
MCSSHA

Secure hash algorithm’s family

based on the regular Shift Registry and
operations with bytes only

Principal Submitter: Mikhail Maslennikov

Revision: January 19, 2009

INTRODUCTION

• Any MCSSHA family algorithm is iterative, one-way hash functions that can
process a message to produce a condensed representation called a
message digest. These algorithms enable the determination of a
message’s integrity: any change to the message will, with a very high
probability, result in a different message digest. This property is useful in
the generation and verification of digital signatures and message
authentication codes, and in the generation of random numbers (bits).
MCSSHA algorithm generate message digest with length 224, 256, 384 or
512 bits.

• In this presentation will be described algorithm MCSSHA-4 from MCSSHA
family.

MCSSHA stages

• Any MCSSHA algorithm can be described in three stages:
preprocessing, pre-hash computation and final hash computation.
Each stage change Shift Registry state (SR-state) and final SR-state is
message digest.

Preprocessing setting initial SR-state to be used in the hash
computation. Initial SR-state not depended from message and
padding not used in MCSSHA algorithms.

The pre-hash computation generates pre-final SR-state from the
message.

The final hash computation generates message digest – final SR-
state - from pre-final SR-state.

CRYPTOGRAPHY SCHEME

• Shift Registry cryptography scheme.

where N – SR length (in bytes);

π - substitution from symmetric group S256;
x1, x2, … xL – input sequence in bytes, i.e from Z/256.
Shift-registry elements are bytes, i.e. elements from Z/256,
shift-registry state (SR state) is vector (yi,yi+1,…,yi+N-1), where any value yi,yi+1, …, yi+N-1 is byte, i.e. element from
Z/256.
If (yi,yi+1, …, yi+N-1) - SR state before i-step of work, than after i-step of work it will be
(yi+1,yi+2, …, yi+N), where

yi+N = π(yi – yi+1 – yi+N-4 + yi+N-1) + xi

Shift Registry parameters

• Let’s N – Shift Registry (SR) length in bytes. SR parameters are:

– SR state - N bytes: (y0,y1, …,yN-1) ;

– SR points – 4 values from 0 to N-1: (p1,p2,p3,p4) ;

– SR substitution – group of 256 bytes where all values are different.
This is 1 – 1 transformation π for bytes values 0,1,…,255: π(y) -
replacement byte y on substitution π.

Shift Registry Step
• SR step is transformation of the SR state and SR points during one step.

Let’s:
Y=(y0,y1, …,yN-1) – SR state before step;
P=(p1,p2,p3,p4) – SR points before step;
p - changeable position: p= (p4+1)(mod N);
x – input byte for step.

Then SR state F1(Y,P,x) and SR points F2(P) after step will be:

F1(Y,P,x) = (y0,y1, …,yp-1,z,yp+1,...,yN-1) 0 < p < N-1
F1(Y,P,x) = (z,y1,y2, …,yN-1) p = 0
F1(Y,P,x) = (y0,y1, …,yN-2,z) p = N-1

where

z = π(yp1 – yp2 – yp3 + yp4) + x

F2(P) = ((p1+1)(mod N), (p2+1)(mod N), (p3+1)(mod N), (p4+1)(mod N))

Logarithmic substitution π

• For creation of necessary cryptographic reliability of transformation, substitution should provide “avalanche
effect” duplication of distinctions of the text of the message. Such "avalanche effect " is defined by a matrix of
transitive probabilities nonzero bigram P(π), i. e. a matrix of the size 255х255 in which on crossing of i-th row and
j-th column there is pij - number of solutions of the system:

x – y = i

π(x) - π(y) = j

in Z/256 for each i,j ≠0. The "avalanche effect " that will be better, than less zero the matrix P(π) will contain. It is
easy to prove, that the number of zero in this matrix cannot be less, than 253.

The example of the substitutions possessing minimally possible number of zero in a matrix P(π) is known – this is
logarithmic substitutions, i.e.

π(x) = logθ(θx+rρ), for θx+r  ρ ≠ 0,

π(x) = logθ ρ, for θx+r  ρ = 0

Here:

θ – primitive element of the GF(257) field,

ρ – non-zero element of the GF(257) field,

r – any element of the Z/256 ring.

Here two types of operations:

“+” operations in Z/256,

““ operations in GF(257).

• Substitution π in MCSSHA algorithms is logarithmic substitution with θ = 3, ρ = 1, r=0.

Shift Registry Length
• In MCSSHA-4 algorithm there are different SR length for preprocessing -

pre-hash computation, and final hash computation.

Hash length (bits) SR length (bytes) for
preprocessing and pre-hash

computation

SR length (bytes) for final hash
computation

224 64 28

256 64 32

384 128 48

512 128 64

Initial Shift Registry Parameters
• If N – Shift Registry length, then initial SR parameters will be:

Initial SR state are

0 1 2 … N-1

Initial SR points are:

P1 = 0
P2 = 1
P3 = N-4
P4 = N-1

PRE-HASH COMPUTATION

• Pre-hash computation prepare SR state that depended from all message’s bits
except remain bits. For each byte mi from message M pre-hash computation
perform two types of steps:

Type 1: SR step with input byte mi.

Type 2: SR step with input byte 0 (delay).

Any MCSSHA algorithms during pre-hash computation perform one step type
1 (with input message’s byte) and some steps type 2 (delay). In MCSSHA-4
value of delay (empty steps after each step with message’s byte) can be set as
parameter.

For calculating message digest value of delay must be 2 or above!

Default value for delay in MCSSHA-4 is 2.

Starting parameters for pre-hash computation are initial SR parameters.

FINAL HASH COMPUTATION

• In MCSSHA-4 starting parameters for final hash
computation are initial SR parameters and input sequence
is double SR state after pre-hash computation. In final hash
computation delay not used. SR state after final hash
computation is message digest.

ESTIMATED COMPUTATIONAL EFFICIENCY AND
MEMORY REQUIREMENTS

• During work of algorithm all operations are carried out extremely with
bytes. Any operations with words - group of either 32 bits (4 bytes) or 64
bits (8 bytes) – not used. So algorithm can be realized on any kind of
processors: 8-bits, 16-bits, 32-bits and 64-bits. Efficiency depended from
processor’s architecture.

Memory Requirement

• Memory requirement for MCSSHA-4 algorithm.

256 bytes for SR substitution (global variable);

Hash Structure – 143 bytes;
typedef struct MCSSHA4state_st

{
DataLength hashbitlen; // (8 bytes)
BitSequence x[6]; // (6 bytes; SR-points, remain byte and its length)
BitSequence data[128]; // (128 bytes; SR-state for pre-hash computation)
BitSequence delay; // (1 byte; delay)
} MCSSHA4_CTX,hashState;

For final hash computation necessary additional 64 bytes for SR state and 256
bytes for input sequence (for optimize speed).

Total memory requirement: 256+143+64+256 = 719 bytes.

This memory requirements same for 8-bits, 16-bits, 32-bits and 64-bits processors.

Comparisons speed with SHA-2 from OpenSSL

• Speed (32-bits OS) MS Windows Vista OS, 32-bits, Genuine Intel Core 2 CPU T2500 @ 2.00 GHz 2.00 GHz, time in sec.

• Speed (64-bits OS) MS Windows Server 2008, 64-bits, AMD Athlon 64 Processor 3200+ 2.00 GHz, time in sec.

Algorithm Number of
tests

Text
length

224 256 384 512

SHA 1000000 1 1,743 1,727 6,301 6,422

MCSSHA-4 (delay = 2) 1000000 1 1,765 1,534 3,266 2,917

MCSSHA-4 (delay = 3) 1000000 1 1,762 1,479 3,298 2,894

SHA 1000 100000 2,685 2,639 4,804 4,726

MCSSHA-4 (delay = 2) 1000 100000 2,254 2,26 2,239 2,227

MCSSHA-4 (delay = 3) 1000 100000 3,032 3,014 2,986 3,002

Algorithm Number of
tests

Text
length

224 256 384 512

SHA 1000000 1 1,422 1,422 4,75 4,766

MCSSHA-4 (delay = 2) 1000000 1 2,156 1,954 4,109 3,797

MCSSHA-4 (delay = 3) 1000000 1 2,188 1,969 4,172 3,812

SHA 1000 100000 2,422 2,407 3,563 3,562

MCSSHA-4 (delay = 2) 1000 100000 3,344 3,344 3,344 3,359

MCSSHA-4 (delay = 3) 1000 100000 4,766 4,766 4,766 4,781

Speed vs Security
• Second-preimage attack – attempt to find same SR states during pre-hash computation.

• Let’s assume that we try to find two different messages M1 and M2, that some SR states are same,
i.e.

(yt,yt+1,…,yt+N-1) = (zt,zt+1,…,zt+N-1)
for some integer t.

• There are 3 zones for intermediate values:

• Red Zone – values from t to t+N-1 (final SR states);

• Yellow Zone – values from t-N to t-1 (SR state for N steps before final);

• Green Zone – values less, than t-N (all SR states for N+1 and above steps before final).

• Byte from message M will be from some zone, if this byte present in some intermediate value from
this zone as linear variable.

• Bytes from red zone provide concurrence of bytes in final SR states with probability 1.

• Bytes from yellow zone provide some relations, that allow to find same bytes in final SR states with
high probability under some conditions

• Bytes from green zone provide concurrence of bytes in final SR states with probability
approximately 2

-8
.

• Values of bytes from message M in each zone depended from MCSSHA-4 delay.

• Safety will be that above, than less bytes will be in red and yellow zones.

• Ideally, in red and yellow zones must be as maximum N-H bytes, where H – hash length in bytes.

Speed vs Security
• Second-preimage attack, using red zone only

Hash
length

MCSSHA-3 NIST requirements MCSSHA-4 (delay=2) MCSSHA-4 (delay=3)

Second
preimage

Collision Bytes Second
preimage

Collision Bytes Second
preimage

Collision Bytes Second
preimage

Collision Bytes

224 2168 284 21 2224 2112 28 2336 2168 42 2384 2192 48

256 2192 296 24 2256 2128 32 2336 2168 42 2384 2192 48

384 2288 2144 36 2384 2192 48 2680 2340 85 2768 2384 96

512 2384 2192 48 2512 2256 64 2680 2340 85 2768 2384 96

Speed vs Security
• Number of bytes in red and yellow zones

SR
length

Delay Red Zone Yellow Zone Second preimage Q

64 0 64 64 Q=1

64 1 32 32 1<Q<2256

64 2 22 21 2168<Q<2336

64 3 16 16 2256<Q<2384

128 0 128 128 Q=1

128 1 64 64 1<Q<2512

128 2 43 42 2344<Q<2680

128 3 32 32 2512<Q<2768

Speed vs Security
• Final conclusion
• For calculating message digest in MCSSHA-4 algorithm values of

delay must be 2 or above.
• For guarantee security level values of delay must be 3 or above.

