## The MD6 Hash Function

## Ronald L. Rivest MIT CSAIL

First SHA-3 Candidate Confererıce
Leuven, Belgium
February 26, 2009

## MD6 Team

- Dan Bailey
- Sarah Cheng
- Christopher Crutchfield
- Yevgeniy Dodis
- Elliott Fleming
- Asif Khan
- Jayant Krishnamurthy
- Yuncheng Lin
- Leo Reyzin
- Emily Shen
- Jim Sukha
- Eran Tromer
- Yiqun Lisa Yin
- Juniper Networks
- Cilk Arts
- NSF


## Outline

- Design considerations
- Mode of Operation
- Compression Function
- Implementations
- Security


## In response to recent attacks:

- (Differential attacks of Wang et al.)
- MD6 is provably resistant to standard differential attacks
- (SHA-3 should be, too!)

Design Considerations / Responses

## Parallelism has arrived

- Uniprocessors have "hit the wall"
- Clock rates have plateaued
- Hundreds of cores coming soon to a desktop near you!


4



64


256
-SHA-3 should be parallelizable!

## So... MD6 is tree-based

- Bottom-up tree-based mode of operation (like Merkle-tree)
-4-to-1 compression ratio at each node



## Which works very well in parallel

$\bullet$ Height is $\log _{4}$ ( number of nodes )


## For very tiny CPU's MD6

 has...- Alternative sequential mode

-(Fits in 1KB RAM)


## MD6 is keyed

-(For salt, MAC key, etc.)
$\bullet$ Key input $K \leadsto$ of up to 512 bits
-K input to every compression function


## For "good hygiene" MD6 has:

- 1024-bit intermediate (chaining) values; root output chopped to desired length
- Location (level,index) input to each node



## And the root is special!

- Compression function inputs "root bit" (z-bit or "green bit") which is True only at root:


MD6 Compression function

## To prevent side-channel attacks:

- MD6 uses only the following safe operations, on 64-bit words:
- XOR
- AND
- SHIFT by fixed amounts:

$$
\begin{array}{llll}
x & \gg & r \\
x & \ll & \ell
\end{array}
$$

-(All SHA-3 candidates should be required to submit timings for a safe implementation! No table lookups!)

$$
\ll
$$

## MD6 has variable number $r$ of rounds

- A round is 16 steps.
- For output digest size of d bits, default is

$$
r=40+(d / 4)
$$

| Digest <br> size d | 160 | 224 | 256 | 384 | 512 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Rounds <br> $r$ | 80 | 96 | 104 | 136 | 168 |

## Compression function input

- 64 word (512 byte) data block
- message, or up to 4 child chaining values
- 8 word (512 bit) key K
- 1 word location $U=$ (level, index)
- 1 word metadata V :
- Padding amount, key length, z-bit, max tree height, digest output size d, number r of rounds.
- 74 words total


## Prepend Constant + Map + Chop



## Simple compression function:

Input: A[0.. 88] of A[0.. 16r + 88]
for $i=89$ to $16 r+88$ :

$$
x=S_{i} \oplus A[i-17] \oplus A[i-89]
$$

$$
\oplus(A[i-18] \wedge A[i-21])
$$

$$
\oplus(A[i-31] \wedge A[i-67])
$$

$$
x=x \oplus\left(x^{2} \gg r_{i}\right)
$$

$$
A[i]=x \oplus\left(x \ll \ell_{i}\right)
$$

return $A[16 r+73 . .16 r+88]$

## 712 byte shift-reg implementation



## Implementations

## NIST SHA-3 Reference Platforms

|  | 32-bit | 64-bit |
| :---: | :---: | :---: |
| MD6-160 | 54 cpb | 24 cpb |
| MD6-224 | 63 cpb | 29 cpb |
| MD6-256 | 68 cpb | 31 cpb |
| MD6-384 | 87 cpb | 40 cpb |
| MD6-512 | 106 cpb | 48 cpb |
| SHA-512 | 63 cpb | 13 cpb |

## Multicore efficiency > 2GB/sec !



This is real data, courtesy of Cilk Arts!

## Efficiency on a GPU

- Standard \$100
NVidia
GPU
- 375

MB/sec on one card


## Security

## Property-Preservations

- Theorem. If f is collision-resistant, then MD6 ${ }^{\mathrm{f}}$ is collision-resistant.
- Theorem. If f is preimage-resistant, then MD6 ${ }^{f}$ is preimage-resistant.
- Theorem. If $f$ is a FIL-PRF, then MD6 ${ }^{f}$ is a VIL-PRF.
- Theorem. If f is a FIL-MAC and root node effectively uses distinct random key (due to z-bit), then MD6 ${ }^{f}$ is a VIL-MAC.
- (See thesis by Crutchfield.)


## Indifferentiability (Maurer et al. ‘04)

- Variant notion of indistinguishability appropriate when distinguisher has access to inner component (e.g. mode of operation MD6 ${ }^{\dagger}$ / comp. fn f).



## Indifferentiability (I)



- Theorem. The MD6 mode of operation is indifferentiable from a random oracle.
- Proof: Construct simulator for compression function that makes it consistent with any VIL RO and MD6 mode of operation...
- (All SHA-3 candidates should have such a result known for them!)


## Indifferentiability (II)

- Theorem. MD6 compression function $f \pi$ is indifferentiable from a FIL random oracle (with respect to random permutation $\pi$ ).
- Proof: Construct simulator S for $\pi$ and $\pi^{-1}$ that makes it consistent with FIL RO and comp. fn. construction.


## Differential attacks don't work

- Theorem. Any standard differential attack has less chance of finding collision than standard birthday attack.


## Differential attacks (cont.)

- Compare birthday bound BB with our lower bound LB on work for any standard differential attack.
- (Gives adversary fifteen rounds for message modification, etc.)
- These bounds can be improved...

| $d$ | $r$ | $B B$ | LB |
| :---: | :---: | :---: | :---: |
| 160 | 80 | $2^{80}$ | $2^{104}$ |
| 224 | 96 | $2^{112}$ | $2^{130}$ |
| 256 | 104 | $2^{128}$ | $2^{150}$ |
| 384 | 136 | $2^{192}$ | $2^{208}$ |
| 512 | 168 | $2^{256}$ | $2^{260}$ |

## Attacks

- Collision known for 16 rounds [Khazaei]
- Distinguishable from RO for 18 rounds [Aumasson et al.]
- Key recovery for 14 rounds [Aumasson et al.]
- Fixing Q=0, can distinguish up to 33 rounds [Khovratovich]
- Fixing S=0, can distinguish up to 66 rounds [Aumasson et al.]


## Choosing number of rounds

- For digest sizes 224 ... 512, MD6 has 80 ... 168 rounds; these defaults are conservative (intentionally); MD6 may well be secure at 40 rounds (which gives 12 cpb for 64-bit platform).
- Default allows proof of resistance to differential cryptanalysis; these proofs may get better!


## Summary

-MD6 is:

- Arguably secure against known attacks (including differential attacks)
- Relatively simple
- Highly parallelizable
-Reasonably efficient


