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Outline
 

• Tagging messages prior to 

Damgaard-Merkle hashing
 

• Risk mitigation centered strategies for 
designing 1-way hashes 
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Part 1
 
Message tagging
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MD5/SHA: Breaking up & 

padding a message M
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Damgaard-Merkle Strengthening 
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Segments and Blocks
 

• A message is the concatenation of 
message segments 
–	 segments may have the same or different 

sizes. 
• A message segment is composed of 

message blocks 
– each block representing a basic processing 

unit of the block compression function of a 
MD type one-way hash algorithm. 
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Global Tagging 
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Local Tagging
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How to handle the key K1
 

• Does not have to be kept secret 
• Can be treated in the same way as 


constants used in 1-way hashing
 
– Pick the first 256 bits of  	(Sqrt(7) – 2) as the 

fixed key, 
– Pick it at random and fix it for all applications, 

or 
– Pick it at random and fix it for certain types of 

applications/period of time 
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Comparison 

• Global tagging 
– Whole message scanned twice 
– Best for 

• Relatively short messages 
• Long messages that allow double scanning/pre-

processing 

• Local tagging 
– Message scanned twice locally only 
– Best for long (&short) messages 
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Variants
 

• Front and back use different tags 
– E.g., Tag &  Flipped Tag 

• With local tagging 
– Tags are added to every other segment only 

• Improve efficiency 

• Sequential composition of hashing 
algorithms (see next slide) 

11
 



Sequential Composition of Hashes
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Universal Hash Î MAC
 

• Given an “almost strongly universal (ASU)” or 
“almost XOR universal (AXU)” hash family F, 
then u(x) defined by 

u(x) = β + f(x) 

is a MAC, where 
– f is chosen at random from F and, 
– β is chosen at random from the set of all possible 

outcomes of F,
 
– + is XOR. 
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Fast MAC from Evaluation Hash
 

• Let M = m1 m2 … mn 
xn-1m(x) = m1 + m2 x + … + mn 

– each mi is viewed as being in GF(2t). 
• Then the following is a MAC 

u(M) = β + α * m(α) 

where α and β are from GF(2t). 
14
 



 

Collision Probability of the MAC
 

• For unknown α and β chosen at random, 
the probability of finding a second 
message that collides a known message is 
approx. 

n 2-t 

• For  n=232 and t=128, we have 

2-96 
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Part 2
 
Risk mitigation 

centered design
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Things to consider when designing
 

• In addition to technical issues 
– Security strength 
– Algorithmic efficiency 
– Code size 

• Business issues 
– 1-way hash is one of many components 
– Managing risks is the real issue 
– Cost of 

• Deployment, 
• maintenance, 
• upgrading & 
• replacement 
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Specific suggestion #1
 

• Design families of parameterized 1-way 
hash algorithms 
– Past examples 

• HAVAL (15 siblings) 
• SHA (SHA1, SHA224, SHA256, SHA384, 

SHA512) 
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Specific suggestion #2
 

• Sibling algorithms have varying security 
strengths 

Level of 
Security 

Hash Hash Hash Hash Hash … Hash 
1 2 3 4 5 N 
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Specific suggestions #3-#6
 

• Diverse internal structures 
– “genetic heterogeneity” 

• Same/similar code size for siblings 
• Support for same API 
• Comparable computational performance
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Specific suggestion #7
 

• Build an on-line repository of approved 1-
way hash algorithms 
– Allow “hot switching” 
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Future work
 

• To verify in a formal way the effectiveness 

of techniques for enhancing MD hashing
 
– Local message tagging 
– Global message tagging 
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Abstract 

One-way hash algorithms are an indispensable 
tool in data security. Over the last decade or 
so a number of one-way hash algorithms have 
been designed and many of them have been used 
in numerous applications. Recent progress in 
cryptanalytic attacks on one-way hash algorithms 
by Wang and co-workers, however, has brought 
up the urgency of research into new and more 
secure algorithms. The goal of this paper is 
two-folded. On one hand we propose a simple 
technique to affix authentication tags to mes­
sages prior to being hashed by an iterative one-
way hash algorithm with the aim of increas­
ing the overall security of the algorithm against 
cryptanalytic attacks. One the other hand we 
advocate the importance of a system oriented 
approach towards the design and deployment of 
new families of one-way hash algorithms that 
support greater scalability and facilitate migra­
tion to newer member algorithms upon the com­
promise of deployed ones. We base our obser­
vations on a common sense premise that there is 
no specific one-way hash algorithm can remain 
secure forever and it will eventually be broken 
by a cryptanalytic attack faster than exhaustive 
research. 
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1 Introduction 

The most notable technique for designing one-
way hash algorithms is an iterative method pro­
posed by Damgaard and Merkle in their papers 
presented at CRYPTO’89 [2, 8]. Damgaard and 
Merkle’s technique is also called the MD-streng­
thening. The core of the Damgaard-Merkle de­
sign is a block compressor that takes as input a 
message block of fixed size and outputs a new 
block that too has a pre-specified size. To hash 
a message of arbitrary size, one adds a padding 
to the end of the message and views the padded 
message as a concatenation of message blocks 
each of which has the same size required by the 
block compressor. This iterative approach is il­
lustrated in Figure 1 where the block compres­
sor is denoted by F and the message blocks by 
M1, M2, . . ., Mn, all of which contain the same 
number of bits. 

The iterative approach advocated by Damgaard 
and Merkle has greatly influenced the design of 
a number of one-way hash algorithms, includ­
ing but not limited to SHA1 and its siblings [9], 
the MD family [6, 12, 13], HAVAL [22], and 
the RIPEMD family [11, 3]. 

Since the publication of these algorithms, 
we have witnessed the steady accumulation of 
novel cryptanalytic techniques to attack these 
algorithms. Perhaps the most significant de­
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Figure 1: Damgaard-Merkle Iterative One-Way Hash 

velopment so far is a sequence of successful 
attacks discovered by Xiaoyun Wang and co­
workers [16, 20, 17, 19, 21, 18]. The collid­
ing MD5 based RSA public key certificates suc­
cessfully created by Lenstra, Wang and de Weger 
[7] demonstrate quite convincingly the poten­
tial effectiveness and practicality of the new crypt-
analytic attacks. A few other relevant papers 
include [1, 5, 4]. 

These latest advancements in breaking iter­
ative one-way hash algorithms remind us of the 
importance of developing new ideas on the de­
sign of stronger one-way hash algorithms. One 
obvious approach would be to research into com­
pletely new design methods that are different 
from the iterative method of Damgaard and Merkle. 
A more conservative approach would be to in­
vestigate techniques that may be used to en­
hance the security of iterative algorithms based 
the MD-strengthening. 

In addition to technical approaches to more 
secure one-way hash algorithms, we believe that 
other issues such as deployment, upgrading, scal­
ability and choices for users and security risk 
mitigation should also be taken into account when 
designing new algorithms for future applications. 

This paper contributes to the endeavor of 
searching for new one-way hash algorithms for 
future applications in two different ways. The 
first is technical. Specifically we propose to use 
authentication tags to strengthen the security of 
an iterative one-way hash algorithm. And the 

second is presented with a view to minimize 
costs and inconvenience accompanying upgrad­
ing an existing one-way hash algorithm to newer 
one. 

2 Technical Approaches 

With the Damgaard and Merkle technique, a 
message is always padded to the end to ensure 
that the resultant message can be viewed as the 
concatenation of a multiple number of equally 
sized blocks required by the underlying block 
compressor. The padding is generated on-the­
fly according to pre-determined rules. The length 
in bits of the original message is typically in­
cluded in the padding. 

Padding a message before applying an it­
erative hashing to blocks of the message can 
be viewed as a technique that maps the origi­
nal, less structured message to one that is struc­
turally richer. When resultant messages are highly 
structured, a collision attacker is forced to look 
for colliding messages from the structured mes­
sages rather than from the original unstructured 
ones, whereby significantly increasing the hur­
dle for the attacker to launch a successful at­
tack. We note that converting to structured mes­
sages is in a way reminiscent of error correcting 
codes which are widely used in communication 
systems. 

We examine two related techniques for adding 
structural information to messages to be hashed. 



The first technique is more suitable for rela­
tively short messages or long messages that can 
be scanned twice, while the second technique is 
designed for data streams or long messages that 
only allow to be scanned twice locally. 

In [15], Szydlo and Yin discuss different 
approaches to enhancing MD5 and SHA-1 that 
are built using the Damgaard and Merkle tech­
nique. 

2.1 Global Tagging 

We observe that in most applications, messages 
to be hashed are relatively short. These appli­
cations include authenticated key establishment 
(SSL, IPsec), authenticated message exchange, 
authenticated financial transactions, one-way hash 
based pseudo-random number generation, pub­
lic key certificates, and many others. Some ap­
plications may involve long messages that are 
stored in a secondary storage, and hence may 
be scanned twice or more during the process of 
creating an authentication tag. Affixing an in­
tegrity check sum to a large software and data 
package or the entire contents on a large capac­
ity storage medium like a DVD and a magnetic 
or optical tape falls into this type of applica­
tions. 

This motivates us to look into ways to add 
structured information to an entire message prior 
to being hashed by an iterative one-way hash al­
gorithm. Two crucial requirements for adding 
information to a message are that the operation 
is fast and the resultant message corresponds to 
an element from a large set of highly structured 
mathematical objects. 

One method is to compute a tag using a fast 
message authentication code (MAC) and affix 
the tag to both the start and the end of the orig­
inal message. The key required by the message 
authentication code may be a public value and 
fixed across all applications. Alternatively, the 
key may act as a tweakable parameter that is 
chosen at random for a specific set of appli­
cations and may or may not be made public. 
The resultant message that has the message au­
thentication tag affixed to both ends would then 
be padded in a way similar to MD5 or SHA1 

and hashed iteratively using an block compres­
sor. This approach is indicated in Figure 2, and 
can be described in a slightly formal way as fol­
lows: 

Let M be a message, MAC be a message 
authentication code, D0 be an initial hash value 
required by the underlying iterative one-way hash 
algorithm, and K1 be a key for a message au­
thentication code which is either fixed across all 
applications or agreed upon by relevant parties 
for a specific application. Also let padding de­
note information that is padded to the end of a 
message, and MD be an iterative hash operation 
such as one based on the MD-strengthening. MD 
takes as input an initial hash value and a mes­
sage whose length is a multiple of the basic 
block required by the underlying block com­
pressor. And finally let D denote the hash value 
of the entire message. Then the proposed ap­
proach can be summarized as follows: 

1. Computing MAC tag: T = MAC(K1,M); 

2. Affixing MAC tag: M � = (T, M, T ); 

3. Padding: P adding = PAD(M �), M �� = 
(M �, P adding); 

4. Iterative Hashing: D = MD(D0,M
��) 

For a very short message, say one that has 
fewer than a couple of thousand bits, additional 
padding may be required prior to computing a 
MAC tag to ensure that the resultant message 
contains an adequate number of (say at least 16) 
basic blocks for the iterative one-way hash. 

2.2 Local Tagging 

In some applications it may be impractical to 
affix a message authentication tag of an entire 
message to both ends of the message. An ex­
ample of such applications include those that 
involve stream data such as digitized voice and 
video images. Another example is hashing with 
resource constrained devices such as a smart 
card which may not have adequate buffer mem­
ory for the storage of a message in its entirety 
which may be required in order to scan the mes­
sage twice or more. 



Figure 2: Global Tagging 

For these applications, a possible approach 
is to compute an authentication tag on part of a 
message and affix the tag to both ends of the 
part involved. Specifically, we can view the 
original message as the concatenation of a se­
quence of message segments, each of which is 
in turn the conjunction of a number of basic 
message blocks required by an iterative block 
compressor. The length of a segment can be as 
long as practical, only restricted by such factors 
as buffer size and permissible processing delay. 

With this method, the cryptographic key re­
quired for computing the message authentica­
tion tag of the first segment can be either fixed 
or selected for specific applications. For a sub­
sequent segment, the intermediate hash value 
obtained just before arriving at the message seg­
ment can be used to derive a key for the mes­
sage authentication code. Figure 3 illustrates 
this approach. Likewise, the approach can also 
be described in a slightly formal way. 

Let M be a message, MAC be a message 
authentication code, D0 be an initial hash value 
required by the underlying iterative one-way hash 
algorithm, and K1 be a public value acting as 
a key for the message authentication code. K1 

can be either fixed across all applications or agreed 
upon for a specific set of applications. View the 
message M as the concatenation of segments 
of equal size, namely, M = S1S2 · · · S£, where 
all Si’s have an equal number of (say at least 

16) message blocks. Also let MD be a hash 
operation that, given an initial hash value and 
a message segment, iteratively applies to the 
message blocks a block compressor such as one 
based on the MD-strengthening. Further, let 
GetMACkey be a simple function that creates 
a key for a message authentication code from 
an intermediate hash value, and PAD an oper­
ation to create a padding of an input message. 
And finally let D denote the hash value of the 
message. The proposed approach can be sum­
marized as follows: 

1. Let Y0 = D0; 

2. For i = 1, 2, . . . , £ do the following: 

(a) Computing MAC tag: Ti = MAC(Ki, Si); 

(b) Affixing MAC tag: S∗ = (Ti, Si, Ti);i 

(c) Iterative Hashing: Yi = MD(Yi−1, S
∗);i 

(d) Setting MAC Key: Ki+1 = GetMACkey(Yi); 

3. Padding: P adding = PAD(S1 
∗S∗ · · · S£

∗);2 

4. Finalizing: D = MD(Y£, P adding). 

Note that the last segment S£ may need to 
be padded prior to the computation of the MAC 
tag in order for it to have an adequate number 
of basic message blocks. 



Figure 3: Local Tagging 

2.3	 Variants 

A number of variants of the above method can 
be considered to trade the level of security for 
efficiency. In one of these variants message au­
thentication tags are computed and affixed to 
every second segment. The number of segments 
can be made sure to be an odd number of at least 
three (3) so that the last segment is always af­
fixed with tags to both ends. In another variant, 
the size (number of blocks) of a segment may 
be a variable from a specified range, determined 
by a previous intermediate hash value. 

We also note that an authentication tag may 
be slightly modified, say by flipping all of its 
bits, when it is attached to the end of a message 
segment. 

In addition, the idea of affixing authentica­
tion tags may be adapted to the composition of 
one-way hash algorithms. Specifically we con­
sider the sequential composition of two differ­
ent one-way hash functions H1 and H2. As 
an example, consider a message M that can be 
scanned twice. One may compute its hash value 
as follows: 

D = H2(H1(M), M, H1(M)) 

See also Figure 4. It is hoped that the com­
putational effort for breaking the sequentially 
composed hash algorithms is the sum of efforts 
for breaking the two individual hash algorithms 

separately, although a rigorous analysis yet needs 
to be carried out. 

2.4	 A Candidate Message Authentica­
tion Code 

While in theory any MAC can be used in the 
calculation of authentication tags of segments, 
a good candidate MAC should fulfill a couple of 
important requirements. The first requirement 
is that the MAC must admit fast computation. 
The second requirement is the MAC can handle 
messages of variable lengthes, especially those 
that are long. And the third requirement is that 
the probability for one to find a second message 
that collides a known message is diminishingly 
small for all messages one might encounter in 
practice. 

A careful examination of known message 
authentication codes against these requirements 
shows that very good candidates can be selected 
from authentication codes constructed from uni­
versal hash functions. Technically such an au­
thentication code can be obtained from an “al­
most strongly universal (ASU)” or “almost exc­
lusive-OR universal (AXU)” hash family by exc­
lusive-ORing the output of a function from the 
universal hash family with an additional key cho­
sen at random. Of particular interest is a univer­
sal hash family based on polynomial evaluation 
in a finite field called the evaluation hash [14]. 



Figure 4: Sequential Composition 

An analysis and comparison of performance of 
a few notable universal hash families including 
the evaluation hash can be found in [10]. 

Each instance of the evaluation hash is spec­
ified by two elements α and β of the finite field 
GF (2t), where t serves as a security parameter 
that determines the overall level of security of 
the message authentication code. A message 
M is viewed as the conjunction of n blocks 
m1, m2, · · ·, mn, each of which has t bits and 
hence can be viewed as an element of GF (2t). 
Note that padding to the last block mn may be 
needed to ensure that it too has t bits. As a re­
sult the message M can be viewed as a polyno­
mial m(x) of degree n − 1 in GF (2t), namely 
m(x) = m1 +m2x+ · · ·+mnxn−1. The MAC 
tag of the message is then defined as follows: 

tag	 = β + α · m(α) 
= β + m1α + m2α

2 + · · · + mnαn 

where all the operations are in GF (2t). 
With the evaluation hash based message au­

thentication code, the probability of finding a 
second message that collides a known message 
is approximately n2−t, when α and β are cho­
sen at random and unknown to a collision finder. 
Assuming that t = 128 and n <= 232, then the 

probability to successfully find a collision is at 
most 2−96, a vanishingly small value. Note that 
the negligible probability of success still holds 
even if the collision finder has knowledge on α 
and β but does not use it in finding a collision. 
In particular, the probability for a new message 
obtained by flipping a few bits of a known mes­
sage to collide the known message is bounded 
by the same vanishingly small value, if the flip­
ping is done in a way that is not correlated to 
the values of α and β. 

2.5	 Advantages and Disadvantages 

A major advantage of the two technical approaches, 
namely global tagging and local tagging, is that 
they allow the separation of the design of ba­
sic block compressors from the transformation 
of messages to be hashed. As a result, it has the 
potential to harden existing widely deployed one-
way hash algorithms such as SHA1 by convert­
ing a message into a structured one prior to the 
use of the one-way hash algorithm. Further re­
search on the effectiveness of this technique is 
required prior to its use in practice. 

The converting operation can be done by 
employing a plug-and-play software routine or 
an additional piece of hardware handling the 



computation and affixation of authentication tags. 
As a result if the technique is indeed effective in 
hardening an existing one-way hash algorithm, 
it would help prolong the usability and life-span 
of widely deployed one-way hash algorithms 
and create more time for the smooth transition 
or migration to newer and hopefully more se­
cure one-way hash algorithms. 

A possible disadvantage is that additional 
computation is required to computer message 
authentication tags for message segments, re­
sulting in a loss in the speed or performance of 
a one-way hash algorithm. 

3	 Risk Mitigation Friendly One-
Way Hash Family 

In the second part of this paper we turn our 
attention to a different aspect concerning the 
design, deployment and upgrading of one-way 
hash algorithms. It is important to note that 
one-way hash algorithms, and in fact almost all 
cryptographic techniques, are only some of the 
numerous tools used by an organization in achiev­
ing their organizational objectives, and for many 
organizations security is typically not consid­
ered as their direct goals, but rather intermedi­
ate steps on the way to achieve their real busi­
ness objectives. 

Further, in many organizations the deploy­
ment of cryptographic solutions is considered 
as part of a broader set of measures to miti­
gate risks that accompany the business opera­
tions of these organizations. Within this con­
text, we feel that it is important for the designer 
of cryptographic algorithms to keep in mind the 
issue of minimizing costs associated with de­
ployment, maintenance, upgrading and replace­
ment of a cryptographic tool including one-way 
hash algorithms. 

In the remaining part of this section we fo­
cus on a number of ideas on the design and 
deployment of future one-way hash algorithms 
that we hope will facilitate the process of mit­
igating risks in an unavoidable event when a 
one-way hash algorithm is eventually broken 
and rendered useless. 

We emphasize that requirements we are go­
ing to present are not intended to be formal, and 
some of the requirements may not be necessar­
ily consistent with others. 

3.1	 Parameterized One-Way Hash Al­
gorithms 

Instead of focusing on a single candidate one-
way hash algorithm and hoping that it is se­
cure an extended period of time, we propose 
to design a family of one-way hash algorithms. 
Each member of the family would have a well-
understood level of security and performance, 
and all the member algorithms can be identified 
with a simple parameter or index. The param­
eter should correspond to a security level and 
allows all the members to be arranged or sorted 
more or less according to the security level. 

A well designed parameterized family of one-
way hash algorithms would have a considerably 
large number of members (say over 20). Such 
a one-way hash family would not only provide 
different applications with one-way hash algo­
rithms that have most appropriate levels of se­
curity and performance, but also make it eas­
ier scale up, that is, to switch to a new member 
algorithm in an event when an algorithm used 
currently turns out be to vulnerable to attacks. 

In a loose sense, HAVAL can be considered 
as a 15-member one-way hash family. Each 
member algorithm in HAVAL can be specified 
by a combination of rounds and sizes of out­
put hash values. Likewise, SHA-0, SHA-1 and 
their newer siblings SHA-224, SHA-256, SHA­
384 and SHA-512 can be viewed to form a fam­
ily of one-way hash algorithms. And similarly, 
MD2, MD4 and MD5 can be regarded as a fam­
ily. Further RIPEMD, RIPEMD128 and RIPEMD160 
can be considered to be a family. In fact, one 
may also view all these algorithms as members 
of a larger family that is designed according to 
the MD-strengthening. 

3.2	 Diverse Internal Structures 

One problem with the SHA, MD, HAVAL, and 
RIPEMD one-way hash families is that mem­



bers in a family share a similar or identical struc­
ture. An undesirable consequence of this “ge­
netic homogeneity” is that they may also share 
the same types of weaknesses. Once a particu­
lar member is found to have certain weaknesses, 
the level of confidence on other members of the 
same family would drop too, even though spe­
cific weaknesses are yet to be found with the 
other members. 

It is therefore desirable for each member of 
the same family to be designed with structures 
that are as diverse as practical. While diversity 
in structure may not necessarily render the al­
gorithms stronger in the long run, it neverthe­
less may increase significantly the amount of 
effort for “copycat attacks”, namely adapting 
techniques for attacking one member to another 
from the same family. 

3.3	 Same Code Size 

One-way hash algorithms that can be compiled 
into binary code of identical length/size would 
facilitate switching from one algorithm to an­
other, especially when a algorithm is embedded 
in firmware or in a complex system that does 
not allow easy recompilation. The firmware for 
a device is typically stored in non-volatile mem­
ory whose size may not be easily changed once 
the device is shipped to a user. Therefore up­
grading the firmware to a newer version with a 
different one-way hash algorithm can be made 
easier if the algorithms have the same code size. 
For some large, complex systems, the current 
trend is to update parts of the system without 
the need to completely stop the whole system. 
Such a system should benefit from the use of 
one-way hash algorithms with the same size. 

We note that this requirement may conflict 
that of having diverse structures. 

3.4	 Comparable Computational Perfor­
mance 

When a practitioner decides to adopt a specific 
cryptographic algorithm, one of the many fac­
tors that he would have to consider is computa­
tional delay the algorithm introduces. The algo­

rithm would be used only if the delay is within 
the acceptable range for the specific applica­
tions where the algorithm is intended to be used. 
It is therefore desirable that computational per­
formance of member algorithms that are within 
the same vicinity when ordered according to a 
parameter is comparable. Satisfying this prop­
erty will allow switching from one algorithm 
to another to be carried out without impacting 
significantly the overall performance of appli­
cations which use the algorithm. 

3.5	 Supporting the Same API 

When members of a one-way hash family are 
implemented either in software or hardware, it 
would be preferable that all member algorithms 
can be implemented in such a way that they can 
be called or invoked by the same application 
programming interface (API). To meet this re­
quirement, all member algorithms should have 
the same number and types of parameters in the 
API. 

This requirement may not be as easy to meet 
as one would think at the first glance, if one 
also wishes to meet the requirement of diverse 
structures for member algorithms, especially in 
resource constraint environments such as em­
bedded and mobile computing devices. 

3.6	 Building an Online Repository 

A final aspect we consider is related to a repos­
itory of approved or standardized one-way hash 
algorithms and implementations. The idea is to 
build an online repository in such a way that 
applications can query the repository with a set 
of requirements and receive without too much 
delay from the repository (the executable, au­
thenticated code of) the best candidate that ful­
fill the requirements. This query and feedback 
process may need to be done on the fly and in 
real time to achieve the goal of “hot switching” 
or “just-in-time switching”. 

Even assuming that such a approach is fea­
sible, there is likely a large cost associated with 
the establishment of such a repository as well as 
the development of applications that are made 



aware of the repository. In addition, success of 
this type of repositories would rely heavily on 
the availability of an authentication infrastruc­
ture such as a public key infrastructure or PKI. 
Since one-way hash algorithms are also used in 
a PKI, it appears that we may have to address 
two circular problems which rely on each other 
for proper functions. Nevertheless, if the repos­
itory can be built, it is envisioned that many ap­
plications may be freed from updates, recom­
piling and redeployment. 

4	 Future Research 

The speculation on the potential of using au­
thentication tags to strengthen an iterative one-
way hash algorithm needs to be further exam­
ined in a careful manner before it is put in prac­
tice. More research needs to be done with re­
spect to one-way hash families that meet some 
or all of the requirements outlined in Section 3. 
We hope this paper serves as an opener for new 
approaches and ideas that may lead to better, 
more secure and more usable one-way hash al­
gorithms. 
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