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Recent Advances 

in Hash Collision Attacks
 

• Efficient collisions found for MD4, MD5 
– Improved techniques include differential, message 

modification approaches 
– Other hash functions affected 

• Wang, Yin, Yu focus on full SHA-1 (2005)
 
– Complexity of collision 269 now improved to 263 

– Compare to design goal of 280 

• Security community planning response 



Standard Track Response
 

• Option #1: Upgrade hash function 
– Completely new hash function 
– Use SHA-256 
– Truncate to SHA-256 output to 160 bits 

• Option #2: Re-design affected protocols
 
– Incorporate randomness into hashing 
– Randomized Hashing (Halevi, Krawczyk) 

• Hr(m) = H(m XOR r||r||r…r) 
• RSASign(m) = (r,RSA(r, Hr(m)) 



Considerations
 

• Upgrade Option 
– New hash function design and standardization takes years 
– Larger output of SHA-256 inconvenient 
– Security of “Truncated SHA-256” must be explicitly studied 

• Randomized Hashing Option 
– Randomness is required and needs to be managed 
– Possible changes in signature size 
– Alter protocols such as those in PKCS#1 



 

Message Pre-processing
 

• A simple message transformation
 
– Intuition: Add redundancy to message 
– M’ =  Φ(M), Φ is very simple function 
– New derived hash function is 

• SHApp(m) = SHA-1(Φ(M)) 

• Effects on applications 
– Prevents all known collision attacks 
– Φ stretches message length 33-100%
 



Two Candidate Transformations
 

• Message Whitening (word-wise) 
– m1 m2 m3 m4 m5 … becomes 
– m1 m2 …m12 0 0 0 0 m13 m14 … m24 0 0 0 0 m25… 

– Each block contains whitened words 

• Message Interleaving 
– m1 m2 m3 m4 m5 … becomes 
– m1 m1 m2 m2 m3 m3 …  

– Each block contains duplicated words 



Implementation Options 

• Pre-processing within SHA-1 Function 
– Change SHAUpdate() to SHAppUpdate() 
– New function SHAppUpdate() 

• expands m via Φ 
• calls usual SHAUpdate() as black box 

• Pre-processing outside SHA-1 Function
 
– Processing occurs first and then calls usual 

SHA-1 as black box 

• Two options are interoperable 
– Which option is better depends on the application 



Implementation and Security 

Features
 

• Zero “API signature” change 
– Output of SHApp(m) is automatically 160-bit 

• Almost zero change to protocol 
– Only need a new algorithm identifier for SHApp 

• Security analysis 
– Leverages on existing analysis of SHA-1 
– Effects of pre-processing techniques can be quantified 



Comparing Approaches
 

Truncate SHA-256 Random Hash Preprocess 

Hash Output Truncation √ 

Change Signature Size √ 

Randomness Required √ 

Replace SHA1 Code √ 
Change Message 

before Hashing √ √ 

Execution Cost 
(time increase) 

50-200% 
Depends on SHA-256 
slowdown on platform 

(not %) 
Depends on 
random generation 

33-100% 
Depends 
whitening 
parameter 



Components in Security Analysis
 

• Understand differential attack on SHA1 
– Very specific message differentials employed 
– Message modification changes message bits 

• 1) Message redundancy reduces flexibility
 
– Expanded message as a code word 
– Message whitening & interleaving changes code
 

– Fewer low hamming weight codes 

• 2) Message modification don’t work 
• Existing attacks can’t beat 280 



Conclusions
 

• Message preprocessing is viable solution 
to increasing secure life of SHA-1 

• Technique can also be applied to MD5 
• Long term solutions involve design of new 

hash function from the ground up 
• See paper for additional detail including 

security analysis 
– Available online at: http://eprint.iacr.org/2005/248
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Abstract. A series of recent papers have demonstrated collision attacks 
on popularly used hash functions, including the widely deployed MD5 
and SHA-1 algorithm. To assess this threat, the natural response has 
been to evaluate the extent to which various protocols actually depend on 
collision resistance for their security, and potentially schedule an upgrade 
to a stronger hash function. Other options involve altering the protocol 
in some way. This work suggests a different option. We present several 
simple message pre-processing techniques and show how the techniques 
can be combined with MD5 or SHA-1 so that applications are no longer 
vulnerable to the known collision attacks. For some applications, this 
may a viable alternative to upgrading the hash function. 

Key words: SHA-1, MD5, padding, hash collision, signature 

1 Introduction 

The recent advances in cryptanalysis of hash functions have been spectacular, 
and the collision attacks on MD5 and SHA-1 are of particular practical impor­
tance since these algorithms are so widely deployed. To assess the threat, the 
first step is to re-examine which protocols actually depend on collision resistance 
for their security. The most common type of vulnerable application is the use of 
standard signatures to provide non-repudiation or certification services. 

Applications which do not require collision resistance are unlikely to require 
changes in the near future as a result of these recent collision results. For those 
that do, changing the hash function is the simplest response, and the standard­
ized SHA-2[21] family (which includes SHA-256) is the leading candidate for 
an upgrade. Although it has not received the same amount of analysis as earlier 
hash functions, SHA-256 is expected to be significantly stronger. There has been 
some progress analyzing SHA-256, for example [10] and [8]. These papers show 
that SHA-256 also has “local collisions” (defined in [5]) with probability between 
2−9 and 2−39. This implies that the security of SHA-256 is mainly hinged on its 
message pre-processing. 
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A second alternative is to re-design the protocols themselves, so they no 
longer rely on collision resistance of the hash function. This can be done on a 
case by case basis or in a more uniform fashion. For example, a recent Internet 
Draft [9] proposes to change signature scheme protocols by use of a primitive 
called “randomized hashing”. There are some architectural advantages to chang­
ing the signature scheme in such a modular way, replacing each hash invocation 
with a random member of the hash family. Any protocol employing this solu­
tion will require a good source of randomness, and will also need to specify and 
manage the random hash family member. This kind of solution can certainly be 
considered viable when the additional resource of randomness is readily available. 

This paper points out a third option: There are simple, alternate modes of 
using MD5 or SHA-1, in a manner which renders them no longer susceptible 
to the known collision attacks. These approaches essentially involve some light 
message pre-processing code to effectively derive a new hash function from an old 
one. Although the exact same standardized hash function is used, this technique 
can be viewed as an indirect but convenient way of effectively upgrading the hash 
function. Advantages include the fact that no additional resource of randomness 
is needed and no change to the output length or truncation is required. In the 
short term, some implementations might find this to be a compelling alternative 
which will serve to extend the useful life of MD5 or SHA-1. 

Organization 

In Sections 2 we present some background material on the hash functions un­
der consideration, and in and Section 3 review the nature of the recent collision 
attacks. In Section 4 we further motivate and present the basic message pre­
processing technique. In Section 5 we present the details of the construction. 
Focusing primarily on SHA-1, we analyze the security in light of the known col­
lision attacks in Section 6. An alternate approach to message preprocessing is 
described in Section 8. In Section 9, we provide analysis specific to MD5. Final 
conclusions and recommendations are made in Section 10. 

2 Background 

2.1 The MDx Family of Hash Functions 

The MDx family of hash functions includes MD4 (1990) and MD5 (1991), which 
were designed by Ron Rivest to be one-way and collision resistant. SHA-0 (1993), 
SHA-1, (1995) and SHA-2 (2001) were produced by the NSA and standardized 
by NIST and follow similar design principles as Rivest’s algorithms. SHA-1 is 
currently the FIPS Secure hash standard [20], and is the most widely deployed 
hash function. An earlier version of this algorithm was SHA-0 [19], while the 
SHA-2 family is intended for higher security levels. Until recently, SHA-1 was 
considered to be as secure as its 160 bit output would allow, and MD5 also still 
enjoys significant deployment. 



The general approach behind the design of these hash function involves the 
Merkle-Damg̊ard iterative structure, (see [6, 15]), to allow arbitrary length mes­
sages. The algorithms divide the input into fixed length blocks and process the 
blocks sequentially by updating an initial state variable. Each block is combined 
with the previous state in a compression function to calculate an updated state, 
or chaining variable. When the entire message has been processed, the output is 
the final state. The state vectors for MD5 and SHA-1 are 128 bits and 160 bits, 
respectively. 

Coron, et. al. [4] suggest a modification of the Merkle-Damg̊ard chaining 
method. However, their work is orthogonal to ours since we focus on the com­
pression function, except in the IV  message dependent approach of Section 8. 

The compression functions consist of two basic components, message ex­
pansion and round operations. The compression function of SHA-1 operates on 
512-bit message blocks, and utilizes a 160 bit state variable, represented by five 
32-bit words, denoted A, B, C, D, E. The block of 512 bits is expanded to 2560 
bits, represented by 80 words of 32 bits. Each of these words is used to update 
the internal state in a round update function. MD5 follows a similar structure, 
but uses a 128 bit state variable, and has 64 rounds instead of 80. 

2.2 Collision Attacks on MD5 and SHA-1 

Successful cryptanalysis of these hash functions has generally focused on finding 
collisions, rather than on inverting the hash functions. Wang, et. al. announced 
real collisions for MD4, MD5, RIPEMD HAVAL-128 in 2004 and 2005 in [22, 
23, 25], and also introduced message modification techniques. These results have 
been improved by Klima [13], and Naito et. al. [17], and as of writing, the 
complexity of locating a collision in MD4 and MD5 are approximately 22 and 
230 . 

Regarding SHA-0 and SHA-1, early analysis in 1998 by Chabaud and Joux 
used differential methods (local collisions and disturbance vectors) to find a 
collision attack on SHA-0 of complexity 261 [5]. Biham and Chen found near 
collisions on SHA-0 in complexity 240 [1]. The work of Biham, Joux, and Chen 
included the first real collision of SHA-0 in [11, 3]. Additional work on reduced 
round versions of SHA-1 appeared in [2, 18, 16]. Recently Wang, Yin, and Yu 
described an improved attack on SHA-0 in [26], and finally, in [24] presented the 
first attack on the full SHA-1, where they show that finding collisions is at most 
of complexity 269. Improvements to these attacks were announced in [27] where 
the attack complexity has been reduced to 263 . 

2.3 From Random Collisions to Meaningful Collisions 

An early critique had been the initial collisions found by researchers results have 
involved just a few message blocks or short binary strings, without enough struc­
ture to be considered “meaningful” collisions. However, meaningful collisions can 



be found for these hash functions, and regardless, general collision resistance is 
a real design goal of hash function construction. For example, Lenstra et. al. 
[14] have found collisions between two distinct X.509 certificates, and collisions 
between two properly formatted postscript documents has been exhibited in [7]. 
Each of these examples involved the MD5 hash function. Examining these two 
examples, we see that they exploit the relative freedom in the form of certifi­
cates and postscript documents, and one may still argue that collisions are likely 
difficult to produce among messages of a suitably restricted form. 

3 Analyzing the Recent Collision Attacks 

In this section, we analyze the nature of the recent collision attacks on the MDx 
family of the hash functions and motivate techniques that would be useful to 
thwart such attacks. Throughout this paper, we will use M to denote a message 
to be hashed. Both MD5 and SHA-1 break the message to be hashed into 512 bit 
blocks. When we need to refer to a single block we denote it m, and m is often 
partitioned into sixteen 32-bit message words denoted by m0, m1, ..., m15. When 
referring to the expansion function internal to the compression function, we 
denote the expanded message block by w. In the case of SHA-1, w is partitioned 
into eighty 32-bit message words, denoted by w0, .  . . w79. In the case of MD5, w 
is expanded into 64 32-bit message words. We use C to denote the compression 
function, and H to denote the complete hash function. 

3.1 Basic Ideas in the Collision Attacks 

We first briefly review some of the basic ideas behind these attacks. Focusing on a 
single block, the general common strategy behind these collision attacks involves 
finding a message difference Δ(w) =  w−w� between two expanded messages such 
that the probability that C(m) equals C(m�) is higher than expected. This is 
possible when it can be arranged such that during the round computations of 
the blocks m and m� the state vectors never deviate significantly, and can be 
“corrected” with high enough probability. 

The basic tool is the local collision, a series of a few rounds in which certain 
small differences in the expanded message words will be absorbed with reasonable 
probability. Due to the message expansion there will be many differing words of 
m and m�, so these local collisions must be strung together. Disturbance vectors 
describe how the local collisions are joined. The entire sequence of differences 
in the state vectors is called a differential path. The overall success probability 
depends on the simultaneous satisfaction of a set of conditions for each local 
collision. 

The structure of the various attacks consist of analysis of the local collisions, 
search for a low Hamming weight disturbance vector, a brute force search on 
input messages, and a variety of methods are used to boost the success proba­
bility, including specifying concrete conditions for the differential path, message 
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modification so that some conditions always hold, and usage of two blocks to 
construct collisions from near collisions. We remark that the above summary 
most accurately describes the approaches for SHA-1, and the analysis of MD5 
differs slightly. 

3.2 Thwarting the Collision Attacks 

From the summary of the attacks above we can see that there are several strate­
gies which one might employ to attempt to prevent the success of these ap­
proaches. The most obvious approach is to attempt to prevent the existence of 
any “good” differential – a differential path that leads to (near) collisions and 
holds with probability greater than 2−n/2 . An additional precaution would be to 
restrain the power of the message modification techniques, thereby significantly 
reducing the success probability of the attack. A third possibility is to consider 
situations in which the Merkle-Damg̊ard iterative structure can not be exploited; 
for example if single message bits were to affect multiple blocks. 

4 Message Pre-processing Techniques 

In this section we describe the general message preprocessing framework, and 
discuss the streaming requirement that some applications may have. 

4.1 Message Pre-processing Framework 

The working assumption behind the general techniques we suggest for improving 
the collision resistance is that the underlying hash function itself will not be 
changed. Let M be a message string to be hashed, and let H be a standard 
hash function, such as MD5, or SHA-1. Our objective is to define a derived hash 
function H∗ which calls H as a subroutine. Our proposal is simply to preprocess 
the message before it is hashed in a standard way. Formally, let φ : M  → M∗ 

be a preprocessing function mapping strings to strings. For each such function, 
a derived hash function H∗ may be defined by 

H ∗(M) =  H(φ(M)). 

Of course, we are interested in cases where φ is a relatively simple function, and 
the derived hash function H∗ is collision resistant with respect to known attacks, 
even if H is not. The function φ must be chosen appropriately for a particular 
H to ensure that H∗ is secure. 

4.2 Streaming Data Requirement 

Many applications are set up architecturally to incrementally digest a large mes­
sage as it becomes available. For example, with SHA-1, applications can repeat­
edly make a SHA-1Update function call as portions of the message stream in. 



This requirement can be satisfied when the message pre-processing can also be 
performed in a streaming fashion, for example, by dividing the message into 
blocks and expanding each one. Formally, we call a φ a local expansion if φ 

∗ ∗ ∗can be defined by φ(m0, m1, . . .mk) =  m0, m1, . . .m  k where each mi is of fixed 
l ∗ ∗length and m = f(mi) for some expansion function f : {0, 1}l → {0, 1} , where i 

l∗ > l. It is clear that when φ is a local expansion, the state of the preprocessing 
function can be stored in the message digest context, so that a derived update 
function could also call SHA-1Update as a subroutine. 

5 Local Expansion Approaches 

We now discuss two local expansion approaches to message preprocessing: mes­
sage whitening and message interleaving. 

5.1 Message Whitening 

In this approach, the basic idea is to alter the message by inserting fixed char­
acters at regular intervals. The motivation here is to decrease the flexibility 
in finding good message differentials. These fixed characters can be taken to be 
words filled with all zero bits, so we call the approach whitening. For a hash func­
tion with at 512-bit block size, sequential chunks of fewer than 512 bits can be 
expanded into a full 512 bits. For example each sequence of (16 − t) 32-bit words 
m = (m0, m1, . . . m15−t) could be expanded to m = (m0, m1, . . . m15−t, 0, . . . , 0), 
where the last t words would be fixed as zeros. Each execution of the compression 
function effectively only process (16 − t) message words rather than 16 message 
words, so it is easy to calculate the performance slowdown. This approach is also 
easy to implement, since such a preprocessing function φ is a local expansion, the 
streaming requirement would be met. From a security standpoint, the intuition 
is that processing fewer bits of message should allow the message to be better 
mixed within the calculation. 

A variant of this approach may select specific words to whiten to further 
increase the difficulty of known attacks. Below, we discuss how whitening the 
middle two words of SHA-1 significantly reduces the effect of message modifica­
tion techniques. 

5.2 Message Self Interleaving 

In this approach, the basic idea is to duplicate each message word so that each 
bit appears twice after the preprocessing. Assuming the entire message M is 
broken up into some number of 32-bit words: M = (m0, m1, . . .mk), then the 
preprocessed message would be φ(m) = (m0, m0, m1, m1, . . .mk, mk) where each 
word appears twice. As with the message whitening approach, message interleav­
ing causes fewer message bits to be fed into each message block, causing better 
mixing. As φ is a local expansion, the streaming requirement is also met. 



5.3 Generalized Local Expansion 

The whitening and interleaving approaches discussed above have obvious minor 
variations, such as choice of which bits to whiten. The frequency of message 
interleaving could also be chosen word by word, rather than character by char­
acter. Both of these approaches, as well as the minor variants have the property 
that the local expansion is a linear function. Thus, one way to generalize is to 
consider an arbitrary linear function. Although we prefer simpler pre-processing 
functions, one could certainly consider non-linear functions as well, effectively 
using an arbitrary local expansion. Regardless of the specific function, these 
approaches all attempt to increase security by increasing the structure of each 
message block. This can make finding good differentials more difficult for the 
attacker, as well as disrupt message modification techniques. 

6 Security Analysis of Local Expansion Approaches 

In this section, we further discuss why the message pre-processing techniques 
described in the preceding section help prevent existing attacks. We focus our 
discussions on SHA-1. 

6.1 Intuition 

The message whitening and message interleaving both operate by increasing the 
structure within each block. For these approaches and their variants, we can 
simply view the derived hash function as a modification of the original hash 
function, except with a different message expansion rule. 

Concretely, in the case of SHA-1, the message interleaving approach effec­
tively takes as input 256 bits of data instead of 512, and expands them to the 
80 words required by the SHA-1 round operations. The amount of data required 
by the whitening approach would depend on its calibration, i.e., how many bits 
or words were whitened. Intuitively, this means that fewer data bits are pro­
cessed for each execution of the compression function, and hence the derived 
hash function can offer a better mixing of the data bits. 

In the following, we provide more quantitative analysis of the two message 
pre-processing approaches by considering how they affect constructing good dif­
ferentials and performing message modification, both of which are critical in 
existing collision attacks. 

6.2 Insights from Coding Theory 

One way to understand the effect of message whitening or message interleaving 
is to study the code of expanded message words. For hash functions which employ 
a linear message expansion rule the space of expanded messages is a linear code, 
so we have a tool to reason about the existence of low Hamming weight vectors. 



For example, for SHA-1 each block expands 16 × 32 bits into 80 × 32 bits. 
512 2560The expansion function E{0, 1} → {0, 1} is defined word-wise by the 

recurrence relation 

wt = (wt−3 ⊕ wt−8 ⊕ wt−14 ⊕ wt−16) <<< 1. (1) 

For MD5, the original message is simply repeated 3 times, so the expanded mes­
sage words of both MD5 and SHA1 can be viewed as linear codes of dimension 
512. In either case, the code is generated by the 512 basis vectors E(1, 0, . . . , 0), 
E(0, 1, . . . , 0), . . ., E(0, . . . , 0, 1). 

Both the interleaving and whitening approaches work by restricting the form 
of the 512-bit input message block, thus restricting full code of expanded message 
words. The form of the whitened message is m ∗ = (m0, m1, . . .m15−t, 0, . . . 0) so 
the restricted code is 512 − 32t dimensional, generated by basis vectors cor­
responding to the non-whitened bits. The form of an interleaved message is 

∗ m = (m0, m0, m1, m1, ..., m7, m7), so this code is only 256 dimensional, gener­
ated by vectors of the form (1, 0, . . . ; 1, 0, . . . ; 0; . . .), where each generator con­
sists of zeros except for two matching 1 bits. When we view the collision attacks 
as attempts to piece together local collisions in a manner consistent with this 
linear code, it becomes clear that reducing the dimension of the code will make 
these attacks less feasible. 
Reducing Solutions to Linearized Hash Function: Another way to under­
stand the whitening and message interleaving is in terms of the set of solutions 
to a linearized version of the hash function. This is the approach followed by 
Oswald and Rijmen in [18]. Rather than focus on local collisions, they analyze 
the difference between the linearized and actual SHA-1, so that each difference 
in the expanded message word yields one or more conditions which will be only 
probabilistically satisfied in the actual SHA-1. They search for low Hamming 
weight code words Δ(w) which are also solutions to the linearized SHA-1 equa­
tion. The solutions yielding an output of 160 zeros are defined by an additional 
160 linear constraints (see [18] for details), so it is natural to consider the code of 
linear solutions, consisting of expanded message words which also satisfy these 
160 constraints. This restricted code has dimension 512-160=352, and the colli­
sion attack first seeks a low Hamming weight code words, then a message pair 
such that the conditions will be satisfied. 

In this framework, our message interleaving approach corresponds to the 
addition of 256 additional constraints, and the whitening approach corresponds 
to the addition of 32t additional constraints. Although there is no simple way to 
locate low Hamming weight codewords in an arbitrary code, the existence and 
number of lower weight words decreases as the minimum relative distance goes 
up. This ratio is simply the ratio of the code length to the code dimension, and 
equals 352/2560 = 7.27 for the original code. This code, restricted with whitening 
parameter t, has dimension 352 − 32t, so in case t = 4, the minimum relative 
distance is increase to 8.88. If, instead, the code is restricted by the interleaving 
approach, the dimension is reduced to 352 − 256 = 96, so the minimum relative 
distance increases to 26.66. This heuristic does not preclude the existence of good 



differentials, but it does provide a useful metric for how restricting the form of 
messages will increase the difficulty of the known collision attacks. 

6.3 Preventing Good Differentials 

We now address more concretely the best known attacks on SHA-1. As discussed 
earlier, a major step for constructing a good differential path for SHA-1 is to 
find a disturbance vector with low Hamming weight. In this section, we consider 
how message pre-processing affects constructing good differentials. 

First, we review some basic facts of the SHA-1 disturbance vectors. A dis­
turbance vector dv is a set of 80 32-bit words dvi (i = 0, ..., 79), and dvi,j = 1  
iff a local collision starts in step i bit j. Each local collision consists of 5 ad­
ditional changes in the expanded message word, called correction vectors (See 
[5]). The correction vectors wc1, wc2, wc3, wc4, wc5 are automatically linearly 
determined from dv, and the difference in the expanded messages is simply the 
sum Δ(w) =  dv + Σwci (mod 2). Although, only Δ(w) must be a code word 
(i.e. satisfy the recurrence relation), in practical attacks dv itself is taken to be a 
code word, so that the five {wci} and Δ(w) are automatically code words. The 
Hamming weight of dv, denoted by HW (dv) is the central important factor in 
determining the success of the collision attacks, an estimate of the complexity 
of an attack on SHA-1 is about 23HW (dv). 1 

In the attacks on SHA-1 [24, 27], disturbance vectors of low Hamming weight 
were found by a heuristic search algorithm, and it is based on the following 
intuition: If we view dv as an 80-by-32 0-1 matrix, then the non-zero entries 
in a low Hamming dv are likely to be concentrated in one column. The search 
algorithm proceeds by first choosing a 16-bit column in the matrix and expand­
ing backwards and forwards with message expansion. The best vector is then 
chosen among all possible choices for the column. Using this heuristic search, 
the lowest Hamming weight is reached when the 16-bit column takes the value 
L = (100...000). 

Now we are ready to analyze how the two pre-processing techniques affect 
finding low Hamming weight disturbance vectors. For the message whitening 

∗technique, each whitened message word m would yield an extra condition oni 
the differential path, namely 

Δm ∗ i = 0. (2) 

For the interleaving techniques, the extra conditions on Δm∗ are 

Δm ∗ = Δm ∗ 2i+1, for i = 0, 1, ..., 7. (3)2i 

Experiments: We used the same heuristic search algorithm to find disturbance 
vectors for “SHA-1 with message pre-processing”. Our assumption is that a good 

1 It was the introduction of message modification techniques in [24] that allowed the 
initial conditions in steps 1-20 to be automatically satisfied so that the limiting factor 
was actually the Hamming weight in the final 60 words of dv. 
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disturbance vector follows similar patterns as the ones for the original SHA-1. 
Starting with L, we computed 150 words of dv by expanding L forwards and 
backwards with the recurrence relation E and compute many words of Δw from 
dv. The words of this extended dv may be found in the rows of Table 5 in 
reference [24]. The next step is to pick 80 words from the computed Δw such 
as the above conditions due to whitening (or interleaving) are satisfied while 
keeping the Hamming weight as small as possible. Using the numbering of [24], 
and focusing on whitening with t = 2, we examined the values of Δw, and see 
that there are no two consecutive zero words before step 55, and there are no 
two consecutive words that are the same before step 53. This means that we 
have to shift down by 40 words when choosing a good disturbance vector, in 
order for Δw to satisfy the message pre-processing conditions. This would cause 
a significant increase in the Hamming weight of the vector, so these experimental 
results suggest that the Hamming weight of the disturbance vector (restricted to 
steps 21-80) would go from 25 (for SHA-1) to over 80. Even if advanced message 
modification such as that announced in [27] progresses to 32 steps, the hamming 
weight for the remaining 48 steps would be sufficient. 

We remark that the conditions on Δm∗ given in the above two equations are i 
necessary conditions for the differential path to be constructed, since they are 
derived from the pair of input message words mi and mi. This is in contrast 
to the three conditions on the disturbance vectors in the original attack on 
SHA-0 [5] as well several works on SHA-1 [3, 24]. Those conditions are for easier 
construction of a valid path from the disturbance vector, and so they are not 
necessary conditions. That’s why these conditions can be removed as in the 
attack on the full SHA-1 [24]. However, the above conditions, due to message pre­
processing, cannot be removed. Finally, the techniques of Jutla and Patthak [12] 
could be adapted to provide rigorous bounds on the hamming weights of the 
codes associated to whitened or interleaved message blocks. 

6.4 Weakening Message Modification 

In addition to preventing good differentials, the whitening and interleaving ap­
proaches also render the message modification techniques less effective, thereby 
increasing the complexity of existing collision attacks. 

First, we briefly review the basics of the message modification techniques [25, 
23]. For the MD4-family of hash functions, including MD5 and SHA-1, the round 
function has the following general form: 

ai = G(input chaining variables) + mi−1, 

where ai is the output chaining variable and mi−1 is the message word used in 
step i. Once the differential path has been constructed, it is easy to derive a 
set of sufficient conditions on ai that ensure that all conditions on path hold. 
The conditions are of the form ai,j = v, where v is 0 or 1. The main idea of the 
message modification techniques is simply to set ai,j to the correct bit v and then 
recompute mi−1 = ai − G(). In other words, we can modify the message word 



in step i to make the condition on ai to hold. This basic technique can be used 
for the first 16 steps since the message words are all independent of each other 
up this point. A simple variation of the basic technique is to modify the message 
words used in the two steps before step i (i.e., mi−2 or mi−3) to achieve the 
same goal. This is particular useful when mi−1 cannot be modified due to other 
constraints. In addition, more advanced techniques, called multi-step message 
modification techniques, were introduced for dealing with computation beyond 
the first 16 steps. The improvements announced in [27] are achieved with such 
advanced message modification techniques. 

Next, we analyze how message interleaving affects the effectiveness of message 
∗ ∗modification. Since m = m (for i = 0, 1, ..., 7), the two consecutive message 2i 2i+1 

words have to be modified simultaneously, making it almost impossible to change 
any single bit. Now suppose a differential path P has already been chosen, and 
conditions on ai have been determined. Since most of these conditions can no 
longer be made to hold through message modification, the complexity of the 
attack using path P would go up significantly. 

∗ ∗ ∗In the case of whitening, the t whitened message words mi , mi+1, ...m i+t−1 
cannot be modified, since these message words are simply zero and independent 
of the input message. It is possible to modify a couple of message words imme­
diately before the whitening step so that some of the conditions on ai and ai+1 

can still hold, but the effect can be weakened if we choose t ≥ 4. 
Targeted Whitening: For a given path P , it is good to choose the t consecutive 
message words that maximize the total number of conditions s in those steps. 
In the attack on SHA-1 [24], the conditions on ai are given in Table 12. From 
the table, it is easy to see that if t = 4, and we whiten words 7 to 10, the total 
number of conditions is s = 83. 

It is possible that the attacker could select a new differential path P � other 
than what was used in existing attacks on SHA-1 and MD5, and he could try to 
minimize the number of conditions associated with P � in the specified whitening 
steps. However, such an approach would likely not be very effective for the 
following reason: One special feature of the differential paths in existing attacks 
is that they are “front-loading” (with a lot of conditions in the first 20 steps) 
in order to minimize the number of conditions after step 20, which is directly 
related to the complexity of the attack. Hence, if the attacker selects P � that 
has fewer conditions in the first 20 steps, then it is very likely that P � would 
have more conditions later. This observation applies even more strongly when 
considering the improved attacks of [27] which extend message modification to 
additional steps. 

7 Implementation Consideration 

In this section, we consider practical implementation issues related to the mes­
sage pre-processing proposal. For ease of discussion, we refer to the derived new 



hash function as SHApp, where “pp” stands for pre-processing2. We will con­
sider issues related to programming implementation of SHApp as well as upper 
layer protocols that call SHApp as subroutines. 

7.1 Programming Implementation 

We propose two possible implementation options for SHApp. They vary only 
in terms of where pre-processing occurs in the code, and they are suitable for 
different applications. 

Option 1: Pre-processing within SHA-1 Function For most existing im­
plementation of SHA-1, the hash computation on a given input is generally 
carried out by three functional calls as described below.3 

SHAInit(context)
 
SHAUpdate(context, input, inputLen)
 
SHAFinal(digest, context)
 

We can implement the new hash function SHApp with the same sequence of 
functional calls as follows: 

SHAppInit(context)
 
// same as SHAInit
 

SHAppUpdate(context, input, inputLen)
 
{
 

newInput = SHAppPreProcess (input)
 
newInputLen = Length (newInput)
 
SHAUpdate(context, newInput, newInputLen)
 

}
 
SHAppFinal(digest, context)
 
// same as SHAFinal
 

Note that SHAppUpdate has exactly the same i/o interface as the original 
SHAUpdate in existing implementation. The pre-processing step is done as a 
private function that is invisible to upper layer protocols using SHApp. Due 
to the simplicity of whitening and interleaving, only a small amount of code is 
needed for implementing the SHAppPreProcess function. 

2	 A more accurate name would be SHA1pp, but we omit the “1” so that it can be 
pronounced as “shap.” 

3	 The naming for the functions may vary slightly among implementations. For exam­
ple, SHAUpdate may be called SHAadd etc. Despite this name variation, the functions 
accomplish essentially the same thing: the first one initializes the IV; the second one 
does proper padding and the main loop; the third one finalizes the computation and 
writes output. 



Option 2: Pre-processing outside SHA-1 Function For some applications, 
implementation of SHA-1 may be hard-coded, and hence it can be difficult to 
make internal changes to the code as described in option 1. In this case, pre­
processing can be done entirely prior to calling the function SHA-1 as below. 

SHApp(message)
 
{
 

newMessage = SHAppPreProcess (message)
 
SHA-1(newMessage)
 

}
 

Note that the original implementation of SHA-1 is used as a “black box” 
without changing anything inside. Again, there is no impact on the interface. 

Interoperability We remark that for both options, the result of the hash com­
putation is the same for the same message. There is no interoperability issue 
between the two options. Hence implementers can simply choose the option that 
best suits their applications. 

7.2 Protocols 

From the discussions on programming implementation, we can see that SHApp 
have exactly the same input and output interface as the original SHA-1. Hence, 
replacing SHA-1 with SHApp in a protocol would not cause any upper layer 
changes other than replacing the Algorithm Identifier. 

Newer digital signature schemes (e.g., RSA-PSS) have a “hierarchical” iden­
tifier, where the hash function is a parameter. For those schemes, the algorithm 
identifier for SHApp is sufficient. 

For various older digital signature schemes, a new algorithm identifier is 
needed for both SHApp itself as well as the combination of SHApp with the 
specific signature scheme. The relevant standards organizations need to take 
care of the assignment for combinations of DSA, ECDSA, etc. For example, 
RSA Security can assign identifiers for SHApp and its combination with PKCS 
#1 v1.5. Depending on the standards, it may take little time or some amount 
of time for such assignments. 

8 IV Message Dependence Approaches 

In this section we describe a completely different approach does not involve a 
local expansion, but instead works by effectively ensuring that the initialization 
vector (IV  ) is message dependent. 



8.1 Message Duplication 

One way to cause the IV  to be message dependent is to concatenate the mes­
sage with itself before hashing. To simplify the explanation, we suggest first 
padding M so that it is a whole number of blocks. With this assumption, the 
pre-processing is simply φ(M) =  M ||M , where || denotes string concatenation. 
Let us examine the calculation halfway through, just after all the blocks of the 
first M have been processed. Notice that the full original message M is left to be 
processed, except that the intermediate IV  chaining variable is a function of the 
message itself. This illustrates that an equivalent way to view this construction 
is as a regular hash of M where the starting IV  chaining variable is a function 
of the message itself rather than constant. 

8.2 Security Analysis 

The IV  message dependence approach increases security in a way completely 
different than the local expansion approach. Instead of affecting the blockwise 
compression function, they rely on the fact that the entire message must be pro­
cessed twice within the framework of the Merkle-Damg̊ard iterative chaining. 
Since each message bit is input to separate blocks, the previous attack strate­
gies simply can not be applied. Instead, attacks on this variant would have to 
be of a completely different sort, and would not be able to focus on a single 
compression function, or on a few adjacent message blocks. This, or any other 
variant of the IV  message dependent approach would also present an additional 
obstacle to automatically constructing collisions on long messages from single 
block collisions. 

This approach is interesting because it is an extremely simple way of thwart­
ing the known collision attacks for MD5 and SHA-1. However, a disadvantage 
with this approach is that the preprocessing function φ is not a local expansion, 
so it can not be effectively used with streaming data. 

One might also consider alternate methods of achieving IV  message depen­
dence, for example by setting the initial starting IV  value to be the first 160 
bits of H(M). However, this would not be not a “pure” preprocessing technique, 
and would require accessing the internals of the hash function itself, to set the 
IV  value. 

9 Analysis for MD5 

SHA-1 was designed based on MD4 and MD5, and hence MD5 and SHA-1 are 
quite similar in terms of their structure and choices of mathematical operations. 
Consequently, the latest collision attacks on MD5 [25] and SHA-1 [24] also share 
some similarities. Therefore, most of the security analysis in preceding section 
also directly applies to MD5, including the general insight from coding theory, 
effects on message modification, and the IV-message dependency. 



Here we point out some differences between the two hash functions and how 
they would affect the analysis. The main difference lies in the message expansion. 
For MD5, each message block expands 16×32 bits into 64×32 bits. The expansion 
function E operates by repeating and re-ordering the 16 message words 3 times. 
So the MD5 message expansion is much simpler than SHA-1, and hence offers 
less mixing. 

The differential path P used in the latest attack on MD5 is also different from 
SHA-1, other than they are both “front-loading”, and the MD5 analysis does 
not make use of an explicit disturbance vector. In the recent attack on MD5, 
the path was constructed by first finding a near collision that only involves the 
MSB in the second half and then deriving a more complicated collision path in 
the first half. For the chosen path, Δmi is non-zero in steps 5, 12, and 15. 

Message interleaving would result in 6 of the Δmi to be non-zero, which would 
make the particular path P invalid. More importantly, interleaving would make 
message modification almost impossible. Note that there are over 200 conditions 
associated with P in the first 16 steps, and all these conditions need to be set 
true through message modification in order to reduce the complexity of the 
attack to about 230+. Therefore, message interleaving can significantly increase 
the complexity of existing attacks. 

A similar argument can be carried out for message whitening, although a 
higher parameter of t would be required to rule out the availability of low Ham­
ming weight Δmi vectors. In this case, it seems more difficult to have a rigorous 
argument that the attacker cannot find a completely new path that would effec­
tively target the particular whitening techniques. 

10 Conclusions 

In this paper we have considered several techniques to use SHA-1 and MD5 in 
a more collision resistant manner. The simplest approach which we have dis­
cussed in this paper is the message whitening approach. The word-wise message 
interleaving is also quite simple, and has very similar security properties. These 
approaches are both easy to implement, support streaming message digesting, 
and are amenable to analysis with respect to the known differential attacks. 
The IV  message dependent approaches are appealing due to their immunity to 
single-block collision attack approaches, but have the drawback that they are 
not convenient for message streaming. 

For practical applications wishing to improve SHA-1 use, we suggest the use 
of message whitening pre-processing with parameter t ≥ 4, so that 12 words of 
the message are expanded into 16. This results in a performance slowdown of 
25 percent. An even more secure alternative would be the message interleaving, 
although it results in a slowdown of 50 percent. For MD5, our recommendation 
is to use the message interleaving approach, or in case the application does 
deal with small data items (such as certificates), the IV  message dependence 
approach. 

http:25percent.An


Our solutions can be viewed as a general purpose, safer, collision resistant 
way of using MD5, and SHA-1. Due to their simplicity, we contend that such an 
approach can be appealing for practitioners who wish to increase security in the 
short term, without changing the underlying hash function at all. 
Relationship to Hash Function Design: The solution in this paper is not 
intended to be a complete replacement for an appropriate, timely hash function 
update nor for improved hash function design. On the other hand, our proposal 
has something in common with proposals for enhancing the security of SHA-like 
hash designs such as [12] in that we also focus on the code of expanded message 
words. 
Future Improvements on Collision Attacks: With respect to the attacks 
of [24, 27], both whitenening with parameter t ≥ 4 and message interleaving 
techniques still yield a derived hash function for which collisions can not be found 
with effort below 280. Although it is impossible to predict the improvements in 
collision attacks we make a few comments on the robustness of our techniques. In 
general, the message pre-processing we propose makes will apply to other attacks 
of the same genre, because: (1) message modification in general is much harder, 
(2) multi-step message modification techniques are almost impossible, and (3) 
the constraints on Δm are targeted at preventing effective “front-loading” of 
differential paths. 
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