ESSENCE Simple. Parallel.

Jason Worth Martin

Department of Mathematics and Statistics James Madison University

First SHA-3 Candidate Conference

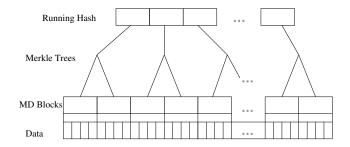
イロト イポト イヨト イヨト

3

Jason Worth Martin ESSENCE

Structure Compression Function

イロト イポト イヨト イヨト


ESSENCE: Classification Categories

- Narrow Pipe (two sizes, just like SHA-2)
- Davies-Meyer
- Internal Block Cipher uses Non-Linear Feedback Shift Register
- Merkle-Damgård at lowest level
- Merkle Tree at mid-level
- Merkle-Damgård at top level to combine tree roots

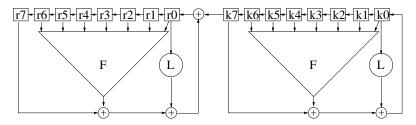
Overview of ESSENCE

Analysis Performance Case for ESSENCE in Round 2 Structure

ESSENCE Structure

- Hash MD Blocks (each 1MByte) separately with varying IV
- Merkle Trees combine MD Block hashes
- Running Hash combines roots (uses separate IV and Final) Block) イロト 不得 とくほ とくほ とう

3


Overview of ESSENCE

Analysis Performance Case for ESSENCE in Round 2 Structure Compression Function

ヘロト ヘアト ヘビト ヘビト

ъ

ESSENCE Block Cipher

- Compression function is Davies-Meyer
- Boxes all represent 32-bit or 64-bit words
- F is non-linear, applied bit-wise
- *L* is linear, applied to a 32-bit or 64-bit word
- Can run entirely within register file on Core 2

Structure Compression Function

ヘロト 人間 ト ヘヨト ヘヨト

F Function

F(a, b, c, d, e, f, g) =

abcdefg + abcdef + abcefg + acdefg + abceg + abdef + abdeg + abefg + acdef + acdfg + acefg + adefg + bcdfg + bdefg + cdefg + abcf + abcg + abdg + acdf + adef + adeg + adfg + bcde + bceg + bdeg + cdef + abc + abe + abf + abg + acg + adf + adg + aef + aeg + bcf + bcg + bde + bdf + beg + bfg + cde + cdf + def + deg + dfg + ad + ae + bc + bd + cd + ce + df + dg + ef + fg + a + b + c + f + 1

- Makes single lane register sequence De Bruijn
- Has maximal linear complexity
- Optimized against differential and linear attacks

Structure Compression Function

L Function

L functions implemented via LFSR in Galois Configuration

- The 32-bit *L* function is stepped 32 times, the 64-bit *L* function is stepped 64 times
- The generating polynomials are primitive
- Every bit of input used in approx. 50% of output
- Every bit of output depends on approx 50% of input

Differential and Linear Analysis Algebraic Analysis

< < >> < </p>

Differential and Linear Analysis

- Extremely simple design facilitates analysis
- Differential and linear analysis available in specification
- Block cipher becomes resistant to standard differential and linear attacks in 24 steps
- Default number of steps in block cipher is 32

Differential and Linear Analysis Algebraic Analysis

イロト イポト イヨト イヨト

Algebraic Analysis

Observations of non-randomness in the ESSENCE compression function, by Nicky Mouha, Søren S. Thomsen, Meltem Sönmez Turan

- Found fixed point (1-cycle) for block cipher shift register leading to free-start pre-image for the all zero output in compression function
- Proved that there are no 2, 3, or 4-cycles other than the repeated 1-cycle.
- Described slid pairs for input/output
- Currently no clear way to extend these results to the full hash function

Serial Performance Parallel Performance

Serial Performance

Serial performance on small-word architectures is slower than SHA-2. Why?

- ESSENCE does not use arithmetic mod 2³² or 2⁶⁴
- ESSENCE does not use S-boxes
- Deliberate serial performance sacrifice for simplicity
- ESSENCE has overhead to support vector registers and parallel implementation

But...

ヘロト 人間 ト ヘヨト ヘヨト

æ

Serial Performance Parallel Performance

Parallel Performance on dual core x86_64 CPUs

Platform	Implementation	Hash Size	cycles/byte
		224	63.7
	Serial C-only	256	63.6
		384	64.2
Vista 64		512	64.2
Core 2	OpenMP	224	19.7
Dual Core	and	256	19.5
	Assembly	384	23.5
		512	23.5

イロト 不得 トイヨト イヨト

E DQC

Serial Performance Parallel Performance

イロト 不得 トイヨト イヨト

E DQC

Parallel Performance on quad core x86_64 CPUs

Platform	Implementation	Hash Size	cycles/byte
Linux 64	OpenMP	224	10.3
Xeon	and	256	9.9
Quad Core	Assembly	384	12.1
		512	12.1

Serial Performance Parallel Performance

イロト 不得 トイヨト イヨト

E DQC

Parallel Performance on eight core x86_64 CPUs

Platform	Implementation	Hash Size	cycles/byte
Mac OS X	OpenMP	224	4.99
Xeon	and	256	4.99
8 Core	Assembly	384	5.85
		512	5.85

Serial Performance Parallel Performance

< < >> < </p>

Timing Methods

- These are sustained through-put measurements using large messages (>16MB) which do not fit in cache
- Timings include all setup time, even time spent by OS to create and manage threads
- Timings include all memory access
- For consistency, all timing results are in terms of Time Stamp Counter.

Serial Performance Parallel Performance

イロト イポト イヨト イヨト

Conclusion: Performance Bound by I/O

Performance measurements on a large SMP machine (24 cores, 128 GBytes of RAM) indicate that the real limit to performance is bus speed

 Parallel hardware existing today demonstrates that the performance limit is I/O not compute power

Simple and Parallel

ESSENCE is Simple and Parallel

Simplicity

- Uses simple design to facility analysis
- Uses old, well-studied, constructions
- Published external analysis already available

Parallelism

- Use bit-wise non-linear function to take advantage of large registers in modern CPUs
- Use tree structure to take advantage of multiple cores
- Current parallel implementations are limited by memory and bus speed, not computation speed

< ロ > < 同 > < 三 >

Simple and Parallel

ESSENCE in Second Round

If ESSENCE is still unbroken by the next SHA-3 conference, it should be considered for round 2 of the contest because it is simple enough to facilitate analysis and parallelizable enough to get high performance.

イロト イ押ト イヨト イヨトー

æ