
The Dynamic SHA2
Hash Function

Xu ZiJie
xuzijiewz@gmail.com

Outline

1. Introduction
2. Design considerations / Responses
3. Dynamic SHA2
4. Implementations
5. Security Analysis
6. Improvements to resist known attack

1. Introduction

Why design Dynamic SHA2?

Biham and Shamir discovere Differential cryptanalysis
(1990). Considers step-by-step ``difference’’ (XOR)
between two computations…

Wang used Differential cryptanalysis to break MD5；

NIST SHA-3 competition
Input: 0 to 264-1 bits, size not known in
advance
Output sizes 224, 256, 384, 512 bits
Preimage resistance.
Second preimage resistance.
Collision-resistance.
Pseudorandomness, simplicity, flexibility,
speedy, …

2. Design Considerations / Responses

How to resist Differential analysis?
If the difference of working variables between two
computations is very complex, it will be hard to analyse
difference. There are two ways that we can use to resist
differential analysis :

More rounds or steps. After more rounds, the difference will
be more complex. It is harder to control the difference of
working variables.

Use the functions that need huge ANFs to describe. And it
need huge ANFs to describe Data-Depend functions. So
Dynamic SHA use Data-Depend functions to resist
differential analysis.

What is new in Dynamic SHA2?

Dynamic SHA2 has data-depend function R, G and data-
depend rotate operation. When input different message,
the different calculation will be done. The (one block)
message value space is divided into 2256 (resp. 2512) parts.
There is one message value in a part.

The ANFs that describe function R, G, data-depend rotate
operation and function R1 has up to 2261(resp. 2520),9,243
(resp.729), 2229(resp. 2454) items. This will make the
difference of working variables very complex.

3. Dynamic SHA2

3.2.2. Operations
Dynamic SHA2-224/256 operations on 32-bit words.
Dynamic SHA2-384/512 operations on 64-bit words.
The following operations:

+ modulo 232 or modulo 264 .
∧ AND.

∨ OR.

⊕ XOR.

﹁ Negation.
SHRn(x) x>>n shift right operation.
SHLn(x) x<<n shift left operation.
ROTRn(x) x>>>n rotate left (circular left shift) operation.

3.1.1. Initial Hash Value
3.1 Functions and Constants

Dynamic SHA2-224 Dynamic SHA2-256
H0

(0)=0xc1059ed8,
H1

(0)=0x367cd507,
H2

(0)=0x3070dd17,
H3

(0)=0xf70e5939,
H4

(0)=0xffc00b31,
H5

(0)=0x68581511,
H6

(0)=0x64f98fa7,
H7

(0)=0xbefa4fa4,

H0
(0)=0x6a09e667,

H1
(0)=0xbb67ae85,

H2
(0)=0x3c6ef372,

H3
(0)=0xa54ff53a,

H4
(0)=0x510e527f,

H5
(0)=0x9b05688c,

H6
(0)=0x1f83d9ab,

H7
(0)=0x5be0cd19,

Table 1. Initial Hash Value of Dynamic SHA2-224/256

Table 2. Initial Hash Value of Dynamic SHA2-384/512

Dynamic SHA2-384 Dynamic SHA2-512
H0

(0)=0xcbbb9d5dc1059ed8,
H1

(0)=0x629a292a367cd507,
H2

(0)=0x9159015a3070dd17,
H3

(0)=0x152fecd8f70e5939,
H4

(0)=0x67332667ffc00b31,
H5

(0)=0x8eb44a8768581511,
H6

(0)=0xdb0c2e0d64f98fa7,
H7

(0)=0x47b5481dbefa4fa4,

H0
(0)=0x6a09e667f3bcc908,

H1
(0)=0xbb67ae8584caa73b,

H2
(0)=0x3c6ef372fe94f82b,

H3
(0)=0xa54ff53a5f1d36f1,

H4
(0)=0x510e527fade682d1,

H5
(0)=0x9b05688c2b3e6c1f,

H6
(0)=0x1f83d9abfb41bd6b,

H7
(0)=0x5be0cd19137e2179,

3.1.2. Function G

Logical function G operates on three words a,b,c and a
2-bit word t, and produces a word y as output.

⎪
⎪
⎩

⎪
⎪
⎨

⎧

⊕∨¬∨¬∨=
⊕∧∨∨¬=

⊕=
⊕⊕=

=

=

=

=

=

)))((()(),,(
))(())((),,(

)^(),,(
),,(

11

10

01

00

cbacacbaG
cbacacbaG

cbacbaG
cbacbaG

y

t

t

t

t

1001

10101011

01011

0101

ttcb6a+ttc3a-
ttb4a-tcb6a-tcb6a-tt2a+tc2b+tc4a+

tc2a+tb3a+tb3a+cb4a+t2c-tb-
t2b-t2a-ta-c2b-c2a-b2a-t+c+b+a

iiiii

iiiiiiiiiiiii

iiiiiiiiiii

iiiiiiiiiiiiiy =

• Ps: Claude Carlet had recounted NNF in “Boolean Functions for
Cryptography and Error Correcting Codes”[2008]. NNF and ANF is
equivalent, NNF and ANF can be transformed each other.

It can describe function G with Algebraic Normal Form(ANF) and
Numerical Normal Form (NNF) as follow, let t=(t1,t0):

0110101 ttcatbatbatbtatcba iiiiiiiiiiiiy ⊕⊕⊕⊕⊕⊕⊕⊕=

yi,ai,bi,ci is i-th bit of y,a,b,c.

3.1.3. Function R1
Function R1 operates on eight words a,b,c,d,e,f,g,h, produces a
word y as output.

Dynamic SHA2-224/256 t=(((((a+b)⊕c)+d)⊕e)+f)⊕g
t=(SHR17(t)⊕t)∧(217-1)
t=(SHR10(t)⊕t)∧(210-1)
t=(SHR5(t)⊕t)∧31
y=ROTRt(h)

Dynamic SHA2-384/512 t=(((((a+b)⊕c)+d)⊕e)+f)⊕g
t=(SHR36(t)⊕t)∧(236-1)
t=(SHR18(t)⊕t)∧(218-1)
t=(SHR12(t)⊕t)∧(212-1)
t=(SHR6(t)⊕t)∧63
y=ROTRt(h)

The ANFs that describe function R have up to 2229(resp.
2454) items. This will make the difference of output very
complex.

The profit/cost of function R1 is very high.

3.1.4. Function R
Function R operates on eight words a,b,c,d,e,f,g,h and a
5-bit(resp 6-bit) word t, produces a word y as output.

y= ROTRt(((((((a⊕b)+c)⊕d)+e)⊕f)+g)⊕h)

The ANFs that describe function R have up to 2261(resp.
2520) items. This will make the difference of output very
complex.

The profit/cost of function R is very high.

3.1.5. Function COMP

Function COMP operates on eight working variables
a,b,c,d,e,f,g,h, eight message word x0,x1,x2,x3,x4,x5,x6,x7

and an integer t.

R

a b c d e f g h

a b c d e f g h

Xt^31

>>>((xt>>5)^31)

+ X(t+3)^7

>>>((xt>>10)^31)

G

+ X(t+2)^7

+ X(t+1)^7

(xt>>30)^3

Fig 1.a. Function COMP for Dynamic SHA2-224/256

R

a b c d e f g h

a b c d e f g h

(xt>>15)^31

>>>((xt>>20)^31)

+ X(t+6)^7

>>>((xt>>25)^31)
G

+ X(t+5)^7

+ X(t+4)^7

+ X(t+7)^7+ Xt

t^3

Fig 1.b. Function COMP for Dynamic SHA2-224/256

R

a b c d e f g h

a b c d e f g h

Xt^63

>>>((xt>>6)^63)

+X(t+3)^7

>>>((xt>>18)^63)

G

+ X(t+2)^7

+ X(t+1)^7

(xt>>62)^3

Fig 2.a. Function COMP for Dynamic SHA2-384/512

>>>((xt>>12)^63)

>>>((xt>>24)^63)

R

a b c d e f g h

a b c d e f g h

(xt>>30)^63

>>>((xt>>36)^63)

+X(t+6)^7

>>>((xt>>48)^63)
G

+ X(t+5)^7

+ X(t+4)^7

+ X(t+7)^7+Xt

Fig 2.b. Function COMP for Dynamic SHA2-384/512

(xt>>60)^3 >>>((xt>>42)^63)>>>((xt>>54)^63)

3.2 Preprocessing
At first, the message will be paded and divided into some
blocks. These blocks will be inputed compress function
HDSHA2 in order. The output of the last compution will be
truncated as 224/256/384/512 bits.

Message 100…0

K bits
1~512/1024 bits Message

bit-length

M0 M1

512/1024
bits

Mi ML-1

512/1024
bits

512/1024
bits

512/1024
bits

IV CV1

512/1024

256/512 256/512

512/1024

CVi

256/512

512/1024

HDSHA2HDSHA2 HDSHA2

512/1024

HDSHA2

CVL-1

Fig 3. Preprocessing of Dynamic SHA2

HV

output

… …

… …

3.2.1 Compression function

16 words (512/1024 bits) data block
8 words (256/512 bits) chaining values

Compression function inputs

8 words (256/512 bits) chaining values
Compression function outputs

Compression function include three iterative
parts.

CVq
Mq

a b c d e f g h

first iterative part: COMP,W[0,…,15] t=0, 1 steps

second iterative part: R1,W[0,…,15] 9 steps

+ + + + + + + +

512/1024 256/512

256/512

32/64

Fig 4. Compression function of Dynamic SHA2
CVq+1

third iterative part: COMP,W[0,…,15] t=1,…7, 7 steps

a b c d e f g h

a b c d e f g h
One step compute of first/third iterative part

Fig 5. One step compute of first/third iterative parts of of Dynamic SHA2

a b c d e f g h

COMP

COMP

t

W[0,…,7]

t

W[8,…,15]

a b c d e f g h

R1

a b c d e f g h
One step compute of second iterative part

Fig 6. One step compute of second iterative parts of of Dynamic SHA2

Input: H0
i, H1

i, H2
i, H3

i, H4
i, H5

i, H6
i, H7

i,w0,…,w15

a=H0
i; b=H1

i; c=H2
i; d=H3

i; e=H4
i; f=H5

i; g=H6
i; h=H7

i;
COMP(a,b,c,d,e,f,g,h,w0,…,w7,0);
COMP(a,b,c,d,e,f,g,h,w8,…,w15,0);
for i =0 to 8
{

T=R1(a,b,c,d,e,f,g,h);
h=g; g=f; f=e; e=d; c=b; b=a; a=T;

}
for t=1 to 7
{

COMP(a,b,c,d,e,f,g,h,w0,…,w7,t);
COMP(a,b,c,d,e,f,g,h,w8,…,w15,t);

}
return H0

i=H0
i+a; H1

i=H1
i+b; H2

i=H2
i+c; H3

i=H3
i+d;

H4
i=H4

i+e; H5
i=H5

i+f; H6
i=H6

i+g; H7
i=H7

i+h;

Compression function code:

4. Implementations

Dynamic SHA had been implemented on follow platform:

•Xilinx

•Keil uVision, the processor is Intel 80/87c58

•Wintel personal computer, with an Intel Core 2 Duo Processor,
2.4GHz clock speed, 2GB RAM, running Windows Vista Ultimate 32-
bit (x86) Edition.
The compiler is: The ANSI C compiler in the Microsoft Visual Studio
2005 Professional Edition.

•Wintel personal computer, with an Intel Core 2 Duo Processor,
2.4GHz clock speed, 2GB RAM, running Windows Vista Ultimate 64-
bit (x64) Edition.
The compiler is: The ANSI C compiler in the Microsoft Visual Studio
2005 Professional Edition.

5. Security Analysis

Birthday attack resistance

Dynamic SHA2-224 2-112

Dynamic SHA2-256 2-128

Dynamic SHA2-384 2-192

Dynamic SHA2-512 2-256

Birthday attack resistance of Dynamic SHA2
as follow:

When Dynamic SHA2 is attacked by
differential attacks, what will happen?

The ANFs that describe function R1,R,G,data-depend rotate
operation have up to 2229 (resp. 2454),2261 (resp. 2520), 9, 243
(resp.729) items. The difference of working variables will be
very complex.

If attacker guess the parameter in function R,G, data-
depend rotate operation to reduce complexity, this will
divide the message space to 2512 (resp. 21024) parts. There
is one message value in a part. In different part, the
calculation is different. It can not find the collision in a part.

When Dynamic SHA2 is attacked by
extension attack and multicollision attack,
what will happen?
In extension attack and multicollision attack, it need find
collision of hash algorithm. The probability of find
collision of Dynamic SHA2 is 2-n/2, where n is output
sizes in bits.

The hash value of Dynamic SHA2-224/384 is truncated.
In keyed hash, , it can not get all bits of last compute. It
is hard to be attacked by extension attack.

There are some ways that resist length extension attack
and multicollision attack. HMAC can resist length
extension attack .

6. Improvements to resist known attack

There are some ways to attack hash algorithm.
People are interested in length extension attack
and multicollision attack. HMAC can resist length
extension attack. There are some ways can stop
these attack.

Let H(.) is hash function. M is message, and Mi are
message block after padded, where 0≤i ≤ L-1.

6.1. Improvement one

Where C is constant . hv is hash value. (1) can stop
extension attack and multicollision attack.

If H is keyd hash function, it is hard to get H(M), then it is
hard to attack (1) by extension attack.

When the collision of H(M) is found, H(C⊕M0⊕…⊕ML-1)
maybe different. It is more harder to find multicollision of (1).

)1()())...()((10 MHMMCHMHhv L +⊕⊕⊕⊕= −

Let h(.) is compression function. M is message, and Mi are
message block after padded, CVi is chaining value,

where 1≤i ≤ L-1. If the last chaining value is
handled as fig 6 show:

6.2. Improvement two

M
0

M1 ML-2 ML-1

IV h CV1 hh
CVL-2

h
CVL-1 HV

output… ⊕

M0⊕…⊕ML-1

512/1024

256/512 256/512

Fig 7. Improvement two

In improvement two as fig 7 show.

If H is keyd hash function, it is hard to get chaining value
CVL-1 and CVL-2. And when attacker try to pad some bits,
chaining value CVL-1 maybe change. It is hard to attacked
by length extension attack.

When it can find a different block data Mi that do not change
chaining value CVL-2, chaining value CVL-1 maybe different.
It is hard to find multicollision by replace one block data Mi.

THANK YOU
END

January 12 . 2009

