [24]. However, the above conditions, due to message pre­
processing, cannot be removed. Finally, the techniques of Jutla and Patthak [12]
could be adapted to provide rigorous bounds on the hamming weights of the
codes associated to whitened or interleaved message blocks.

6.4 Weakening Message Modification

In addition to preventing good differentials, the whitening and interleaving ap­
proaches also render the message modification techniques less effective, thereby
increasing the complexity of existing collision attacks.

First, we briefly review the basics of the message modification techniques [25,
23]. For the MD4-family of hash functions, including MD5 and SHA-1, the round
function has the following general form:

ai = G(input chaining variables) + mi−1,

where ai is the output chaining variable and mi−1 is the message word used in
step i. Once the differential path has been constructed, it is easy to derive a
set of sufficient conditions on ai that ensure that all conditions on path hold.
The conditions are of the form ai,j = v, where v is 0 or 1. The main idea of the
message modification techniques is simply to set ai,j to the correct bit v and then
recompute mi−1 = ai − G(). In other words, we can modify the message word

in step i to make the condition on ai to hold. This basic technique can be used
for the first 16 steps since the message words are all independent of each other
up this point. A simple variation of the basic technique is to modify the message
words used in the two steps before step i (i.e., mi−2 or mi−3) to achieve the
same goal. This is particular useful when mi−1 cannot be modified due to other
constraints. In addition, more advanced techniques, called multi-step message
modification techniques, were introduced for dealing with computation beyond
the first 16 steps. The improvements announced in [27] are achieved with such
advanced message modification techniques.

Next, we analyze how message interleaving affects the effectiveness of message
∗ ∗modification. Since m = m (for i = 0, 1, ..., 7), the two consecutive message 2i 2i+1

words have to be modified simultaneously, making it almost impossible to change
any single bit. Now suppose a differential path P has already been chosen, and
conditions on ai have been determined. Since most of these conditions can no
longer be made to hold through message modification, the complexity of the
attack using path P would go up significantly.

∗ ∗ ∗In the case of whitening, the t whitened message words mi , mi+1, ...m i+t−1
cannot be modified, since these message words are simply zero and independent
of the input message. It is possible to modify a couple of message words imme­
diately before the whitening step so that some of the conditions on ai and ai+1

can still hold, but the effect can be weakened if we choose t ≥ 4.
Targeted Whitening: For a given path P , it is good to choose the t consecutive
message words that maximize the total number of conditions s in those steps.
In the attack on SHA-1 [24], the conditions on ai are given in Table 12. From
the table, it is easy to see that if t = 4, and we whiten words 7 to 10, the total
number of conditions is s = 83.

It is possible that the attacker could select a new differential path P � other
than what was used in existing attacks on SHA-1 and MD5, and he could try to
minimize the number of conditions associated with P � in the specified whitening
steps. However, such an approach would likely not be very effective for the
following reason: One special feature of the differential paths in existing attacks
is that they are “front-loading” (with a lot of conditions in the first 20 steps)
in order to minimize the number of conditions after step 20, which is directly
related to the complexity of the attack. Hence, if the attacker selects P � that
has fewer conditions in the first 20 steps, then it is very likely that P � would
have more conditions later. This observation applies even more strongly when
considering the improved attacks of [27] which extend message modification to
additional steps.

7 Implementation Consideration

In this section, we consider practical implementation issues related to the mes­
sage pre-processing proposal. For ease of discussion, we refer to the derived new

hash function as SHApp, where “pp” stands for pre-processing2. We will con­
sider issues related to programming implementation of SHApp as well as upper
layer protocols that call SHApp as subroutines.

7.1 Programming Implementation

We propose two possible implementation options for SHApp. They vary only
in terms of where pre-processing occurs in the code, and they are suitable for
different applications.

Option 1: Pre-processing within SHA-1 Function For most existing im­
plementation of SHA-1, the hash computation on a given input is generally
carried out by three functional calls as described below.3

SHAInit(context)

SHAUpdate(context, input, inputLen)

SHAFinal(digest, context)

We can implement the new hash function SHApp with the same sequence of
functional calls as follows:

SHAppInit(context)

// same as SHAInit

SHAppUpdate(context, input, inputLen)

{

newInput = SHAppPreProcess (input)

newInputLen = Length (newInput)

SHAUpdate(context, newInput, newInputLen)

}

SHAppFinal(digest, context)

// same as SHAFinal

Note that SHAppUpdate has exactly the same i/o interface as the original
SHAUpdate in existing implementation. The pre-processing step is done as a
private function that is invisible to upper layer protocols using SHApp. Due
to the simplicity of whitening and interleaving, only a small amount of code is
needed for implementing the SHAppPreProcess function.

2	 A more accurate name would be SHA1pp, but we omit the “1” so that it can be
pronounced as “shap.”

3	 The naming for the functions may vary slightly among implementations. For exam­
ple, SHAUpdate may be called SHAadd etc. Despite this name variation, the functions
accomplish essentially the same thing: the first one initializes the IV; the second one
does proper padding and the main loop; the third one finalizes the computation and
writes output.

Option 2: Pre-processing outside SHA-1 Function For some applications,
implementation of SHA-1 may be hard-coded, and hence it can be difficult to
make internal changes to the code as described in option 1. In this case, pre­
processing can be done entirely prior to calling the function SHA-1 as below.

SHApp(message)

{

newMessage = SHAppPreProcess (message)

SHA-1(newMessage)

}

Note that the original implementation of SHA-1 is used as a “black box”
without changing anything inside. Again, there is no impact on the interface.

Interoperability We remark that for both options, the result of the hash com­
putation is the same for the same message. There is no interoperability issue
between the two options. Hence implementers can simply choose the option that
best suits their applications.

7.2 Protocols

From the discussions on programming implementation, we can see that SHApp
have exactly the same input and output interface as the original SHA-1. Hence,
replacing SHA-1 with SHApp in a protocol would not cause any upper layer
changes other than replacing the Algorithm Identifier.

Newer digital signature schemes (e.g., RSA-PSS) have a “hierarchical” iden­
tifier, where the hash function is a parameter. For those schemes, the algorithm
identifier for SHApp is sufficient.

For various older digital signature schemes, a new algorithm identifier is
needed for both SHApp itself as well as the combination of SHApp with the
specific signature scheme. The relevant standards organizations need to take
care of the assignment for combinations of DSA, ECDSA, etc. For example,
RSA Security can assign identifiers for SHApp and its combination with PKCS
#1 v1.5. Depending on the standards, it may take little time or some amount
of time for such assignments.

8 IV Message Dependence Approaches

In this section we describe a completely different approach does not involve a
local expansion, but instead works by effectively ensuring that the initialization
vector (IV) is message dependent.

8.1 Message Duplication

One way to cause the IV to be message dependent is to concatenate the mes­
sage with itself before hashing. To simplify the explanation, we suggest first
padding M so that it is a whole number of blocks. With this assumption, the
pre-processing is simply φ(M) = M ||M , where || denotes string concatenation.
Let us examine the calculation halfway through, just after all the blocks of the
first M have been processed. Notice that the full original message M is left to be
processed, except that the intermediate IV chaining variable is a function of the
message itself. This illustrates that an equivalent way to view this construction
is as a regular hash of M where the starting IV chaining variable is a function
of the message itself rather than constant.

8.2 Security Analysis

The IV message dependence approach increases security in a way completely
different than the local expansion approach. Instead of affecting the blockwise
compression function, they rely on the fact that the entire message must be pro­
cessed twice within the framework of the Merkle-Damg̊ard iterative chaining.
Since each message bit is input to separate blocks, the previous attack strate­
gies simply can not be applied. Instead, attacks on this variant would have to
be of a completely different sort, and would not be able to focus on a single
compression function, or on a few adjacent message blocks. This, or any other
variant of the IV message dependent approach would also present an additional
obstacle to automatically constructing collisions on long messages from single
block collisions.

This approach is interesting because it is an extremely simple way of thwart­
ing the known collision attacks for MD5 and SHA-1. However, a disadvantage
with this approach is that the preprocessing function φ is not a local expansion,
so it can not be effectively used with streaming data.

One might also consider alternate methods of achieving IV message depen­
dence, for example by setting the initial starting IV value to be the first 160
bits of H(M). However, this would not be not a “pure” preprocessing technique,
and would require accessing the internals of the hash function itself, to set the
IV value.

9 Analysis for MD5

SHA-1 was designed based on MD4 and MD5, and hence MD5 and SHA-1 are
quite similar in terms of their structure and choices of mathematical operations.
Consequently, the latest collision attacks on MD5 [25] and SHA-1 [24] also share
some similarities. Therefore, most of the security analysis in preceding section
also directly applies to MD5, including the general insight from coding theory,
effects on message modification, and the IV-message dependency.

Here we point out some differences between the two hash functions and how
they would affect the analysis. The main difference lies in the message expansion.
For MD5, each message block expands 16×32 bits into 64×32 bits. The expansion
function E operates by repeating and re-ordering the 16 message words 3 times.
So the MD5 message expansion is much simpler than SHA-1, and hence offers
less mixing.

The differential path P used in the latest attack on MD5 is also different from
SHA-1, other than they are both “front-loading”, and the MD5 analysis does
not make use of an explicit disturbance vector. In the recent attack on MD5,
the path was constructed by first finding a near collision that only involves the
MSB in the second half and then deriving a more complicated collision path in
the first half. For the chosen path, Δmi is non-zero in steps 5, 12, and 15.

Message interleaving would result in 6 of the Δmi to be non-zero, which would
make the particular path P invalid. More importantly, interleaving would make
message modification almost impossible. Note that there are over 200 conditions
associated with P in the first 16 steps, and all these conditions need to be set
true through message modification in order to reduce the complexity of the
attack to about 230+. Therefore, message interleaving can significantly increase
the complexity of existing attacks.

A similar argument can be carried out for message whitening, although a
higher parameter of t would be required to rule out the availability of low Ham­
ming weight Δmi vectors. In this case, it seems more difficult to have a rigorous
argument that the attacker cannot find a completely new path that would effec­
tively target the particular whitening techniques.

10 Conclusions

In this paper we have considered several techniques to use SHA-1 and MD5 in
a more collision resistant manner. The simplest approach which we have dis­
cussed in this paper is the message whitening approach. The word-wise message
interleaving is also quite simple, and has very similar security properties. These
approaches are both easy to implement, support streaming message digesting,
and are amenable to analysis with respect to the known differential attacks.
The IV message dependent approaches are appealing due to their immunity to
single-block collision attack approaches, but have the drawback that they are
not convenient for message streaming.

For practical applications wishing to improve SHA-1 use, we suggest the use
of message whitening pre-processing with parameter t ≥ 4, so that 12 words of
the message are expanded into 16. This results in a performance slowdown of
25 percent. An even more secure alternative would be the message interleaving,
although it results in a slowdown of 50 percent. For MD5, our recommendation
is to use the message interleaving approach, or in case the application does
deal with small data items (such as certificates), the IV message dependence
approach.

http:25percent.An

Our solutions can be viewed as a general purpose, safer, collision resistant
way of using MD5, and SHA-1. Due to their simplicity, we contend that such an
approach can be appealing for practitioners who wish to increase security in the
short term, without changing the underlying hash function at all.
Relationship to Hash Function Design: The solution in this paper is not
intended to be a complete replacement for an appropriate, timely hash function
update nor for improved hash function design. On the other hand, our proposal
has something in common with proposals for enhancing the security of SHA-like
hash designs such as [12] in that we also focus on the code of expanded message
words.
Future Improvements on Collision Attacks: With respect to the attacks
of [24, 27], both whitenening with parameter t ≥ 4 and message interleaving
techniques still yield a derived hash function for which collisions can not be found
with effort below 280. Although it is impossible to predict the improvements in
collision attacks we make a few comments on the robustness of our techniques. In
general, the message pre-processing we propose makes will apply to other attacks
of the same genre, because: (1) message modification in general is much harder,
(2) multi-step message modification techniques are almost impossible, and (3)
the constraints on Δm are targeted at preventing effective “front-loading” of
differential paths.

11 Acknowledgments

The authors would like to thank Scott Contini, Russ Housley, Burt Kaliski,
Jim Randall, Ron Rivest, Moti Yung, and the anonymous reviewers for helpful
comments. Special thank to Paul Hoffman for discussions on implementation
issues.

References

1. E. Biham and R. Chen. Near Collisions of SHA-0. In Advances in Cryptology –
Crypto’04 , Springer-Verlag, August 2004.

2. E. Biham and R. Chen. New Results on SHA-0 and SHA-1. In Crypto’04 Rump
Session, August 2004.

3. E. Biham, R. Chen, A. Joux, P. Carribault, W. Jalby and C. Lemuet. Collisions in
SHA-0 and Reduced SHA-1. In Advances in Cryptology – Eurocrypt’05 , Springer-
Verlag, May 2005.

4. J. Coron, Y. Dodis, C. Malinaud, and P Puniya Merkle-Damgrd Revisited : How
to Construct a Hash Function In Advances in Cryptology – Crypto’05, Springer-
Verlag, 2005.

5. F. Chabaud and A. Joux. Differential Collisions in SHA-0. In Advances in Cryp­
tology – Crypto’98, Springer-Verlag, August 1998.

6. I. Damg̊ard. A Design Principle for Hash Functions, In Advances in Cryptology –
Crypto’89, Springer-Verlag, 1990.

7. M. Daum	 and S. Lucks. The Story of Alice and her Boss In Rump session of
Eurocrypt’05. http://www.cits.rub.de/MD5Collisions/.

http://www.cits.rub.de/MD5Collisions
http:ourtechniques.In

8. H. Handschuh and H. Gilbert Security Analysis of SHA-256 and Sisters. Proceed­
ings of the Workshop on Selected Areas in Cryptography - SAC’03, Springer-Verlag,
2003.

9. S. Halevi and H. Krawczyk Strengthening Digital Signatures via Randomized Hash­
ing, Internet-Draft, May 12, 2005. http://www.ietf.org/internet-drafts/draft-irtf­
cfrg-rhash-00.txt.

10.	 P. Hawkes and M. Paddon and G. Rose. On Corrective Patterns for the SHA-2
Family. http://eprint.iacr.org/2004/207

11.	 A. Joux. Collisions for SHA-0. In Rump session of Crypto’04, August 2004.
12.	 C. Jutla and A. Patthak A Simple and Provably Good Code for SHA Message Ex­

pansion, IACR Eprint archive, Report 2005/247, http://eprint.iacr.org/2005/247.
13.	 V. Klima: Finding MD5 Collisions on a Notebook PC Using Multi-message Modi­

fications, IACR Eprint archive, Report 2005/102, http://eprint.iacr.org/2005/102.
14.	 A. Lenstra and X. Wang and B. de Weger. Colliding X.509 Certificates, IACR

Eprint archive, Report 2005/067. http://eprint.iacr.org/.
15.	 R. Merkle. One Way hash Functions and DES, In Advances in Cryptology –

Crypto’89, Springer-Verlag, 1990.
16.	 K. Matusiewicz and J. Pieprzyk. Finding Good Differential Patterns for Attacks

on SHA-1. IACR Eprint archive, December 2004.
17.	 Y. Naito and Y. Sasaki and N. Kunihiro and K. Ohta. Improved Collision Attack

on MD4 IACR Eprint archive, Report 2005/151.
18.	 V. Rijmen and E. Oswald. Update on SHA-1. In Topics in Cryptology – CT-RSA

2005, Springer-Verlag, 2005.
19.	 NIST. Secure hash standard. Federal Information Processing Standard, FIPS 180,

May 1993.
20.	 NIST. Secure hash standard. Federal Information Processing Standard, FIPS 180-1,

April 1995.
21.	 NIST. Secure hash standard. Federal Information Processing Standard, FIPS 180-2,

August 2002.
22.	 X. Wang, F. Guo, X. Lai, and H. Yu. Collisions for Hash Functions MD4, MD5,

HAVAL-128 and RIPEMD. In Rump session of Crypto’04 and IACR Eprint
archive, August 2004.

23.	 X. Wang, X. Lai, F. Guo, H. Chen, X. Yu. Cryptanalysis for Hash Functions MD4
and RIPEMD. In Advances in Cryptology – Eurocrypt’05, Springer-Verlag, May
2005.

24.	 X. Wang and Y.L. Yin and H. Yu. Finding Collisions in the full SHA-1. In Ad­
vances in Cryptology – Crypto’05, Springer-Verlag, 2005.

25.	 X. Wang and H. Yu. How to Break MD5 and Other Hash Functions. In Advances
in Cryptology – Eurocrypt’05, Springer-Verlag, May 2005.

26.	 X. Wang and H. Yu and Y.L. Yin. Efficient Collision Search Attacks on SHA-0.
In Advances in Cryptology – Crypto’05, Springer-Verlag, 2005.

27.	 X. Wang, A. Yao, and F. Yao, New Collision search for SHA-1, Rump Session
Crypto’05.

http:http://eprint.iacr.org
http://eprint.iacr.org/2005/102
http://eprint.iacr.org/2005/247
http://eprint.iacr.org/2004/207
http://www.ietf.org/internet-drafts/draft-irtf

	Szydlo_PPT.pdf
	Collision Resistant Usage of SHA-1 via Message Pre-processing
	Recent Advances in Hash Collision Attacks
	Standard Track Response
	Considerations
	Message Pre-processing
	Two Candidate Transformations
	Implementation Options
	Implementation and Security Features
	Comparing Approaches
	Components in Security Analysis
	Conclusions

