Spectral Hash

Çetin Kaya Koç
koc@cs.ucsb.edu
http://cs.ucsb.edu/~koc/shash
College of Creative Studies \&
Department of Computer Science
University of California Santa Barbara

Team:
Gökay Saldamlı, Cevahir Demirkıran, Megan Maguire, Carl Minden, Jacob Topper, Alex Troesch, Cody Walker

Spectral Hash Fundamentals

- Hashing methodology: Merkle-Damgard construction
- Organization of data: 512-bit data is broken into 128 4-bit blocks, and then, it is treated as a 3 -d array of dimension $4 \times 4 \times 8$ with 4 -bit entries
- Mathematical structures: Finite fields $\operatorname{GF}(17)$ and $G F\left(2^{4}\right)$, 3 -d Discrete Fourier transform of length 4 and 8 over the finite field $\operatorname{GF}(17)$
- Operations: 3-d DFTs, Swaps, Rubic-type rotations, Affine transformations (similar to the AES S-box), Data controlled permutations, Nonlinear transformations
- Platforms: Highly suitable for hardware (FPGA \& ASIC), but, optimized software implementations are also possible

Merkle-Damgard Construction

Message
Padding

Initial Steps: Data to S-Prism

- Input is processed in 512 -bit chunks m_{i} for $i=0,1, \ldots$ with $\left|m_{i}\right|=512$
- Take the 512-bit data chunk m_{i} in step i, break it into a linear array of 128 4-bit blocks: s_{n} for $n=0,1, \ldots, 127$ with $\left|s_{n}\right|=4$
- Construct a $4 \times 4 \times 8$ array: s-prism, such that

$$
S_{i j k}=s_{32 i+8 j+k}
$$

Given s_{n}, we can also compute the 3-d index set as

$$
\begin{aligned}
i & =\lfloor n / 32\rfloor(\bmod 4) \\
j & =\lfloor n / 8\rfloor(\bmod 4) \\
k & =n(\bmod 8)
\end{aligned}
$$

S-Prism

i

P-Prism and H-Prism

- We also have two additional prisms of the same shape: P and H
- P-prism is initially configured as

$$
P_{i j k}=32 i+8 j+k
$$

for $i, j=0,1,2,3$ and $k=0,1, \ldots, 7$. It holds a permutation of the 7 -bit index set: $\{0,1,2, \ldots, 127\}$.

- H-prism holds the data from the S-prism of the previous round, therefore, like S-prism, it will contain 4-bit values. Its initial configuration is all zero:

$$
H_{i j k}=0
$$

for $i, j=0,1,2,3$ and $k=0,1, \ldots, 7$.

P-Prism (Initial Configuration)

i

Begin Hashing: Initial Swap

- Take m_{0} and create the initial S-prism
- Initialize P-prism
- Apply Initial Swap function to P-prism using the data in S-prism, using the following definitions:

$$
\begin{aligned}
S H(i j k) & =S_{i j k} \operatorname{div} 4 \\
S L(i j k) & =S_{i j k} \bmod 4
\end{aligned} \quad \text { (lower } 2 \text { bits of } S_{i j k} \text {) }
$$

```
Initial Swap
for \(k=0,1, \ldots, 7\)
for \(i=0,1,2,3\)
for \(j=0,1,2,3\)
\(\operatorname{Swap}\left(P_{i j k}, P_{S H(i j k) S L(i j k) k}\right)\)
```


Compression Function on m_{i}

Inputs: $m_{i}, \mathrm{P}-$ prism, H -prism
Outputs: P-prism, H-prism
P and H were updated in previous step with m_{i-1}
Take chunk m_{i} and form S
S = AffineTransform(S)
$P=$ SwapControl1(S,P)
$P=$ SwapControl2(S,P)
$\mathrm{S}=\mathrm{DFT}_{k}(\mathrm{~S})$
$P=$ SwapControl3(S,P)
$\mathrm{S}=\mathrm{DFT}_{j}(\mathrm{~S})$
$P=$ SwapControl4(S,P)
$\mathrm{S}=\mathrm{DFT}_{i}(\mathrm{~S})$
$S=\operatorname{NLST}(S, P, H)$
$H=S$
$P=$ PlaneRotate (P)

Affine Transformation on S-Prism

- For all i, j, k do the following:
- Take an element of S-prism $S_{i j k}$ and compute its inverse

$$
U=S_{i j k}^{-1} \in G F\left(2^{4}\right)
$$

- Let U be $U_{0}+U_{1} x+U_{2} x^{2}+U_{3} x^{3}$
- Compute the matrix-vector product

$$
\left[\begin{array}{l}
S_{0} \\
S_{1} \\
S_{2} \\
S_{3}
\end{array}\right]=\left[\begin{array}{llll}
1 & 0 & 1 & 1 \\
1 & 1 & 0 & 1 \\
1 & 1 & 1 & 0 \\
0 & 1 & 1 & 1
\end{array}\right]\left[\begin{array}{c}
U_{0} \\
U_{1} \\
U_{2} \\
U_{3}
\end{array}\right] \oplus\left[\begin{array}{l}
1 \\
1 \\
1 \\
0
\end{array}\right]
$$

- Replace $S_{i j k}$ in the S-prism with the output $\left(S_{3} S_{2} S_{1} S_{0}\right)$

3-d Discrete Fourier Transformations on S-Prism

- DFT over the k axis: 16 simultaneous 1-dimensional 8 -point DFT computations over $\operatorname{GF}(17)$ with $w_{8}=2$
- DFT over the j axis: 32 simultaneous 1-dimensional 4-point DFT computations over $\mathrm{GF}(17)$ with $w_{4}=4$
- DFT over the i axis: 32 simultaneous 1-dimensional 4-point DFT computations over $\mathrm{GF}(17)$ with $w_{4}=4$

$$
\mathbf{X}_{i}=\mathrm{DFT}_{d}(\mathbf{x})=\sum_{j=0}^{d-1} w^{i \cdot j} \mathbf{x}_{j} \quad(\bmod 17)
$$

3-d Discrete Fourier Transformations on S-Prism

k

Discrete Fourier Transformations on P-Prism

- DFT computations on P-prism are accomplished using data (S-prism) dependent swaps on P-prism
- A swap-control-plane (sc-plane) is generated using S-prism; these scplanes are then used to update P -prism
- The 1st sc-plane is generated using these explicit formulae:

$$
\begin{aligned}
& \text { if } S_{i j 0}[0] \oplus S_{i j 4}[0]=0 \quad \text { then } \quad \operatorname{swap}\left(P_{i j 0}, P_{i j 7}\right) \\
& \text { if } S_{i j 0}[1] \oplus S_{i j 4}[1]=0 \quad \text { then } \quad \operatorname{swap}\left(P_{i j 1}, P_{i j 6}\right) \\
& \text { if } S_{i j 0}[2] \oplus S_{i j 4}[2]=0 \quad \text { then } \quad \operatorname{swap}\left(P_{i j 2}, P_{i j 5}\right) \\
& \text { if } S_{i j 0}[3] \oplus S_{i j 4}[3]=0 \quad \text { then } \quad \operatorname{swap}\left(P_{i j 3}, P_{i j 4}\right)
\end{aligned}
$$

- The other sc-plane definitions (2nd, 3rd, and 4th) are found in the document

Swap Control Planes

Nonlinear Transformations on S-prism

- For all i, j, k do the following on S-prism:

$$
S_{i j k}=\left(S_{i j k}^{\prime} \oplus P L_{i j k}\right)^{-1} \oplus\left(S_{P_{i j k}}^{\prime} \oplus P H_{i j k}\right)^{-1} \oplus H_{i j k}
$$

- Here, we have

$$
\begin{aligned}
S_{i j k}^{\prime} & =S_{i j k}(\bmod 16) \quad \text { for all } i, j, k \\
P L_{i j k}^{\prime} & =P_{i j k}(\bmod 16) \text { for all } i, j, k \\
P H_{i j k}^{\prime} & =\left(S_{i j k} \operatorname{div} 16\right) \|\left(P_{i j k} \operatorname{div} 16\right) \quad \text { for all } i, j, k
\end{aligned}
$$

- Recall that $\mathrm{GF}(17)$ produces 5 -bit numbers, in the range $[0,16]$. With these nonlinear transformations, they are reduced back to 4 bits.

Rubic Rotations on P-prism

- The last step of the compression function involves plane rotations along the k-axis, defined as follows:

$$
\begin{aligned}
& \text { if } \quad(k=0 \bmod 4) \quad \text { then } \quad P_{i j k}=P_{i j k} \\
& \text { if }(k=1 \bmod 4) \quad \text { then } \quad P_{i j k}=P_{(3-j) i k} \\
& \text { if } \quad(k=2 \bmod 4) \quad \text { then } \quad P_{i j k}=P_{j i k} \\
& \text { if } \quad(k=3 \bmod 4) \quad \text { then } \quad P_{i j k}=P_{j(3-i) k}
\end{aligned}
$$

Rubic Rotations on P-prism

Hash Output via sg-Tables

- Spectral Hash algorithm can be configured to return hash values in 32 multiples of bit lengths between 128 and 512 bits, and thus, include sizes $224,256,384$, and 512 bits.
- The hash value bits are selected from S-prism using the sg-table.
- For each hash length ($128,224,256,384, \& 512$), there are ($4,6,8$, $12, \& 16)$ stars in the sg-table which gives the indices of P -prism and S-prism to be selected.
- For example, for 256 -bit hash, the following sg-table is used.

$P_{(i, j, k)}[1: 0]$		00	01	10	11
bit position on $S_{(i, j, k)}$	3			${ }^{*}$	$*$
	2		$*$	$*$	
	1	$*$	$*$		

Final Hash Output

- After the selection process, the resulting S-prism looks like a swiss cheese, unselected parts are the holes.
- The final hash value is obtained from this punctured S-prism using the index mapping

$$
h=H_{0}\left\|H_{1}\right\| \cdots \| H_{127}
$$

such that

$$
H_{I}=S_{i j k}
$$

where $S_{i j k}$ is the punctured S-prism, and

$$
\begin{aligned}
& \qquad=32 i+8 j+k \\
& \text { for } i, j=0,1,2,3 \text { and } k=0,1, \ldots, 7
\end{aligned}
$$

Security Claims

- DFT provides near perfect diffusion.
- No look-up tables - Prevents side channel attacks.
- Affine Transform prevents fixed points.
- The inversion function over a finite field has the best known non-linearity.
- Our current NIST-approved submission has an issue with the padding specification for messages whose lengths are multiples of 512 bits. There exists a trivial fix for this issue. Our website has a fixed version of the code.
- As of now, there are no current attacks (on the fixed code) that have shown any weakness in Spectral Hash.

Performance for 512-bit Hashing

Software (Unoptimized reference implementation)

- $40 \mathrm{Mb} / \mathrm{s}$ on a Core Duo 2.16 Ghz .
- 400 cycles per byte.
- 15,000 cycles of overhead.
- 256 bytes of internal state.

Hardware (FPGA)

- A maximum-area and speed implementation running on a $100-\mathrm{MHz}$ Virtex-4 FPGA will produce 512-bit hashes at 51.2 gigabits per second! We will publish our code at opencores.org.
- Same hardware produces hashes of any length.
- We are currently working on an area-optimized ASIC implementation.

What Makes Spectral Hash Special?

- It is the work of 5 undergraduate students (Megan Maguire, Carl Minden, Jacob Topper, Alex Troesch, Cody Walker) from the College of Creative Studies at the University of California Santa Barbara (UCSB), working with a postdoc and a professor.
- UCSB is the home of Crypto (We are natural cryptographers!)
- In software, we are not the slowest (Thanks ECOH!)
- Spectral rhymes with Special!

