
HASH WORKSHOP 2006

August 25, 2006 UCSB

LASH

(+ comments on “provably secure” hash functions)

K. Bentahar, Bristol

D. Page, Bristol

J. H. Silverman, NTRU

M.-J. O. Saarinen, Royal Holloway

N. P. Smart, Bristol

1

LASH is a Hash Function

LASH-x computes a x-bit hash from an input bit sequence of arbitrary
length. There are four concrete proposals:

Variant n m
LASH-160 640 40
LASH-256 1024 64
LASH-384 1536 96
LASH-512 2048 128

Where n is the size of the input to compression function in bits, and m is
the size of the chaining variable in 8-bit bytes. We have for all versions
m = n/16.

2

A Pseudorandom Sequence

Start with y0 = 54321 and iterate

2 yi+1 = yi + 2 (mod 231 − 1).

We define an additional sequence that results in reducing yi to byte length:

ai = yi (mod 28)

The first ten members of this sequence are

a0 = 49, a1 = 100, a2 = 135, a3 = 237, a4 = 95,
a5 = 26, a6 = 139, a7 = 214, a8 = 163, a9 = 194.

3

Matrix H

We take H to be the m-by-n circulant matrix associated to the sequence
a0, . . . , an generated by the “Pollard PRNG”

⎞⎛

H =

⎜⎜⎜⎜⎜⎜⎝

a0 an−1 an−2 . . . a2 a1

a1 a0 an−1 . . . a3 a2

a2 a1 an . . . a4 a3

am−1 am−2 am−3 . . . am+1 am

⎟⎟⎟⎟⎟⎟⎠

.

Because of the “circulant” nature of H, storage requirement in implemen
tations is m bytes (rather than mn).

4

Compression Function

The compression function can be represented as

f(r, s) = (r ⊕ s) + fH(rls) (mod q),

where fH is the linear function obtained from multiplying a matrix H, de
fined using the sequence a0, a1, . . . , by the column vector (rls)t, consid
ered as a bit vector.

Thus the compression function is based on a combination of addition mod
ulo 256 and XORing.

This is a “wide variant” of the Miyaguchi-Preneel mode.

5

LASH Compression Function t = f (r, s)

for i = 0, 1, . . . , m − 1 do

ti ← ri ⊕ si

end for

for i = 0, 1, . . . , n do

if i < 8m then

x ← l2−(7−(i mod 8))
rli/8JJ mod 2

else
x ← l2−(7−(i mod 8))s(li/8J−m)J mod 2

end if

if x = 1 then

for j = 0, 1, . . . , m − 1 do

tj ← tj + a((n+j−i) mod n) mod 256

end for

end if

end for

6

LASH

for i = 0, 1, . . . , m − 1 do

ri = 0 {Initialize chaining variable.}
end for
for i = 0, 1, . . . , Il/8ml − 1 do

for j = 0, 1, . . . , m − 1 do
si = vm×i+

end for
j {Get a message block, padded}

r ← f(r, s)
end for

{Run the compression function.}

for i = 0, 1, . . .
si ← ll/28iJ

end for

, m − 1
mod 256

do
{Message length in little-endian format.}

r ← f (r, s) {Final iteration of the compression function.}
for i = 0, 1, . . . , m/2 − 1 do

ti = 16lr2i/16J + lr2i+1/16J
end for {Return the m/2-byte hash result.}

7

That’s it!

LASH is perhaps the only practical hash function that can be easily mem
orized, which helps with analysis and implementation.

Only XOR and bytewise addition is used and there is a high level of par
allelism. Hence the implementations run fast on SIMD platforms, but can
be implemented on any microcontroller (implementation size less than 100
bytes!).

Why LASH ?

•	 Linear Algebra based Secure Hash : As the main component is simply
a matrix-vector product.

•	 LAttice based Secure Hash : Because inverting/finding collisions in
the linear component of the hash function is closely related to the hard
problem of finding short/close vectors in lattices.

•	 Light-weight Arithmetical Secure Hash : Because the design is very
short and easy to remember.

•	 Royal Navy traditions ? (W. Churchill)

8

Speed comparison, 160 bits

Name Implementation Storage Cycles/byte
SHA1-160
SHA1-160
LASH-160
LASH-160
LASH-160
LASH-160

without SIMD
with SIMD
without SIMD, store all matrix
without SIMD, store one row
with SIMD, store all matrix
with SIMD, store one row

0 bytes
64 bytes

25600 bytes
640 bytes

25600 bytes
640 bytes

26.29
16.86

689.64
774.42
392.83
523.26

9

Speed comparison, 256 bits

Name Implementation Storage Cycles/byte
SHA2-256
SHA2-256
SHA2-256
LASH-256
LASH-256
LASH-256
LASH-256

without SIMD
without SIMD
with SIMD
without SIMD, store all matrix
without SIMD, store one row
with SIMD, store all matrix
with SIMD, store one row

256 bytes
288 bytes
256 bytes

65536 bytes
1024 bytes

65536 bytes
1024 bytes

55.16
31.34
45.20

859.83
1027.74
344.81
597.01

10

Speed comparison, 384 bits

Name Implementation Storage Cycles/byte
SHA2-384
SHA2-384
LASH-384
LASH-384
LASH-384
LASH-384

without SIMD
without SIMD
without SIMD, store all matrix
without SIMD, store one row
with SIMD, store all matrix
with SIMD, store one row

640 bytes
704 bytes

147456 bytes
1536 bytes

147456 bytes
1536 bytes

124.57
117.45

1078.58
1355.09
805.47

1090.41

11

Speed comparison, 512 bits

Name Implementation Storage Cycles/byte
SHA2-512
SHA2-512
LASH-512
LASH-512
LASH-512
LASH-512

without SIMD
without SIMD
without SIMD, store all matrix
without SIMD, store one row
with SIMD, store all matrix
with SIMD, store one row

640 bytes
704 bytes

262144 bytes
2048 bytes

262144 bytes
2048 bytes

124.98
117.52

1351.39
1730.14
1036.70
1220.54

12

Security issues

•	 The underlying problem is clearly a variant of subset sum / knapsack
/ short vector problem. A proof is given which relates collision resis
tance to a lattice - type problem.

•	 Current security parameter selection is based on careful analysis of
standard cryptanalytic attacks, including generalized birthday attack.
Prior versions have been broken.

•	 Internal state (chaining variable) is twice the size of the hash output,
therefore making the hash resistant to multicollision attacks.

13

It’s simple!

The structure (parameter selection) is very flexible, reduced versions can
be studied in a straightforward way.

We conjecture that security of the presented versions can be extrapolated
from the security of reduced versions.

We also note that LASH is not secure without the final round and truncation
of the final result.

Security Proof of LASH

D

(I don’t understand it but I think it has something to do with a lettuce.)

14

LASH vs VSH

“VSH is not a hash function”

– Arjen Lenstra, Eurocrypt 2006

VSH and LASH have similar speed, and both can be described easily.

Collision resistance of LASH and VSH can be reduced to a plausible se
curity guess (related to factoring in case of VSH).

VSH has weak preimage resistance. See my paper “Security of VSH in the
Real World,” eprint.iacr.org/2006/103.pdf

VSH hashes are very long (RSA modulus). Even if it is difficult to find
1024-bit collisions, that does not mean that finding collisions in 1023 bits is
difficult.

15

LASH vs FSB

D. Augot, M. Finiasz, N. Sendrier, “A Family of Fast Syndrome Based Hash
Functions”, Proc. MyCrypt 2005.

FSB is based on a very similar problem than LASH, but the security proof
uses reduction to an NP-complete problem in Coding Theory.

There’s a 230 attack in an upcoming paper of mine, based on simple lin
ear algebra manipulation. Worst case complexity of the underlying “hard
problem” is of course almost irrelevant to the security of the hash function..

16

“Provable Security” in Hash Functions

LASH, FSB, VSH, and the FFT hash (presented in this workshop) reduce
collision resistance to a “hard problem”. In each one of these cases the
exact “hard problem” was not well defined before the publication of the
paper..

If (say) LLL can be used to break something, it does not mean that LLL is
the best way of breaking something!

Collision resistance alone does not imply any other important properties of
a general-purpose hash function.

17

FIN.

Have fun breaking LASH!

18

