2nd preimage attack on SHAMATA-512

The first SHA-3 candidate conference@Leuven 28th February, 2009

Kota Ideguchi, Dai Watanabe SDL, Hitachi, Ltd.

SHAMATA

- A first round candidate of SHA-3 Competition (withdrawn)
 - Designed by A. Atalay, O. Kara, F. Karakoc and C. Manap
- A register based hash function
- 2048-bit internal state
- Processing a 128-bit message block at each step

Step Function of SHAMATA-512

- 2048-bit internal state: 16 128-bit registers
- Step function:
 - Xoring a message block with the red registers
 - Clocking the shift register twice

Another Description of Step Function

- Divided into two shift registers
 - Even / Odd register part
 - A message block is xored and clocked once.
 - These parts Interact at only two points.

Our attack uses the properties:

- Only one register is xored with a message block in the even register part.
 - The even register part can be controlled well.
- The same linear transf. of a message block is xored with B[2] and K[7].

Outline of Our Attack

m_i: message block difference between the target message and a 2nd preimage

Internal State Difference at the Meeting Point

Differences of even registers

Differences of odd registers

- Eight 128-bit block differences are zero.
- Two block differences are the same as each other.
 - Degrees of freedom of the internal state difference is 896 bits.
 - MIM attack can be applied because 896/2 < 512.

- A message block is set to cancel the value of the register B[2].
- Repeating this 9 times in total, the internal state difference becomes the form of the previous page.

Summary

Observations

- The even registers can be controlled well.
- The same message differences P(m_i) are xored with B[2] and K[7].
- Forward control is simple. Backward control is more complicated, but possible.
- Complexity of the attack
 - Cost to control the difference is negligible.
 - Cost for MIM (DOF of differences: 896 bits)
 - time: 2^{452.7} step function evaluations
 - memory: 2^{452.7} 128-bit blocks
- More details:

http://www.sdl.hitachi.co.jp/crypto/eval/shamata_2ndPl.pdf