ERINDALE family of hash functions

Nikolajs Volkovs

Dept. of Math. University of Toronto Prata Technologies Inc.

Joint work with Kumar Murty

Comments from panel discussion at 2-d hash workshop

- **A.Shamir**: we need "something new" with a large internal state space
- **B.Praneel**: time to look at approaches different from Damgaard-Merkle
- R.L.Rivest: look at methods of working on the entire message rather than on a blockbased procedure

ERINDALE design feature

- It has a very large number of internal states (more than 2^50000)
- It is not based on Damgaard-Merkle structure
- It works with the entire message and it is very convenient for parallelization

ERINDALE The idea of the construction

- It extracts features of different "sorts" from the message instead of "shaking" the bits
- The features are stored in special registers
- After finishing the process of extraction of the features from a message we start compressing the information that was collected in the registers
- The computation is a bit-stream procedure

ERINDALE NIST's Randomness Tests

 For all the hash lengths specified by NIST (namely, 160, 224, 256, 384, 512 bits), the algorithm passed the randomness tests specified by NIST

ERINDALE Performance results

- Software implementation:
- AMD Sempron 2GHz processor 3400+ using 1GB of RAM – close to SHA 384
- Hardware implementation
- On a Xilinx Virtex V FPGA at 299 MHz, we could reach 3.4 Gbps
- SHA-512 at ~260 MHz runs at ~650 Mbps (Xilinx Virtex XCV-1000-6)
- SHAvite-3 (Orr Dunkelman) on Virtex V
 1.7 Mbps

ERINDALE

- Family of functions with randomization and with a unique (size and value) padding for any message
- Has effective parameterization of:
 - security
 - speed
 - "sorts" of features extracted from a message
 - size of a hash value
 - the inner structure

ERINDALE

Thank you.