Cryptographic Hash Function EDON-R

Presented by

Prof. Danilo Gligoroski

Department of Telematics

Faculty of Information Technology, Mathematics and Electrical Engineering Norwegian University of Science and TechnologyTechnology - NTNU, NORWAY

www.ntnu.no

Outline

- Short history of EDON-R
- Specific design characteristics
- Known attacks on EDON-R
- Are there any one-way bijections embedded in EDON-R?
- SW/HW performance and memory requirements

Short history of EDON-R

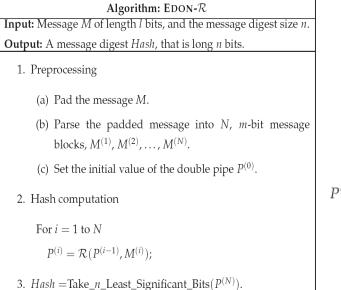
- Theoretical principles of EDON-R were described at the Second NIST Hash Workshop – 2006 in the presentation: Edon-R Family of Cryptographic Hash Functions
 - No concrete realization

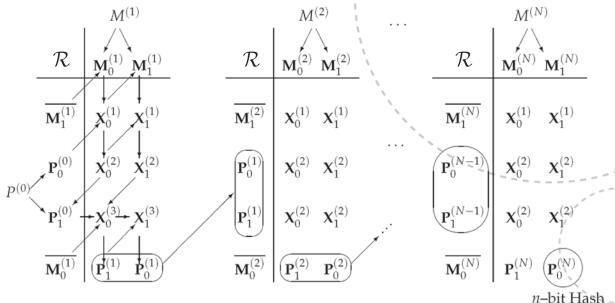
Short history of EDON-R

- Theoretical principles of EDON-R were described at the Second NIST Hash Workshop – 2006 in the presentation: Edon-R Family of Cryptographic Hash Functions
 - No concrete realization
- First implementation of Edon-R(256, 384, 512) published at http://eprint.iacr.org/2007/154
 - Big acknowledgement for Søren Steffen Thomsen, giving me comments about zero being a fixed point in that realization

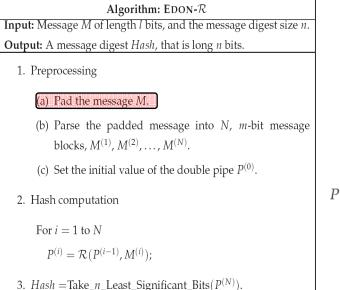
Short history of EDON-R

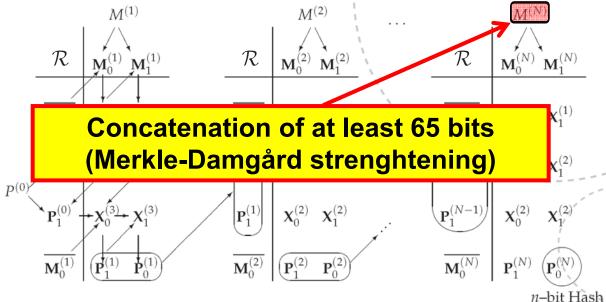
- Additionally, the following contributors joined the EDON-R (SHA-3) team:
 - Rune Steinsmo Ødegård Investigating the mathematical properties of defined quasigroups
 - Marija Mihova Investigating the differential properties in EDON-R operations
 - Svein Johan Knapskog (general comments and suggestions for improvements, proofreading)
 - Ljupco Kocarev (general comments and suggestions for improvements, proofreading)
 - Aleš Drápal (Theory of quasigroups and suggestions for improvements)
 - Vlastimil Klima (cryptanalysis and suggestions for improvements)

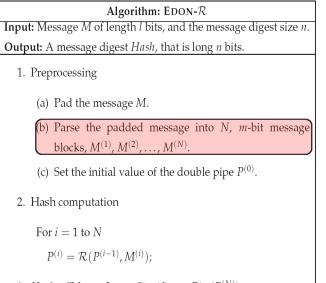




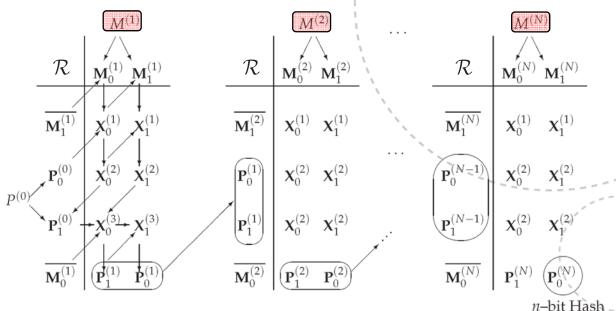
www.ntnu.no

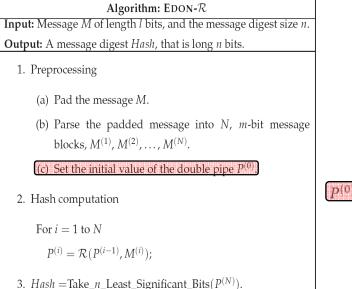


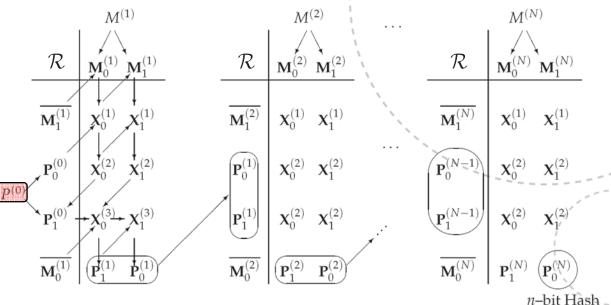


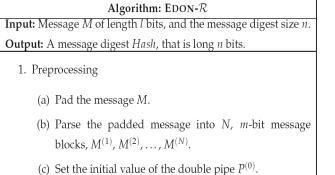


3. $Hash = Take_n Least_Significant_Bits(P^{(N)})$.







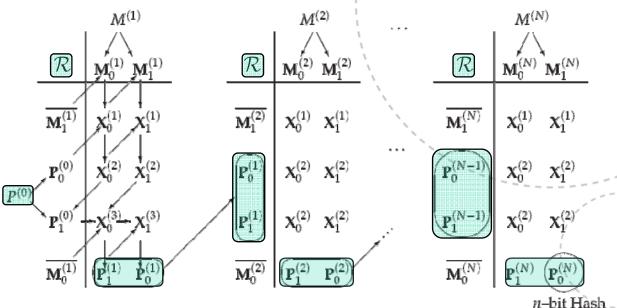


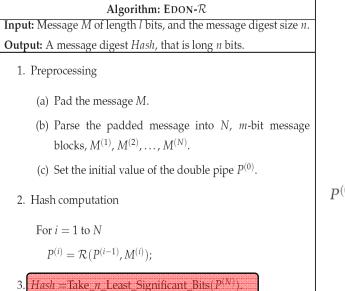
10

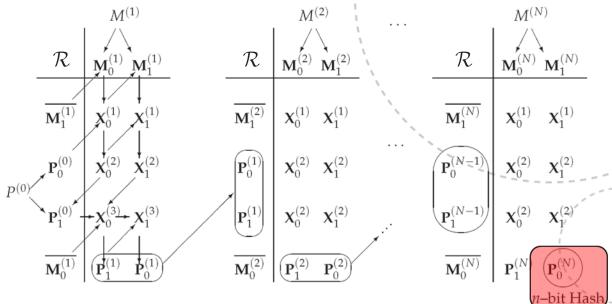
```
For i = 1 to N

P^{(i)} = \mathcal{R}(P^{(i-1)}, M^{(i)});
```

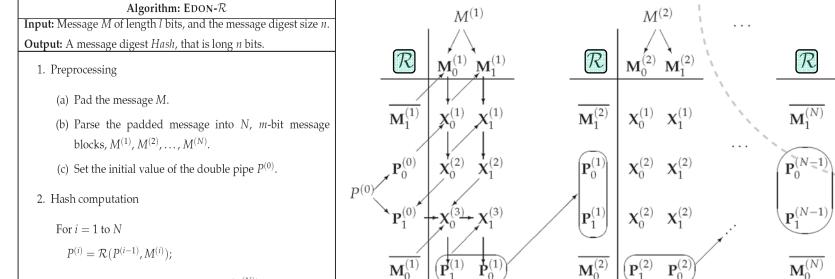
3. $Hash = Take_n Least_Significant_Bits(P^{(N)})$.







www.ntnu.no



3. $Hash = Take_n Least_Significant_Bits(P^{(N)}).$

 $\begin{array}{lll} \mbox{Function} & \mathcal{R}(\textbf{C}_0,\textbf{C}_1,\textbf{A}_0,\textbf{A}_1) & \mbox{is defined by} \\ & \mbox{quasigroup operations} \end{array}$

 $M^{(N)}$

 $\mathbf{M}_{0}^{(N)}$

 $\mathbf{X}_{0}^{(2)}$

 $X_{0}^{(2)}$

 $\mathbf{P}^{(N)}$

 $\mathbf{M}_{\mathbf{1}}^{(N)}$

 $X_{1}^{(1)}$

 $X_{1}^{(2)}$

n-bit Hash

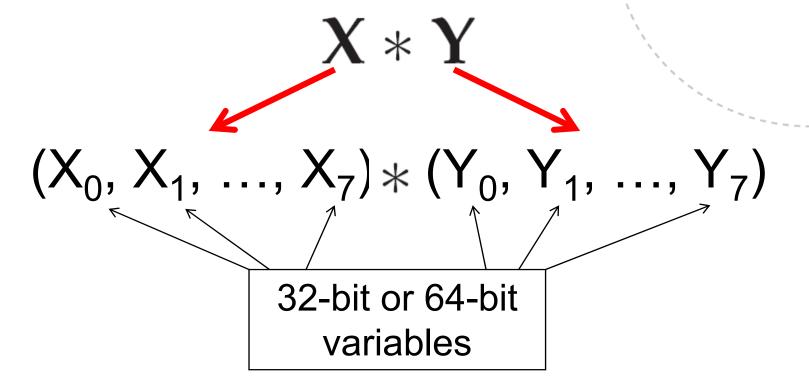
www.ntnu.no

Quasigroup operations are defined on 256-bit or 512-bit operands.

 $\mathbf{X} * \mathbf{Y}$

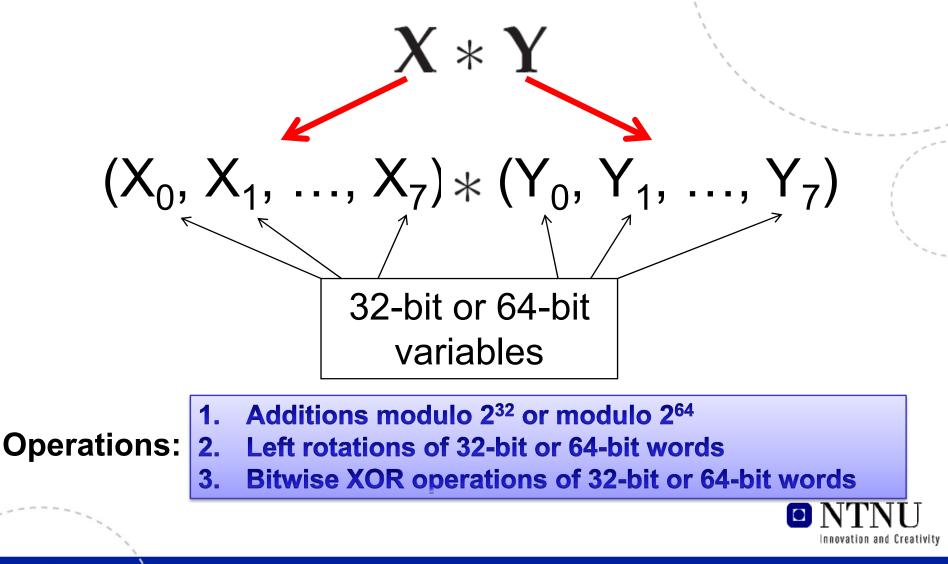
www.ntnu.no

Quasigroup operations are defined on 256-bit or 512-bit operands.



www.ntnu.no

Quasigroup operations are defined on 256-bit or 512-bit operands.



16

Specific design characteristics for EDON-R

Quasigroup operation of order 2²⁵⁶

Input: $X = (X_0, X_1, ..., X_7)$ and $Y = (Y_0, Y_1, ..., Y_7)$

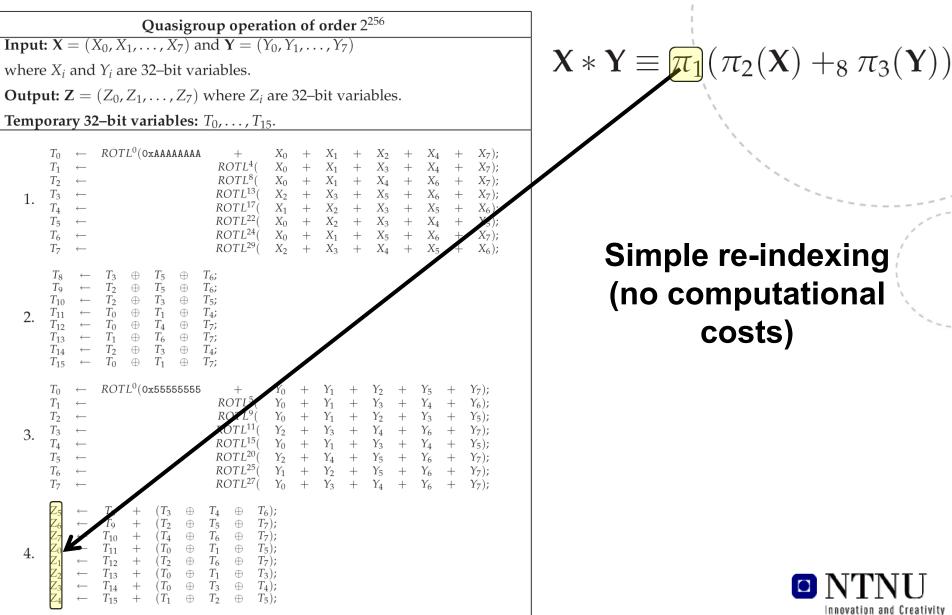
where X_i and Y_i are 32–bit variables.

Output: $\mathbf{Z} = (Z_0, Z_1, \dots, Z_7)$ where Z_i are 32-bit variables.

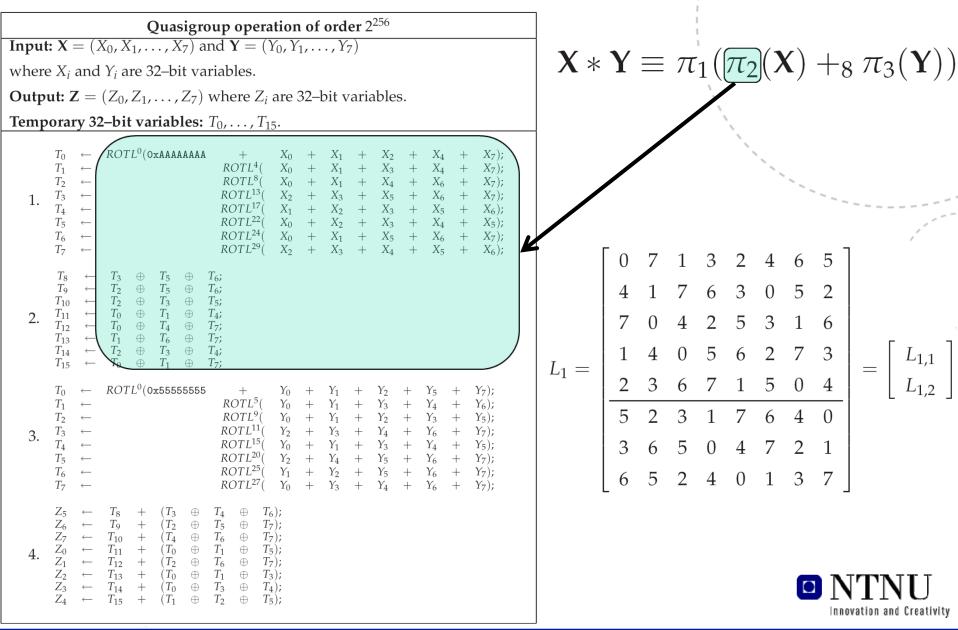
Temporary 32–bit variables: T_0, \ldots, T_{15} .

1.	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rrr} ROTL^{0}(\texttt{OxAAAAAAAA} & + \\ ROTL^{4}(\\ ROTL^{8}(\\ ROTL^{13}(\\ ROTL^{17}(\\ ROTL^{22}(\\ ROTL^{29}(\\ \end{array})$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
2.	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$			
3.	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rccc} ROTL^{0}(\texttt{0x55555555} & + \\ ROTL^{5}(\\ ROTL^{9}(\\ ROTL^{11}(\\ ROTL^{15}(\\ ROTL^{20}(\\ ROTL^{27}(\\ \end{array}) \end{array}$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
4.	$\begin{array}{rcccc} Z_5 & \leftarrow & \\ Z_6 & \leftarrow & \\ Z_7 & \leftarrow & \\ Z_0 & \leftarrow & \\ Z_1 & \leftarrow & \\ Z_2 & \leftarrow & \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	6); 7); 5); 7); 3);		

 $\mathbf{X} * \mathbf{Y} \equiv \pi_1(\pi_2(\mathbf{X}) +_8 \pi_3(\mathbf{Y}))$

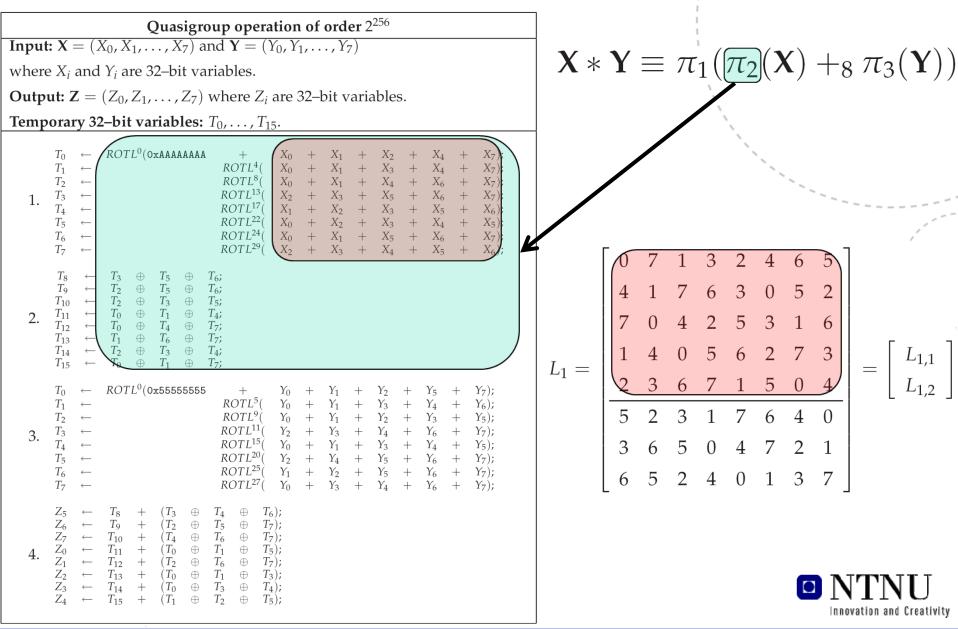


www.ntnu.no



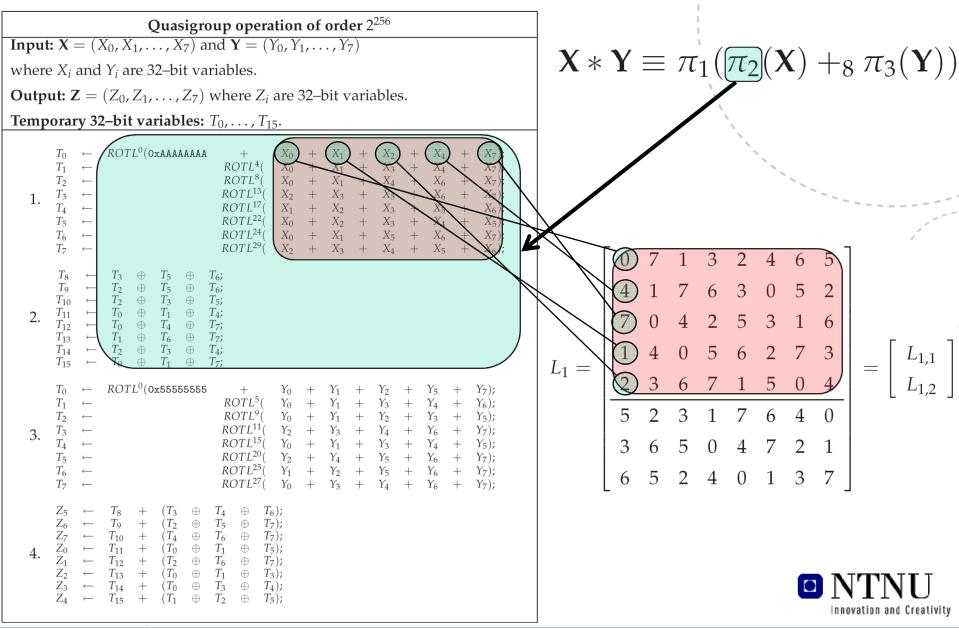
www.ntnu.no

25-28 Feb 2009, Leuven, Belgium, The First SHA-3 Candidate Conference, Cryptographic Hash Function EDON-R

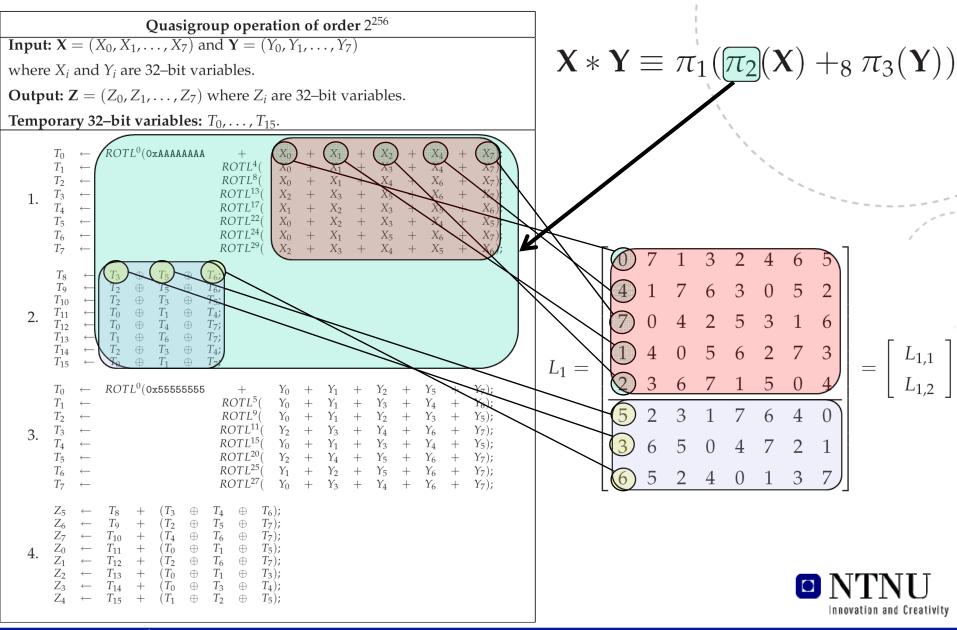


www.ntnu.no

25-28 Feb 2009, Leuven, Belgium, The First SHA-3 Candidate Conference, Cryptographic Hash Function EDON-R

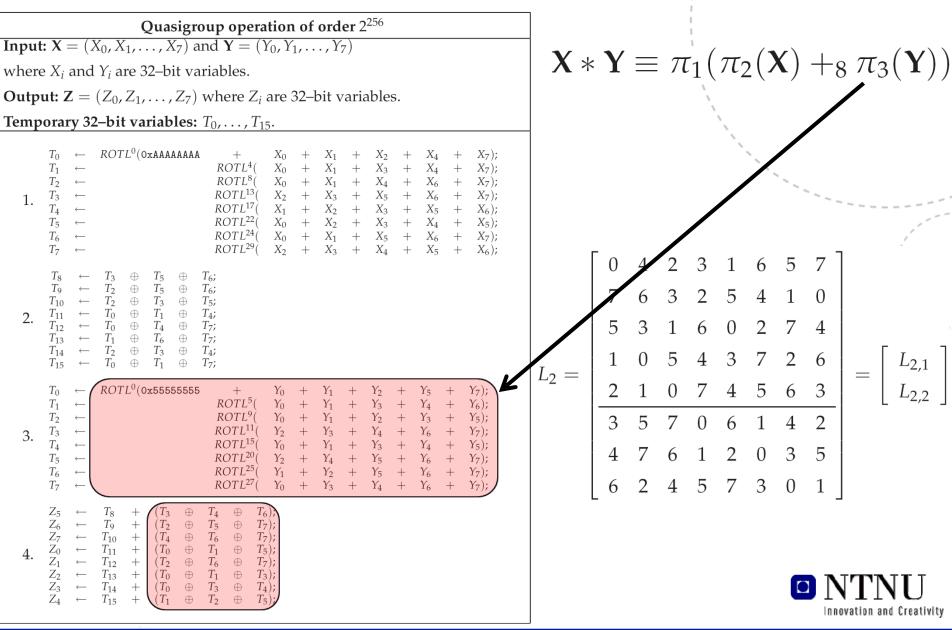


25-28 Feb 2009, Leuven, Belgium, The First SHA-3 Candidate Conference, Cryptographic Hash Function EDON-R



www.ntnu.no

25-28 Feb 2009, Leuven, Belgium, The First SHA-3 Candidate Conference, Cryptographic Hash Function EDON-R



www.ntnu.no

Quasigroup operation of order 2²⁵⁶

Input: $X = (X_0, X_1, ..., X_7)$ and $Y = (Y_0, Y_1, ..., Y_7)$

where X_i and Y_i are 32–bit variables.

Output: $\mathbf{Z} = (Z_0, Z_1, \dots, Z_7)$ where Z_i are 32–bit variables.

Temporary 32–bit variables: T_0, \ldots, T_{15} .

1.	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$ROTL^0$ (oxaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa	+ ROTL ⁴ (ROTL ¹³ (ROTL ¹⁷ (ROTL ²² (ROTL ²⁴ (ROTL ²⁹ ($\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{c} X_1 \\ X_1 \\ X_3 \\ X_2 \\ X_2 \\ X_2 \\ X_1 \end{array}$	+++++++++++++++++++++++++++++++++++++++	$egin{array}{c} X_2 \ X_3 \ X_4 \ X_5 \ X_3 \ X_5 \ X_5 \ X_5 \ X_4 \end{array}$	+ + + + + + + + + + + + + + + + + + +	$egin{array}{c} X_4 \ X_4 \ X_6 \ X_6 \ X_5 \ X_4 \ X_6 \ X_5 \ $	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
2.	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$T_{6};$ $T_{6};$ $T_{5};$ $T_{4};$ $T_{7};$ $T_{7};$ $T_{4};$ $T_{7};$							
3.	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	<i>ROTL</i> ⁰ (0x55555555	+ ROTL ⁵ (ROTL ⁹ (ROTL ¹¹ (ROTL ²⁰ (ROTL ²⁵ (ROTL ²⁷ ($\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$Y_1 Y_1 Y_1 Y_1 Y_3 Y_1 Y_4 Y_2 Y_3$	+ + + + + + + + + + + + + + + + + + +	$\begin{array}{c} Y_3 \\ Y_2 \\ Y_4 \\ Y_3 \\ Y_5 \\ Y_5 \end{array}$	+ + + + + +	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rcl} & & Y_6); \\ - & & Y_5); \\ - & & Y_7); \\ - & & Y_5); \\ - & & Y_7); \\ - & & Y_7); \\ - & & Y_7); \end{array}$
	$\begin{array}{ccc} Z_5 & \leftarrow \\ Z_6 & \leftarrow \end{array}$	$T_8 + (T_3 \oplus T_2) + (T_2 \oplus T_2)$	$T_5 \oplus T_7$	5); 7); 7);						

 $\mathbf{X} * \mathbf{Y} \equiv \pi_1(\pi_2(\mathbf{X}) + \mathbf{X} \pi_3(\mathbf{Y}))$

Quasigroup operation of order 2²⁵⁶

Input: $X = (X_0, X_1, ..., X_7)$ and $Y = (Y_0, Y_1, ..., Y_7)$

where X_i and Y_i are 32–bit variables.

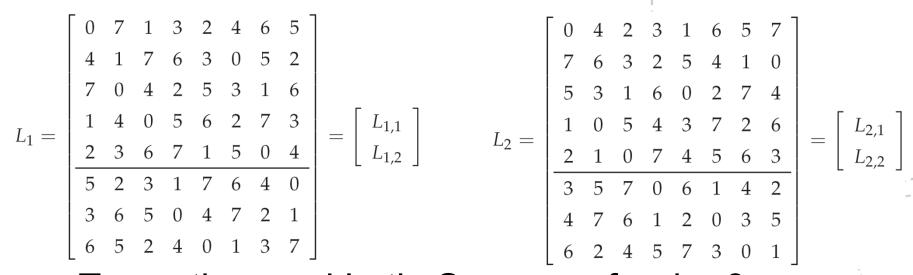
Output: $\mathbf{Z} = (Z_0, Z_1, \dots, Z_7)$ where Z_i are 32-bit variables.

Temporary 32–bit variables: T_0, \ldots, T_{15} .

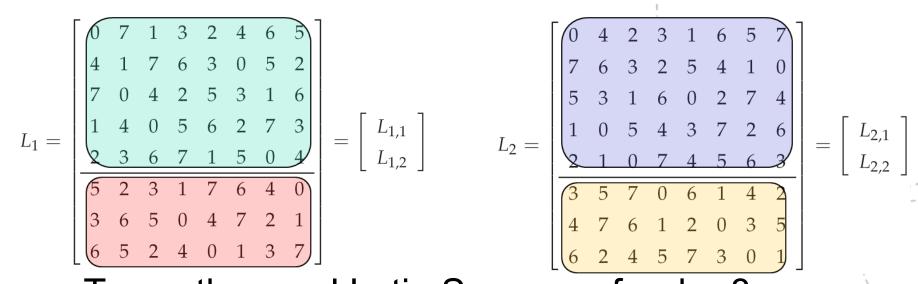
1.	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{c} ROTL^{0}(\texttt{OxAAAAAAAA} \\ ROTL^{4}(\\ ROTL^{8}(\\ ROTL^{13}(\\ ROTL^{17}(\\ ROTL^{22}(\\ ROTL^{24}(\\ ROTL^{29}(\\ \end{array})$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
2.	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$			
3.	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$ROTL^{0}(0x55555555555555555555555555555555555$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
	$\begin{array}{rcl} T_5 & \leftarrow \\ T_6 & \leftarrow \\ T_7 & \leftarrow \end{array}$	ROTL ²⁰ ROTL ²⁵ ROTL ²⁷	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$

 $\mathbf{X} * \mathbf{Y} \equiv \pi_1(\pi_2(\mathbf{X}) +_8 \pi_3(\mathbf{Y}))$

Rotations differ from each other for at least 2 positions.

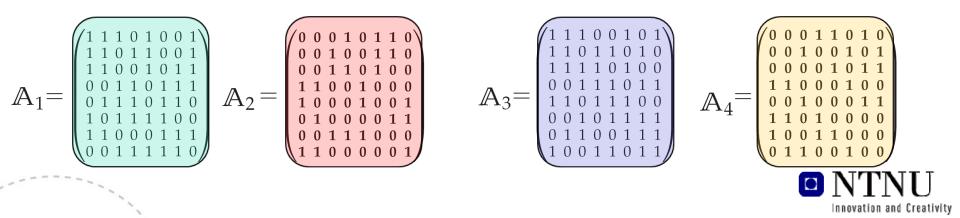


Two orthogonal Latin Squares of order 8



Two orthogonal Latin Squares of order 8

Four corresponding nonsingular in (Z₂, +, x) matrices.



www.ntnu.no

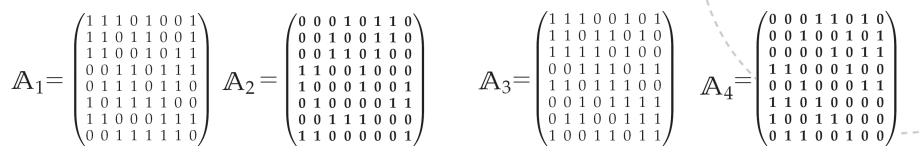
Four nonsingular in (Z_2 , +, x) matrices.

$$\mathbb{A}_{1} = \begin{pmatrix} 1 & 1 & 1 & 0 & 1 & 0 & 0 & 1 \\ 1 & 1 & 0 & 1 & 1 & 0 & 0 & 1 \\ 1 & 1 & 0 & 1 & 1 & 0 & 0 & 1 \\ 1 & 1 & 0 & 1 & 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 & 0 & 1 & 1 & 0 \\ 1 & 0 & 0 & 1 & 1 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 & 1 & 1 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 1 & 1 & 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 & 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 & 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 & 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 & 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 & 0 & 0 & 1 \end{pmatrix} \qquad \mathbb{A}_{3} = \begin{pmatrix} 1 & 1 & 1 & 0 & 0 & 1 & 0 & 1 \\ 1 & 1 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 1 & 0 & 0 & 1 \\ 1 & 0 & 0 & 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 1 & 0 & 1 & 0 & 1 \end{pmatrix} \qquad \mathbb{A}_{4} = \begin{pmatrix} 0 & 0 & 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 & 0 & 0 \end{pmatrix}$$

www.ntnu.no

25-28 Feb 2009, Leuven, Belgium, The First SHA-3 Candidate Conference, Cryptographic Hash Function EDON-R

Four nonsingular in $(Z_2, +, x)$ matrices.



Two diffusion (bi-stochastic) matrices

www.ntnu.no

25-28 Feb 2009, Leuven, Belgium, The First SHA-3 Candidate Conference, Cryptographic Hash Function EDON-R

Innovation and Creativity

Criteria	Reasons			
1. L_1 and L_2 are orthogonal Latin	8 w -bit variables belonging to X are to be mixed with 8			
	w-bit variables belonging to Y in such a way that all pairs			
squares.	are combined by some operation (addition, or XORing).			
2. Diff $_{\pi_2}$ and Diff $_{\pi_3}$ do not have	The situation where $\mathbf{X} *_q \mathbf{\hat{Y}} = \mathbf{Z}$ and some difference either			
2	in X or in Y will not affect some of the eight words of Z are			
zeroes.	to be avoided. This is an analogy to the "confusion" principle in			
	This is an analogy to the "confusion" principle in			
2 Flomonte of the matrix Diff	cryptology. Choosing \mathbf{Diff}_{π_2} with the biggest possible			
3. Elements of the matrix \mathbf{Diff}_{π_2}	variance improves the resistance against cryptanalysis			
have the biggest possible variance.	because there is no regular pattern how the computations			
	are performed.			
	This is an analogy to the "diffusion" principle in			
4. Elements of the matrix \mathbf{Diff}_{π_3}	cryptology. Choosing \mathbf{Diff}_{π_3} with the smallest possible			
have the smallest possible	variance increases the diffusion of the bit differences in the			
variance.	greatest possible way, with the smallest possible variances			
	in the pattern of the computations that are performed.			
Table 2.0. Criteria for sheasing the Latin squares				

Table 3.9: Criteria for choosing the Latin squares

Criteria	Reasons				
1. L_1 and L_2 are orthogonal Latin squares.	8 <i>w</i> -bit variables belonging to X are to be mixed with 8 <i>w</i> -bit variables belonging to Y in such a way that all pairs are combined by some operation (addition, or XORing).				
	The situation where $\mathbf{X} *_{q} \dot{\mathbf{Y}} = \mathbf{Z}$ and some difference either				
$\begin{array}{c} 2\\ 3\\ L_1 = \end{array} \begin{bmatrix} \bigcirc & 7 & 1 & 3 & 2 & 4 & 6 & 5 \\ 4 & 1 & 7 & 6 & 3 & \bigcirc & 5 & 2 \\ 7 & \bigcirc & 4 & 2 & 5 & 3 & 1 & 6 \\ 1 & 4 & \bigcirc & 5 & 6 & 2 & 7 & 3 \\ 2 & 3 & 6 & 7 & 1 & 5 & \bigcirc & 4 \end{bmatrix} = \begin{array}{c} \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				
ha $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $				
4. Elements of the matrix \mathbf{Diff}_{π_3}	cryptology. Choosing \mathbf{Diff}_{π_3} with the smallest possible				
have the smallest possible	variance increases the diffusion of the bit differences in the				
variance.	greatest possible way, with the smallest possible variances				
	in the pattern of the computations that are performed.				
Table 3.9. Criteria for choosing the Latin squares					

Table 3.9: Criteria for choosing the Latin squares

Crite	eria	Reasons				
1. L_1 and L_2 are orthogonal Latin		8 w -bit variables belonging to X are to be mixed with 8				
squat	C	<i>w-</i> bit va	riables belonging to Y in su	ich a way that all pairs		
			nbined by some operation (a			
2. Diff $_{\pi_2}$ and Dif	f_{π} do not have	The situa	ation where $\mathbf{X} *_q \mathbf{Y} = \mathbf{Z}$ and	some difference either		
_	0	in X or in	n \mathbf{Y} will not affect some of the	he eight words of \mathbf{Z} are		
zero	es.		to be avoided			
				on" principle in		
3. Elements of	\mathbf{Diff}_{π_2}		\mathbf{Diff}_{π_3}	e biggest possible		
	232212	1 2	(1 2 2 2 2 2 2 2)	inst cryptanalysis		
have the bigges	1 2 1 3 2 2	2 2	2 1 2 2 2 2 2 2 2	v the computations		
		2 2	22122222	*		
				n" principle in		
4. Elements of	$ \begin{array}{c} 1 & 2 & 2 & 2 & 2 \\ 3 & 2 & 2 & 1 & 2 & 2 \\ \end{array} $	1 0	22221222 22221222	e smallest possible		
have the sn			2 2 2 2 2 2 1 2 2 1 2 2 1 2 2 2 2 2 2 2	oit differences in the		
va:	\2 2 2 2 1 2	2 2/	(2 2 2 2 2 2 2 2 1)	t possible variances		
		in the	pattern of the computations	s that are performed.		

Table 3.9: Criteria for choosing the Latin squares

\mathbf{Diff}_{π_2} sign characteristics for EDON-R

$(2 \ 3 \ 2 \ 2 \ 1 \ 2 \ 1 \ 2)$				
		Reasons		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	l Latin	8 <i>w</i> -bit variables belonging to \mathbf{X} are to be mixed with 8 <i>w</i> -bit variables belonging to \mathbf{Y} in such a way that all pairs		
3 2 2 1 2 2 2 1		are combined by some operation (addition, or XORing).		
2 2 2 1 2 2 3 1	t have	The situation where $\mathbf{X} *_q \mathbf{Y} = \mathbf{Z}$ and some difference either		
22221222		in X or in Y will not affect some of the eight words of Z are		
		to be avoided. This is an analogy to the "confusion" principle in		
		This is an analogy to the "confusion" principle in		
3. Elements of the matrix	Diff	cryptology. Choosing \mathbf{Diff}_{π_2} with the biggest possible		
	<u> </u>	variance improves the resistance against cryptanalysis		
have the biggest possible v	variance.	because there is no regular pattern how the computations		
		are performed.		
		This is an analogy to the "diffusion" principle in		
4. Elements of the matrix	\mathbf{Diff}_{π_3}	cryptology. Choosing \mathbf{Diff}_{π_3} with the smallest possible		
have the smallest pos	sible	variance increases the diffusion of the bit differences in the		
variance.		greatest possible way, with the smallest possible variances		
		in the pattern of the computations that are performed.		

Table 3.9: Criteria for choosing the Latin squares

Criteria	Reasons				
1. L_1 and L_2 are orthogonal Latin	8 <i>w</i> -bit variables belonging to X	2 2 1 2 2 2 2 2 2 2 1 2 2 2 2			
squares.	<i>w</i> -bit variables belonging to Y in	2 2 2 2 1 2 2 2			
L L	are combined by some operation	2 2 2 2 2 1 2 2			
2. Diff $_{\pi_2}$ and Diff $_{\pi_3}$ do not have	The situation where $\mathbf{X} *_q \mathbf{Y} = \mathbf{Z}$ ar	2 2 2 2 2 2 1 2			
	in X or in Y will not affect some of	(2 2 2 2 2 2 2 2 1)			
zeroes.	to be avoided	d			
	This is an analogy to the "confusion" principle in				
3. Elements of the matrix Diff $_{\pi_2}$	cryptology. Choosing \mathbf{Diff}_{π_2} with the biggest possible				
have the biggest possible variance.	variance improves the resistance against cryptanalysis				
nave the biggest possible variance.	because there is no regular pattern how the computations				
	are performed.				
	This is an analogy to the "diffu	usion" principle in			
4. Elements of the matrix \mathbf{Diff}_{π_3}	cryptology. Choosing \mathbf{Diff}_{π_3} with	n the smallest possible			
have the smallest possible	variance increases the diffusion of the bit differences in the				
variance.	greatest possible way, with the sma	allest possible variances			
	in the pattern of the computation	ns that are performed.			
Table 2.0. Cuitaria for abagaing the Latin squares					

Table 3.9: Criteria for choosing the Latin squares

 \mathbf{Diff}_{π_3}

0

11

 $\gamma \gamma$

C

 $\gamma \gamma$

Criteria		Reasons				
1. L_1 and L_2 are orthogonal Latin squares.		8 <i>w</i> -bit variables belonging to X are to be mixed with 8 <i>w</i> -bit variables belonging to Y in such a way that all pairs are combined by some operation (addition, or XORing).				
2	Different Different house	The situation where $\mathbf{X} *_q \mathbf{Y} = \mathbf{Z}$ and some difference either				
701000		ses of orthogonal Latin Sauares of order 8 from e http://cs.anu.edu.au/people/bdm/data/latin.html				
3 ha	Latin Squares that comply	2 ^{30.6} pairs of orthogonal isotopes. We found that with all 4 criteria give diffusion matrices with the minimal variance 1/9. We took the first such				
		are performed.				
		This is an analogy to the "diffusion" principle in				
4. Elements of the matrix \mathbf{Diff}_{π_3}		cryptology. Choosing \mathbf{Diff}_{π_3} with the smallest possible				
have the smallest possible		variance increases the diffusion of the bit differences in the				
	variance.	greatest possible way, with the smallest possible variances				
		in the pattern of the computations that are performed.				
Table 2.0. Critaria for changing the Latin squares						

Table 3.9: Criteria for choosing the Latin squares

Definition 12. Let $X, X', Y, Y' \in Q_q$ and let $\Delta_X = X \oplus X'$ and $\Delta_Y = Y \oplus Y'$ be two difference vectors. Let $Z = X *_q Y$ and $Z' = X' *_q Y'$. The vector $\mathcal{D}_{(\Delta_X, \Delta_Y)} = (\delta_0, \dots, \delta_7) \in (\mathbb{Z})^8$ is called *bit flip counter for the quasigroup operation* $*_q$, if every δ_i , $i = 0, \dots, 7$ is a counter of the minimal number of bit flips that the quasigroup operation $*_q$ performs to transfer the value Z to the value Z'.

Theorem 3: $\mathcal{D}_{(\Delta_X, \Delta_Y)} = \text{Diff}_{\pi_2} \cdot \Delta_X + \text{Diff}_{\pi_3} \cdot \Delta_Y$

EDON-R is provably resistant against differential cryptanalysis

$$\begin{array}{|c|c|c|c|c|c|c|}\hline & \Delta_{\mathbf{X}} & \Delta_{\mathbf{Y}} \\ \hline & \overline{\Delta_{\mathbf{Y}}} & \mathcal{D}_{1} = \mathbf{Diff}_{\pi_{2}} \cdot \overline{\Delta_{\mathbf{Y}}} + \mathbf{Diff}_{\pi_{3}} \cdot \Delta_{\mathbf{X}} & \mathcal{D}_{2} = \mathbf{Diff}_{\pi_{2}} \cdot \mathcal{D}_{1} + \mathbf{Diff}_{\pi_{3}} \cdot \Delta_{\mathbf{Y}} \\ \hline & \mathbf{0} & \mathcal{D}_{3} = \mathbf{Diff}_{\pi_{2}} \cdot \mathbf{0} + \mathbf{Diff}_{\pi_{3}} \cdot \mathcal{D}_{1} & \mathcal{D}_{4} = \mathbf{Diff}_{\pi_{2}} \cdot \mathcal{D}_{3} + \mathbf{Diff}_{\pi_{3}} \cdot \mathcal{D}_{2} \\ \hline & \mathbf{0} & \mathcal{D}_{5} = \mathbf{Diff}_{\pi_{2}} \cdot \mathcal{D}_{3} + \mathbf{Diff}_{\pi_{3}} \cdot \mathbf{0} & \mathcal{D}_{6} = \mathbf{Diff}_{\pi_{2}} \cdot \mathcal{D}_{4} + \mathbf{Diff}_{\pi_{3}} \cdot \mathcal{D}_{5} \\ \hline & \overline{\Delta_{\mathbf{X}}} & \mathcal{D}_{7} = \mathbf{Diff}_{\pi_{2}} \cdot \overline{\Delta_{\mathbf{X}}} + \mathbf{Diff}_{\pi_{3}} \cdot \mathcal{D}_{5} & \mathcal{D}_{8} = \mathbf{Diff}_{\pi_{2}} \cdot \mathcal{D}_{7} + \mathbf{Diff}_{\pi_{3}} \cdot \mathcal{D}_{6} \end{array}$$

EDON-R is provably resistant against differential cryptanalysis

	$\Delta_{\mathbf{X}} = (1, 0, 0, 0, 0, 0, 0, 0)$	$\Delta_{\mathbf{Y}} = (0, 0, 0, 0, 0, 0, 0, 0)$
$\overline{\boldsymbol{\Delta}_{\mathbf{Y}}} = (0,0,0,0,0,0,0,0)$	0) (1, 2, 2, 2, 2, 2, 2, 2) (28, 29, 28, 28, 29, 27, 28, 28)	
0	(29, 28, 28, 28, 28, 28, 28, 28, 28)	(844, 842, 844, 844, 842, 846, 844, 844)
0	(422, 421, 422, 422, 421, 423, 422, 422)	(18984, 18985, 18982, 18986, 18985, 18983, 18984, 18986)
$\overline{\Delta_{\mathbf{X}}} = (0, 0, 0, 0, 0, 0, 0, 1)$	(6330, 6331, 6330, 6330, 6332, 6328, 6329, 6330)	(379716, 379715, 379721, 379713, 379716, 379717, 379715, 379712)

Table 3.6: Vectors of minimal number of bit flips for the function \mathcal{R} when the initial difference vectors are $\Delta_{\mathbf{X}} = (1, 0, 0, 0, 0, 0, 0, 0, 0)$ and $\Delta_{\mathbf{Y}} = (0, 0, 0, 0, 0, 0, 0)$.

		$\mathbf{\Delta_X} = (0, 0, 0, 0, 0, 0, 0, 0)$	$\Delta_{\mathbf{Y}} = (1, 0, 0, 0, 0, 0, 0, 0)$
	$\overline{\Delta_{\mathbf{Y}}} = (0,0,0,0,0,0,0,1)$	(2, 2, 2, 2, 3, 1, 1, 2)	(29, 30, 32, 30, 31, 30, 29, 29)
	0	(28, 28, 28, 28, 27, 29, 29, 28)	(873, 872, 868, 872, 870, 872, 874, 874)
	0	(422, 422, 420, 422, 421, 422, 423, 423)	(19406, 19409, 19406, 19406, 19406, 19405, 19405, 19407)
	$\overline{\Delta_{\mathbf{X}}} = (0, 0, 0, 0, 0, 0, 0, 0)$	(6328, 6328, 6330, 6328, 6329, 6328, 6327, 6327)	(386016, 386011, 386017, 386016, 386016, 386018, 386017, 386014)
Tabl	e 3.7: Vectors of a	minimal number of bit flips for	or the function $\mathcal R$ when the initial difference
	vectors are	$\Delta_{\mathbf{X}} = (0, 0, 0, 0, 0, 0, 0, 0)$ and Δ	$\mathbf{v} = (1, 0, 0, 0, 0, 0, 0, 0).$

www.ntnu.no

EDON-R is provably resistant against differential cryptanalysis

_		$\Delta_{\mathbf{X}} = (1, 0, 0, 0, 0, 0, 0, 0)$	$\mathbf{\Delta}_{\mathbf{Y}} = (0, 0, 0, 0, 0, 0, 0, 0)$	
	$\overline{\Delta_{\mathbf{Y}}} = (0, 0, 0, 0, 0, 0, 0, 0)$	(1, 2, 2, 2, 2, 2, 2, 2)	(28, 29, 28, 28, 29, 27, 28, 28)	
	0	(29, 28, 28, 28, 28, 28, 28, 28, 28)	(844, 842, 844, 844, 842, 846, 844, 844)	
	0	(422, 421, 422, 422, 421, 423, 422, 422)	(18984, 18985, 18982, 18986, 18985, 18983, 18984, 18986)	
	$\overline{\Delta_{\mathbf{X}}} = (0,0,0,0,0,0,0,1)$	(6330, 6331, 6330, 6330, 6332, 6328, 6329, 6330)	379710 37971 37972 37971 37971 37971 37971 37971 37971	
Table	23.			nce
	Note	the variance	of the elements!	,
_	Note	The Variance $\Delta_{\mathbf{X}} = (0, 0, 0, 0, 0, 0, 0)$	of the elements: $\Delta_{\mathbf{Y}} = (1, 0, 0, 0, 0, 0, 0)$	
_	$\overline{\Delta_{\mathbf{Y}}} = (0, 0, 0, 0, 0, 0, 1)$			
_		$\Delta_{\mathbf{X}} = (0, 0, 0, 0, 0, 0, 0, 0)$	$\Delta_{\mathbf{Y}} = (1, 0, 0, 0, 0, 0, 0, 0)$	
_	$\overline{\Delta_{\mathbf{Y}}} = (0, 0, 0, 0, 0, 0, 0, 1)$	$\Delta_{\mathbf{X}} = (0, 0, 0, 0, 0, 0, 0, 0)$ (2, 2, 2, 2, 3, 1, 1, 2)	$\Delta_{\mathbf{Y}} = (1, 0, 0, 0, 0, 0, 0, 0)$ (29, 30, 32, 30, 31, 30, 29, 29)	
	$\overline{\Delta_{\mathbf{Y}}} = (0, 0, 0, 0, 0, 0, 0, 1)$ 0	$\Delta_{\mathbf{X}} = (0, 0, 0, 0, 0, 0, 0, 0)$ $(2, 2, 2, 2, 3, 1, 1, 2)$ $(28, 28, 28, 28, 27, 29, 29, 28)$ $(422, 422, 420, 422, 421, 422, 423, 423)$	$\Delta_{\mathbf{Y}} = (1, 0, 0, 0, 0, 0, 0, 0)$ (29, 30, 32, 30, 31, 30, 29, 29) (873, 872, 868, 872, 870, 872, 874, 874)	
	$\overline{\Delta_{\mathbf{Y}}} = (0, 0, 0, 0, 0, 0, 0, 1)$ 0 0 $\overline{\Delta_{\mathbf{X}}} = (0, 0, 0, 0, 0, 0, 0, 0)$	$\Delta_{\mathbf{X}} = (0, 0, 0, 0, 0, 0, 0, 0)$ $(2, 2, 2, 2, 3, 1, 1, 2)$ $(28, 28, 28, 28, 27, 29, 29, 28)$ $(422, 422, 420, 422, 421, 422, 423, 423)$ $(6328, 6328, 6330, 6328, 6329, 6328, 6327, 6327)$	$\Delta_{\mathbf{Y}} = (1, 0, 0, 0, 0, 0, 0, 0)$ $(29, 30, 32, 30, 31, 30, 29, 29)$ $(873, 872, 868, 872, 870, 872, 874, 874)$ $(19406, 19409, 19406, 19406, 19406, 19405, 19405, 19407)$	nce

EDON-R is provably resistant against differential cryptanalysis

	$\Delta_{\mathbf{X}} = (1, 0, 0, 0, 0, 0, 0, 0)$	$\Delta_{\mathbf{Y}} = (0, 0, 0, 0, 0, 0, 0, 0)$
$\overline{\Delta_{\mathbf{Y}}} = (0, 0, 0, 0, 0, 0, 0, 0)$	(1, 2, 2, 2, 2, 2, 2, 2)	(28, 29, 28, 28, 29, 27, 28, 28)
0	(29, 28, 28, 28, 28, 28, 28, 28, 28)	(844, 842, 844, 844, 842, 846, 844, 844)
0	(422, 421, 422, 422, 421, 423, 422, 422)	(18984, 18985, 18982, 18986, 18985, 18983, 18984, 18986)
$\overline{\Delta_{\mathbf{X}}} = (0,0,0,0,0,0,0,1)$	(6330, 6331, 6330, 6330, 6332, 6328, 6329, 6330)	379710 379715 379721 379713 379716 37971 379713 37971
ıble 3.		reno

Note the variance of the elements!

Theorem 4. The variance of the elements of the D_i , i = 1, ..., 8 decreases (relative to the minimal element in the vectors D_i , i = 1, ..., 8), with every row of quasigroup string transformations in the compression function \mathcal{R} .

0

(422, 422, 420, 422, 421, 422, 423, 423)

(19406, 19409, 19406, 19406, 19406, 19405, 19405, 19407)

 $\overline{\Delta_{\mathbf{X}}} = (0, 0, 0, 0, 0, 0, 0, 0) \qquad (6328, 6328, 6330, 6328, 6329, 6328, 6327, 6327) \qquad (386016, 386017, 386016, 386016, 386018, 386017, 386014)$

Table 3.7: Vectors of minimal number of bit flips for the function \mathcal{R} when the initial difference vectors are $\Delta_{\mathbf{X}} = (0, 0, 0, 0, 0, 0, 0, 0, 0)$ and $\Delta_{\mathbf{Y}} = (1, 0, 0, 0, 0, 0, 0, 0)$.

EDON-R is provably resistant against differential cryptanalysis

Theorem 5. Let $\mathcal{D}_i = (\delta_0^{(i)}, \delta_1^{(i)}, \dots, \delta_7^{(i)})$, $i = 1, \dots, 8$ be a vector of minimal number of bit flips for the function \mathcal{R} where the size of the word is w bits (w = 32, 64), and let $\Delta_{D_i} = (\Delta_{D_0}^{(i)}, \Delta_{D_1}^{(i)}, \dots, \Delta_{D_7}^{(i)}) = (\Delta_0^{(i)}, \dots, \Delta_{w-1}^{(i)}, \Delta_{w}^{(i)}, \dots, \Delta_{2w-1}^{(i)}, \Delta_{2w}^{(i)}, \dots, \Delta_{7w-1}^{(i)}, \Delta_{7w}^{(i)}, \dots, \Delta_{8w-1}^{(i)})$, $i = 1, \dots, 8$ (where $\Delta_j^{(i)} \in \{0, 1\}$, $j = 0, \dots, 8w - 1$) are the corresponding differentials in the intermediate variables Δ_{D_i} for some initially chosen differentials Δ_X and Δ_Y (where at least one of them is a non-zero differential). If the number of bit flips for every single bit is equally distributed then the probabilities that every difference bit $\Delta_j^{(i)}$ is 0 or 1 are given as:

$$Pr(\Delta_{j}^{(i)} = 0 | \Delta_{\mathbf{X}}, \Delta_{\mathbf{Y}}) = 0.5 + \epsilon_{\delta_{\mu}^{(i)}},$$
$$Pr(\Delta_{j}^{(i)} = 1 | \Delta_{\mathbf{X}}, \Delta_{\mathbf{Y}}) = 0.5 - \epsilon_{\delta_{\mu}^{(i)}},$$

where $\mu = \left\lfloor \frac{j}{w} \right\rfloor$ and $\epsilon_{\delta_{\mu}^{(i)}} \leq 0.5 \left(\frac{w-2}{w} \right)^{\delta_{\mu}^{(i)}}$.

EDON-R is provably resistant against differential cryptanalysis

Theorem 5. Let $\mathcal{D}_i = (\delta_0^{(i)}, \delta_1^{(i)}, \dots, \delta_7^{(i)})$, $i = 1, \dots, 8$ be a vector of minimal number of bit flips for the function \mathcal{R} where the size of the word is w bits (w = 32, 64), and let $\Delta_{D_i} = (\Delta_{D_0}^{(i)}, \Delta_{D_1}^{(i)}, \dots, \Delta_{D_7}^{(i)}) = (\Delta_0^{(i)}, \dots, \Delta_{w-1}^{(i)}, \Delta_{w}^{(i)}, \dots, \Delta_{2w-1}^{(i)}, \Delta_{2w}^{(i)}, \dots, \Delta_{7w-1}^{(i)}, \Delta_{7w}^{(i)}, \dots, \Delta_{8w-1}^{(i)})$, $i = 1, \dots, 8$ (where $\Delta_j^{(i)} \in \{0, 1\}$, $j = 0, \dots, 8w - 1$) are the corresponding differentials in the intermediate variables Δ_{D_i} for some initially chosen differentials $\Delta_{\mathbf{X}}$ and $\Delta_{\mathbf{Y}}$ (where at least one of them is a non-zero differential). If the number of bit flips for every single bit is equally distributed then the probabilities that every difference bit $\Delta_j^{(i)}$ is 0 or 1 are given as:

$$Pr(\Delta_{j}^{(i)} = 0 | \Delta_{\mathbf{X}}, \Delta_{\mathbf{Y}}) = 0.5 + \epsilon_{\delta_{\mu}^{(i)}},$$
$$Pr(\Delta_{j}^{(i)} = 1 | \Delta_{\mathbf{X}}, \Delta_{\mathbf{Y}}) = 0.5 - \epsilon_{\delta_{\mu}^{(i)}},$$

where $\mu = \left\lfloor \frac{j}{w} \right\rfloor$ and $\epsilon_{\delta_{\mu}^{(i)}} \leq 0.5 \left(\frac{w-2}{w} \right)^{\delta_{\mu}^{(i)}}$.

www.ntnu.no

EDON-R is provably resistant against differential cryptanalysis

Theorem 5. Let $\mathcal{D}_i = (\delta_0^{(i)}, \delta_1^{(i)}, \dots, \delta_7^{(i)})$, $i = 1, \dots, 8$ be a vector of minimal number of bit flips for the function \mathcal{R} where the size of the word is w bits (w = 32, 64), and let $\Delta_{D_i} = (\Delta_{D_0}^{(i)}, \Delta_{D_1}^{(i)}, \dots, \Delta_{D_7}^{(i)}) = (\Delta_0^{(i)}, \dots, \Delta_{w-1}^{(i)}, \Delta_{w}^{(i)}, \dots, \Delta_{2w-1}^{(i)}, \Delta_{2w}^{(i)}, \dots, \Delta_{7w-1}^{(i)}, \Delta_{8w-1}^{(i)})$, $i = 1, \dots, 8$ (where $\Delta_j^{(i)} \in \{0, 1\}$, $j = 0, \dots, 8w - 1$) are the corresponding differentials in the intermediate variables Δ_{D_i} for some initially chosen differentials $\Delta_{\mathbf{X}}$ and $\Delta_{\mathbf{Y}}$ (where at least one of them is a non-zero differential). If the number of bit flips for every single bit is equally distributed then the probabilities that every difference bit $\Delta_j^{(i)}$ is 0 or 1 are given as:

$$Pr(\Delta_{j}^{(i)} = 0 | \Delta_{\mathbf{X}}, \Delta_{\mathbf{Y}}) = 0.5 + \epsilon_{\delta_{\mu}^{(i)}},$$
$$Pr(\Delta_{j}^{(i)} = 1 | \Delta_{\mathbf{X}}, \Delta_{\mathbf{Y}}) = 0.5 - \epsilon_{\delta_{\mu}^{(i)}},$$

where $\mu = \left\lfloor \frac{j}{w} \right\rfloor$ and $\epsilon_{\delta_{\mu}^{(i)}} \leq 0.5 \left(\frac{w-2}{w} \right)^{\delta_{\mu}^{(i)}}$.

www.ntnu.no

EDON-R is provably resistant against differential cryptanalysis

Theorem 5. Let $\mathcal{D}_i = (\delta_0^{(i)}, \delta_1^{(i)}, \dots, \delta_7^{(i)})$, $i = 1, \dots, 8$ be a vector of minimal number of bit flips for the function \mathcal{R} where the size of the word is w bits (w = 32, 64), and let $\Delta_{D_i} = (\Delta_{D_0}^{(i)}, \Delta_{D_1}^{(i)}, \dots, \Delta_{D_7}^{(i)}) = (\Delta_0^{(i)}, \dots, \Delta_{w-1}^{(i)}, \Delta_{2w-1}^{(i)}, \Delta_{2w}^{(i)}, \dots, \Delta_{7w-1}^{(i)}, \Delta_{7w-1}^{(i)}, \Delta_{8w-1}^{(i)})$, $i = 1, \dots, 8$ (where $\Delta_j^{(i)} \in \{0, 1\}$, $j = 0, \dots, 8w - 1$) are the corresponding differentials in the intermediate variables Δ_{D_i} for some initially chosen differentials Δ_X and Δ_Y (where at least one of them is a non-zero differential). If the number of bit flips for every single bit is equally distributed then the probabilities that every difference bit $\Delta_j^{(i)}$ is 0 or 1 are given as:

$$Pr(\Delta_{j}^{(i)} = 0 | \Delta_{\mathbf{X}}, \Delta_{\mathbf{Y}}) = 0.5 + \epsilon_{\delta_{\mu}^{(i)}},$$
$$Pr(\Delta_{j}^{(i)} = 1 | \Delta_{\mathbf{X}}, \Delta_{\mathbf{Y}}) = 0.5 - \epsilon_{\delta_{\mu}^{(i)}},$$

where $\mu = \left\lfloor \frac{j}{w} \right\rfloor$ and $\epsilon_{\delta_{\mu}^{(i)}} \leq 0.5 \left(\frac{w-2}{w} \right)^{\delta_{\mu}^{(i)}}$.

EDON-R is provably resistant against differential cryptanalysis

Theorem 5. Let $\mathcal{D}_i = (\delta_0^{(i)}, \delta_1^{(i)}, \dots, \delta_7^{(i)})$, $i = 1, \dots, 8$ be a vector of minimal number of bit flips for the function \mathcal{R} where the size of the word is w bits (w = 32, 64), and let $\Delta_{D_i} = (\Delta_{D_0}^{(i)}, \Delta_{D_1}^{(i)}, \dots, \Delta_{D_7}^{(i)}) = (\Delta_0^{(i)}, \dots, \Delta_{w-1}^{(i)}, \Delta_{w}^{(i)}, \dots, \Delta_{2w-1}^{(i)}, \Delta_{2w}^{(i)}, \dots, \Delta_{7w-1}^{(i)}, \Delta_{7w}^{(i)}, \dots, \Delta_{8w-1}^{(i)})$, $i = 1, \dots, 8$ (where $\Delta_j^{(i)} \in \{0, 1\}$, $j = 0, \dots, 8w - 1$) are the corresponding differentials in the intermediate variables Δ_D for some initially chosen differentials Δ_X and Δ_Y (where at least one of them is a non-zero differential). If the number of bit flips for every single bit is equally distributed then the probabilities that every difference bit $\Delta_j^{(i)}$ is 0 or 1 are given as:

$$Pr(\Delta_{j}^{(i)} = 0 | \Delta_{\mathbf{X}}, \Delta_{\mathbf{Y}}) = 0.5 + \epsilon_{\delta_{\mu}^{(i)}},$$
$$Pr(\Delta_{j}^{(i)} = 1 | \Delta_{\mathbf{X}}, \Delta_{\mathbf{Y}}) = 0.5 - \epsilon_{\delta_{\mu}^{(i)}},$$

where
$$\mu = \left\lfloor \frac{j}{w} \right\rfloor$$
 and $\epsilon_{\delta_{\mu}^{(i)}} \leq 0.5 \left(\frac{w-2}{w}\right)^{\delta_{\mu}^{(i)}}$.

www.ntnu.no

EDON-R is provably resistant against differential cryptanalysis

$\Delta_{\mathbf{X}} = (1, 0, 0, 0, 0, 0, 0, 0) \qquad \qquad \Delta_{\mathbf{Y}} = (0, 0, 0, 0, 0, 0, 0, 0)$				
w = 32	w = 64	w = 32	w = 64	
$\epsilon \leq 2^{-1.09}$	$\epsilon \leq 2^{-1.05}$	$\epsilon \leq 2^{-3.51}$	$\epsilon \leq 2^{-2.24}$	
$\epsilon \leq 2^{-3.61}$	$\epsilon \leq 2^{-2.28}$	$\epsilon \leq 2^{-79.40}$	$\epsilon \leq 2^{-39.57}$	
$\epsilon \leq 2^{-40.20}$	$\epsilon \leq 2^{-20.28}$	$\epsilon \leq 2^{-1768.4}$	$\epsilon \leq 2^{-870.45}$	
$\epsilon \leq 2^{-590.20}$	$\epsilon \leq 2^{-290.85}$	$\epsilon \leq 2^{-35356}$	$\epsilon \leq 2^{-17393}$	

Table 3.8: Upper bounds for the deviations ϵ . The probability that a bit will have a differential $\Delta = 1$ is $0.5 - \epsilon$, and the probability that a bit will have a differential $\Delta = 0$ is $0.5 + \epsilon$. The initial difference vectors are $\Delta_X = (1, 0, 0, 0, 0, 0, 0, 0)$ and $\Delta_Y = (0, 0, 0, 0, 0, 0, 0, 0)$.

EDON-R has double size chaining (pipe) values

- For n=224, 256, chaining value has 512 bits.
- For n=384, 512, chaining value has 1024 bits
- Gives resistance against length-extension attack
- Gives resistance against multi-collision attack

Known attacks on EDON-R

1. Khovratovic and Nikolic

- Free-start collisions in Edon-R
- Using free-start collisions to launch preimage attack with TIME ~ O(2^{2n/3}) and MEMORY ~ O(2^{2n/3}) i.e. the attack has this property:

TIME * MEMORY > $2^{n + n/3}$ >> 2^{n}

2. Klima: EDON-R is **"almost"** as ordinary strengthened MD design.

 That "almost" is in the small additional factor of 2⁶⁵ to the generic multicollision attack that comes from the Merkle-Damgård strengthening.

Known attacks on EDON-R

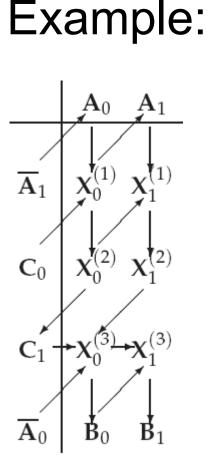
1. Khovratovic and Nikolic

- Free-start collisions in Edon-R
- Using free-start collisions to launch preimage attack with TIME ~ O(2^{2n/3}) and MEMORY ~ O(2^{2n/3}) i.e. the attack has this property: TIME * MEMORY > 2^{n + n/3} >> 2ⁿ
- **2. Klima:** EDON-R is **"almost"** as ordinary strengthened MD design.
 - That "almost" is in the small additional factor of 2⁶⁵ to the generic multicollision attack that comes from the Merkle-Damgård strengthening.

Idea to defend from both attacks <u>without changing anything in the</u> <u>definition of the compression function</u>

Make the Merkle-Damgård strengthening of EDON-R to be 129 bits (instead of the current 65 bit strengthening).

Are there one-way bijections embedded in EDON-R?

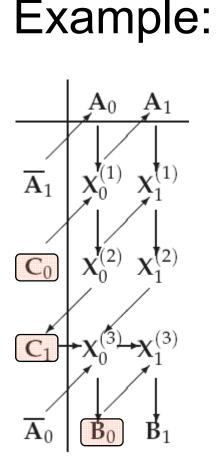


*	0	1	2	3
0	0	1	2	3
1	1	0	3	2
2	2	3	0	1
3	3	2	1	0

www.ntnu.no

49

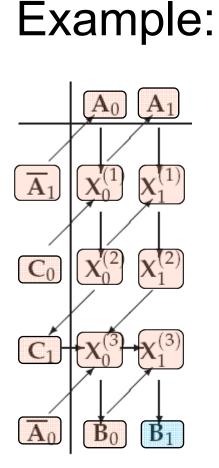
Are there one-way bijections embedded in EDON-R?



*	0	1	2	3
0	0	1	2	3
1	1	0	3	2
2	2	3	0	1
3	3	2	1	0

1. Fix $C_0=1$, $C_1=0$, $B_0=2$,

Are there one-way bijections embedded in **EDON-R**?



*	0	1	2	3
0	0	1	2	3
1	1	0	3	2
2	2	3	0	1
3	3	2	1	0

Fix $C_0 = 1$, $C_1 = 0$, $B_0 = 2$, 2. For every A_0 in {0,1,2,3}, compute: $X_0^{(3)}$, 1. 2. X₀⁽²⁾, 3. $X_0^{(1)}$,

4. A_1^{-} , 5. $X_1^{(1)}$,

6. X₁⁽²⁾,

7. $X_1^{(3)}$,

8.

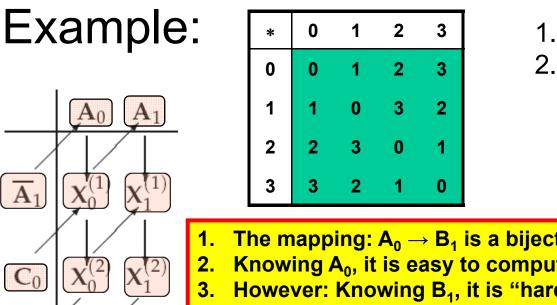
B₁,

www.ntnu.no

51

1.

Are there one-way bijections embedded in **EDON-R**?



Fix
$$C_0=1$$
, $C_1=0$, $B_0=2$,
For every A_0 in {0,1,2,3},
compute:

X₀⁽³⁾, X₀⁽²⁾, X₀⁽¹⁾,

2.

3.

- The mapping: $A_0 \rightarrow B_1$ is a bijection.
- Knowing A_0 , it is easy to compute B_1 .
- However: Knowing B_1 , it is "hard" to find A_0 .
- For tiny quasigroups of order 4 we found that 144 quasigroups. 4. give bijections for every value of C_0 , C_1 and B_0 .

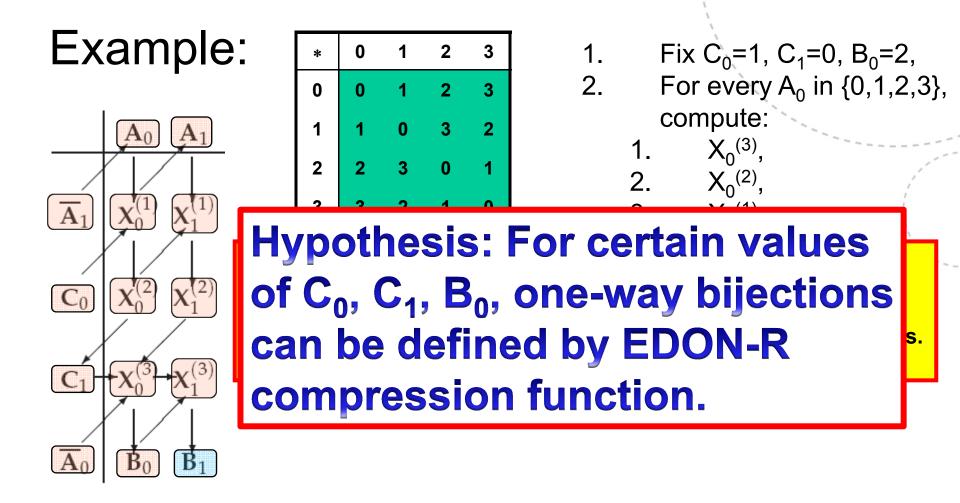
www.ntnu.no

Bo

 \mathbf{B}_1

 \mathbf{C}_0

Are there one-way bijections embedded in EDON-R?



25-28 Feb 2009, Leuven, Belgium, The First SHA-3 Candidate Conference, Cryptographic Hash Function EDON-R

SW/HW performance and memory requirements

Software performances of the optimized C implementation on the NIST reference platform

Intel C++ v11.0.66, in 64-bit mode EDON-R 224/256 achieves **4.54 cycles/byte**

Intel C++ v11.0.66, in 64-bit mode EDON-R 384/512 achieves **2.29 cycles/byte**

HW – gate count

EDON-R 224/256, ~13,000 gates

EDON-R 384/512, ~25,000 gates

Memory requirements

EDON-R 224/256 needs 256 bytes

EDON-R 384/512 needs 512 bytes

8-bit MCU (ATmega16, ATmega406)

EDON-R 224/256, compiled C code produces ~6KB of machine instructions, speed 616 cycles/bytes

EDON-R 384/512, compiled C code produces ~38KB of machine instructions, speed 1857 cycles/bytes

55

Thank you for your attention!

www.ntnu.no