
The SANDstorm Hashing FunctionThe SANDstorm Hashing Function

Rich Schroeppel, Mark Torgerson, Tim Draelos, Hilarie Orman*,

Mike Collins, Nathan Dautenhahn, Andrea Walker, Sean Malone

Sandia National Laboratories

*Purple Streak Inc

February 2009

Sandia is a multiprogram laboratory operated by Sandia Corporation,
a Lockheed Martin Company, for the United States Department of Energy’s
National Nuclear Security Administration under Contract DE-AC04-94AL85000.

Hash Basics

Hash Basics

•	 A Hash Function takes as input an arbitrary string of bits,
processes it, and outputs a fixed size digest.

•	 Used for data integrity checks
•	 Authenticity of data

• Generic Hashes include

–	 Checksums
–	 CRCs
– Cryptographic Hashes

Arbitrary string of bits

Hash Function

Fixed size

Cryptographic Hash BasicsCryptographic Hash Basics

•	 A Cryptographic Hashing Function is used for security and
has additional properties
–	 Collision Resistance

– Hard to find M and M’ so that H(M)=H(M’)
–	 Second Preimage Resistance

– Given M and H(M) it is hard to find M’ so that H(M)=H(M’)
–	 Preimage Resistance

– Given h it is hard to find M so that H(M)=h
•	 Resistance is based on computational difficulty which is

limited by size of output.

Cryptographic Hash BasicsCryptographic Hash Basics

• Given output size n, security goals are

– Collision requires 2n/2 operations
– Second Preimage requires 2n operations
– Preimage requires 2n operations

• MD5 broken
– Collisions are routine

• SHA-1 theoretically broken
– Too small for high security

• SHA-2 family is a MD5/SHA-1 derivative

Common Hash Output size
MD5 128
SHA-1 160
SHA-2 224, 256, 384, 512
SANDstorm 224, 256, 384, 512

Government and crypto community need an alternative to SHA-2

SANDstorm Basic FeaturesSANDstorm Basic Features

• Four Members of the Family
• Plug and play with SHA-2 Family

• Truncated Tree Based Mode
• Highly Modified Merkle-Damgard Chaining

• Simple Padding
• Finishing Step

Bits Word Size Block Size Message Size

SANDstorm-224 64 512 2128

SANDstorm-256 64 512 2128

SANDstorm-384 128 1024 2128

SANDstorm-512 128 1024 2128

Strength First with Defense in Depth

Many Desirable Functional and Security Features

SANDstorm Special FeaturesSANDstorm Special Features

• Secure Chaining—4x output size state variables
– Chaining method is Provably Secure against “long message” attacks
– Resistance to multicollisions, herding etc.
–	 Tree forwarding uses 2x size state variables.

Factor of 10K speed-up possible
• Serious Commitment to Parallelism

Flexibility in where to apply resources
– Mode is parallelizable/pipelineable
– Chaining method is parallelizable/pipelineable
– Compression function is parallelizable/pipelineable

• Friendly to small changes in large messages
– Precomputation is an option

• Finishing step prevents length extension attacks

SANDstorm Mode

SANDstorm Mode

•	 Initial & Final compression steps
•	 0 - 3 intermediate levels, of 10, 100, and unbounded number of blocks.

– Early Out when intermediate levels not needed
– A one block message will call Compress only twice

Level 0	 1 Block Initialization Step

•	 Factor of 1000 speed up
Level 1•	 One mode

•	 11% serial overhead

10 Blocks 10 Blocks 10 Blocks 10 Blocks

100 Blocks 100 Blocks

Number of blocks/1000

… … …

… …… Level 2•	 First block permeates
subsequent compressions

Level 3

•	 Double-sized state
passed to next level

Level 4	 1 Block Finishing Step

Substantial Parallelism without the Latency and Data blow up of a full tree

SANDstorm ChainingSANDstorm Chaining

• 5 rounds, 256-bit state (512 for SS-384/512)
• Provably Secure against long message attacks

c0 c0• 4x Output State
– Thwart herding
– Thwart multicollisions

• Pipeline Friendly
• Reuses SHA-2 constants

R0

R1

R2

R3

R4

M1

R0

R1

R2

R3

R4

M1

M1

M1

M1

M2

M2

M2

M2

M2

There is a lot of mixing distance between the

first and the second message input

Adjacent message inputs collide iff messages collide

SANDstorm DetailsSANDstorm Details

• Message Schedule is ~60% of the work
– Processed independently of round function
– Brought in all at once

• Round Functions can be pipelined
• Arithmetic

– Uses Multiply
– Superb Mixing
– Kills Differentials

– Largely parallelizable Ri+1

– Minor AES sbox usage
– Interleaving arithmetic & logic ops

• Tunable Security Parameter Defense in depth

Ri

Message Schedule

Message contribution is brought in all at once

SANDstorm ArithmeticSANDstorm Arithmetic

• Z => X*232 + Y

• F(Z) = X2 + Y2 mod 264

• G(Z) = X 2 + Y2 + ((X+a)(Y+b)<<<32) mod 264

Multiplication has a lot of mixing per unit work

• Ch(A,B,C) = (A&B) ⊕ (¬A&C) (choose)
• SB(Z) = Z with low order byte mapped with the AES sbox
• BitMix shuffles bits between 4 words

Defense in Depth

SANDstorm Bit MixSANDstorm Bit Mix

• J8 = 8888888888888888
• J4 = 4444444444444444
• J2 = 2222222222222222
• J1 = 1111111111111111

• If A, B, C, D are all 64 bits in length, then
(A’, B’, C’, D’) = BitMix(A, B, C, D), where

A’ = (J8 & A) ⊕ (J4 & B) ⊕ (J2 & C) ⊕ (J1 & D)
B’ = (J8 & B) ⊕ (J4 & C) ⊕ (J2 & D) ⊕ (J1 & A)
C’ = (J8 & C) ⊕ (J4 & D) ⊕ (J2 & A) ⊕ (J1 & B)
D’ = (J8 & D) ⊕ (J4 & A) ⊕ (J2 & B) ⊕ (J1 & C)

SANDstorm Round FunctionSANDstorm Round Function

•	 For i from 0 to 3
Wi = SB (Wi + F(Wi-1) + Ch(Wi-1,Wi-2,Wi-3) + A(r,i) mod 264) <<<25

• BitMix(W0, W1, W2, W3)

W0	 W1 W2 W3• A(r,i) are the SHA constants
Unbalanced Feistel ---Arithmetic & Logic Mixing

Each byte of output is a function

of each and every bit of input
W0 W1 W2 W3

BitMix

About 40% the work of compress is in the round function

SANDstorm Message ScheduleSANDstorm Message Schedule

•	 For i from 8 to 32
di = SB(di-8 + G(di-1)+Ch(di-1,di-2,di-3) + di-4 + Bi mod 264) <<< 27

• Every bit of di+12 is a function of every bit of di…di+7

– A couple weak relationships of di+3

– Full mix after 5 steps	 Multiplication kills differentials

– 25 steps

MS(0,D) = BitMix(ROTL19 (d0) ⊕ d4, ROTL19 (d1) ⊕ d5, ROTL19 (d2) ⊕ d6, ROTL19 (d3) ⊕ d7)

MS(1,D) = (d14, d15, d16, d17)

MS(2,D) = (d19, d20, d21, d22) Each entering bit is a function of ALL schedule bits of all 8 words 5 steps back

MS(3,D) = (d24, d25, d26, d27)

MS(4,D) = (d29, d30, d31, d32)

SANDstorm PerformanceSANDstorm Performance

• Cost, in cycles/byte for one compression operation
– The assembly version just makes a 32X32Æ64bit multiply stay that way
– No optimization effort put into the -384,-512 implementations

32-bit Machine 64-bit Machine

Optimized Assembly Optimized

SANDstorm -224, -256 71.9 62.5 36.6

SHA-1 18.8 14.5

SHA-256 40.65 39.1

SANDstorm-384, -512 297 95

Reasonably fast serial. Lots of opportunity to parallelize and/or pipeline

SANDstorm Feature Summary

SANDstorm Feature Summary

64-bit design (128-bit for SS-384/512)
512-bit blocksize (1024-bit for SS-384/512)
Brick construction – ideally, deleting any single feature is still secure
Multiplication is the best mixer

fewer rounds, kills differentials, but slow C code
Reuse SHA-2 round constants; minor use of AES sbox
Interleave arithmetic & bit mixing operations
Don’t dribble in the message – smash it in
60% of the work done in the message schedule -- beefed up, ultra-nonlinear
Serious commitment to parallelism: no separate mode
One tunable security parameter
Ultra-wide pipe: 4x the output size – more intimate block chaining
Double-sized state forwarded to next tree level
Ubiquitous block numbers
Extra compression step for final output

SANDstorm ParallelismSANDstorm Parallelism

One hash function, with minimum options. (Output size, TSP.)

No separate mode for parallelism.

The mode allows parallelism up to 1100x.

The message schedule can be precomputed (60% of the work).

The round chaining can be pipelined.

Within a round, the arithmetic can be largely parallel.

If the first block is fixed:

A message can be assembled from fixed and variable pieces, and most of the
hash for the fixed pieces can be precomputed. Example: A movie plus a
variable wrapper.

Why Multiplication?Why Multiplication?

•	 Multiplication is far and away the best mixer
•	 Multiplication kills differentials
•	 Xor: Each bit depends* linearly on two bits
•	 Add: Each bit depends linearly on two bits, and non-linearly on two bits
•	 32*32 -> 64 Multiply: Each bit on average depends non-linearly on 32 bits
•	 Cost is only about 3 clocks
•	 Every operation has substantial overhead gathering inputs and storing

results. It makes sense to do as much mixing work as possible per operation
•	 Another hardware parallelism opportunity
* 	 depends: >= 20% chance that a bit flip changes the output

•	 Drawback: Hard to express efficiently in C language.

The Future is ParallelThe Future is Parallel

•	 Moore’s law is moving sideways
•	 Clock speeds have stalled
•	 Most submissions don’t have a parallel mode, and should be

considered incomplete
•	 Separate serial and parallel standards is not a standard
•	 SANDstorm has a details-filled-in tree specification, including double-

sized state forwarding between levels

Simplicity is DangerousSimplicity is Dangerous

• Defense in depth
• Let’s do this once, and get it over with
• We’ve put our multiplication advantage into better mixing

QUESTIONS?

