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Specifications

1 Introduction

This paper proposes a secure hash algorithm CRUNCH. This algorithmitezative one-way hash function
that can process a message to produce a condensed representigtiba im@ssage digesThis algorithm
enables the determination of the message’s integrity: any change in the meglagith a very high
probability, result in a different message digest. This property is ugethe generation and verification of
digital signature and message authentication codes, and the generatiodafhrnumbers (bits).

The algorithm enables to obtain digests of 224, 256, 384 and 512 bitsaRigsicryption permutation
based on an unbalanced Feistel scheme with expanding functions wilslymed. This permutation will
be a pseudorandom permutation fré@m bits to kn bits using random expanding functions fraenbits to
(k — 1)n bits. Then a compression function is constructed by xoring two such peifomg@and choosing a
number of bits depending on the desired length of the message digest.

The hash algorithm can be described in four stages: preprocessargpgon permutation, compres-
sion function and hash computations. Preprocessing involves paddingeisage, setting an initialization
vector and an initial value. The hash computation uses 2 encryption permatdtie compression function
together with the Merkle-Danéyd construction.

Key words: Hash Functions, Unbalanced Feistel Schemes, Expanding Functigmgo@aphy with
Random S-Boxes.

2 Definitions

2.1 Glossary terms

Bit A binary digit having a value 0 or 1
Byte A group of eight bits
Word A group of either 32 bits (4 bytes) or 64 bits (8 bytes)

2.2 Algorithm parameters, symbols and terms
2.2.1 Parameters

The following parameters are used in the secure hash algorithm spedificatidhis standard.

M Message to be hashed.



Length of the messag¥ in bits.

Number of zeros appended to a message during the padding step.
The padded message.

Numbers of bits in a message block/f. m = 1024 — 3.

ith block of M, of sizem.

The initial value for the compression function aftesteps for the compression function.

Iy is the input value for the compression function.
Theit" 8-bit block of I;.

Thei" hash value H™) is thefinal hash value
and is used to determine the message digest.

The number of bits of the message digest.

An unbalanced Feistel scheme with expanding functionsroinds applied on
ak-block input.

Encryption permutations used to gefidit message digest.
Gpg, G} are unbalanced Feistel schemes with expanding functions.

The number of rounds of an unbalanced Feistel scheme needed to get
encryption permutations when the message digest Hts.

Internal functions fron® bits to 1024 bits used in the unbalanced Feistel scheme
with expanding functions to get .

Internal functions fron® bits to 1024 bits used in the unbalanced Feistel scheme
with expanding functions to g«ﬁ’ﬁ.

The compression function.
32 bit word equal to the firs32 decimals o8 x [sin(t + 29)].

Block obtained by choosing thie— i + 1 bits from thei-th leftmost bit to thej-th
leftmost bit of X whereX € {0,1}1924. If j < i then this block is void.



2.2.2 Symbols

The following symbols are used in the secure hash algorithms specificagimhgach operates anbit
words.

& Bitwise OR (“exclusive-OR") operation.
I Concatenation of blocks.

| ] Floor function.

3 Notations and conventions
The following terminology related to bit strings and integers will be used.

1. A hex digitis an element of the s€0,1,...,9,a,..., f}. A hex digit is the representation of a
4-bit string. For example, the hex digit “7” represents the 4-bit strindl101and the hex digit “a”
represents the 4-bit string “1010”.

2. A wordis aw-bit string that may be represented as a sequence of hex digits. Tattamverd to hex
digits, each 4-bit string is converted to his hex digit equivalent, as destiibl. above. For example,
the 32-bit string

1010 0001 0000 0011 1111 1110 0010 0011

can be expressed as “al103fe23”, and the 64-bit digit
1010 0001 0000 0011 1111 1110 0010 0011

0011 0010 1110 1111 0011 0000 0001 1010

can be expressed as “al103fe2332ef301a”.

Throughout this specification, the “big-endian” convention is used wgmessing both 32- and
64 bit words, so that within each word, the most significant bit is stored ifethenost position

4 Constants

This section details on the generation of constants needed in the CRUNG#haitgdrhere are exactly x
16 x 256 x 32+ 28 = 262172 constants 082 bits. This representsMB. Fort € {—28; —27;...;262143}
let K; be the32 bit word equal to the firs82 decimals of8 x |sin(¢ + 29)|. In other words,K; are the
decimals fromt to 35 of |sin(¢ + 29)|.

Here are the firsk8 constants:
Kfzg = bb552362, K727 = 463dbab4, K726 = 210386db, K725 = ()dee7777,
K_94 = abe07d78, K_93 = 3¢3e3156, K_90 = 41823096, K_91 = ea34a80a,
K,QO = 46046661, K,19 = 5&27bd76, Kflg = fffadd8b, K717 = 4a€6bdf5,
K_16 =5¢808910, K_15 = ecc38c9f, K_14 = 33calc73, K_13 = 4da0410b,
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Message digest (bits) IV (in hex)
224 bb5523¢2463dbab4210386db0dee7777abe07d783c3e3P369b3
256 bb5523c2463dbab4210386db0dee7777abe07d783c3e3P369bda34a80a
384 bb5523c2463dbab4210386db0dee7777abe07d783c3e3P369bda34a80a
4c04c6cl15a27bd7cfffadd8b4aebbdfs
512 bb5523¢2463dbab4210386db0dee7777abe07d783c3e3P309bga34a80a
4c04c6¢cl15a27bd7cfffadd8b4aebbdf55c808910ecc38c@18384da0410b

Figure 1: IV Values

K_15=00f12b10, K_11 = 02059004, K_19 = 32f2d28 f, K_g9 = 4db63d57,
K_ogs = b17882¢ec, K_g7 = 1220a29f, K_os = ¢50£3409, K_g5 = 3¢9 f de46,
K_04 = 0f0€6f31, K_03 = 19()8361)0, K_()Q = a6a86039, K_01 = 2ad0a768.

These constants have been chosen because it is quite easy to calculatartiebecause it is very
difficult to establish relationships between them. So we can consider theseuts as random numbers.
We will see later that it is very easy to change the algorithm so that thestantsare not stored explic-
itly in memory (because it's clear putting a requiredloMB of memory on some device can not easily
be achieved). We will see that these constants can be computed on thehifymight slow down the
computation.

5 Preprocessing

Preprocessing shall take place before the hash computation beginspré&piscessing consists of three
steps: padding the message, M, (Section 5), parsing the padded miessagessage blocks (Section 5.2)
and setting the initialization vector IV to compute the initial input of the compressioation C3 (Sec-

tion 5.3). We defindV' = K_og||...[[K_,5, 5 _;.
32

5.1 Padding the message

The messag@/ shall be padded before hash computation begins. The purpose of dhiggés to ensure
that, in the padded message, the number of bits is a multiple of 1924mn. Append the bit “1” to the
end of the message followed pyzeroes and the binary representation of the lehgththe messagek is
chosen so that the total number of bits is a multiplerofThe padded message is denoted\by N is the
number of blocks of size: of M.

5.2 Parsing the message
M is parsed intaV m-bit blocks.

5.3 Setting the initialization vector and computing initial value

An initialization vectorV of size 5 is defined (see Figure 1) and the initial value for the compression
function is obtained by concatenatifyy” and the leftmost m bits of the padded message (the first block of



M). This is given by )
Io=1V|M©,

Iy is of size 1024.

6 Encryption Permutations

6.1 Unbalanced Feistel Schemes with Expanding Functions

An unbalanced Feistel scheme with expanding functions enables to airsspseudorandom permutation
from kn bits to kn bits by using random functions from bits to (k — 1)n bits. The first round of an
unbalanced Feistel scheme with expanding functions is given in Figuré 2.rdunds are applied, the
scheme is denotel?.

IO Il 12 I127
Y
0 LN
190 [\
1 an
190 U
126 /#
b
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Figure 2: First round of an unbalanced Feistel scheme with expandicgdas, fork = 128

When the internal functions are secret, generic attacks on these sdm@redseen studied in [9]. When
k+2 < d < 2k, the best generic chosen plaintext attacks ri#éd“—)" messages. For example, when
k=128 andn = 8,d = % + 129. Here the functiong; are public and are not completely random
(as explained in Section 6.2) since there are constraints related to memoey $paviously, the security
bounds are not the same when the internal functions are public.

For symmetric Feistel schemes, the following study is given in [4]. It refethe model of indiffer-
entiability for hash functions (see [6] and [3]). Two systems are destrin the first system, the random
oraclesg; (inner functions) are randomly chosen and a permutation based on a syeriregsiel scheme
is constructed. In the second system, a permutatldaa randomly chosen and the inner functiopsare
simulated by a simulator with oracle accessRo It is shown in [4] that, with 5 rounds, 4 messages are
enough to distinguish both systems. This contrasts with the classical LutiefReesult where 4 rounds



Message digest Security | Unbalanced Feistel schen#d?® | Encryption Permutation
(bits) (bits) (Number of rounds) (Number of rounds)
224 112 143 224
256 128 145 256
384 192 153 384
512 256 161 512

Figure 3: Secure Hash Algorithm Properties.

are enough to obtain a strong pseudo-random permutation from psaudiom functions. However, with 6
rounds the distinguisher is not able to tell which system is used.

The encryption permutations of CRUNCH are based on unbalanced Beistghes with internal public
expanding functions. The number of rounds will depend on the lengtteahtssage digest. Two facts are
taken into account. Firstly, the security bound for chosen plaintext att€d®$ are given when the inner
functions are secret. This number of rounds is increased. Secoridljdre secure to choose a number of
rounds to make sure that all the Bytes are used the same number of timesw&lamose for the number
of rounds a multiple of 128. Iff is the length of the message digest, the number of rounds is 3.
Figure 6.1 shows the number of rounds needed to reach the securitgt botlhve case of an unbalanced
Feistel scheme and the number of rounds chosen for the encryptiontpoms depending on the length
of the message digest.

Using Unbalanced Feistel schemes with expanding functions enablesstoumitwo encryption permu-
tations, which depend oft € {224,256, 384,512} and are denoted b3 andG’;. They are permutations

from ({0,1}%)'* = {0, 1}1024 to {0, 1}1024,

6.2 Internal Functions, Random S-Boxes

To generate the encryption permutati@ng andG’ﬁ based on Unbalanced Feistel Schemes let us construct
the internal functiong; andg;, which will stand for random S-Boxes.

There are2d internal functions to define, whetkis the number of rounds. Each function mapsits
onto 1016 bits. For0 < j < d — 1, g; represents the internal function of the first permutation,ggnﬂjle
internal function of the second permutation. The figfunctions of each permutation will be completely
independent, since they do not use the same congdiar{tsee Section 4).

Let ;7 be an integer betwedhandd — 1, and: an integer betweefi and255. We want to define the
1016 bits word ofg; (i), and also the 016 bit word equal tay; (4).

Letj = j mod128, andg = | & |. We define:
a(j,i) = (2¢ + 1)i mod 256

And then

v(j,i) = (j mod16) x 256 x 32 + 32 x a(j,i) — 4 x LliGJ

And:
v (j,i) = v(j,4) + 16 x 256 x 32



Now, for v integer between-28 and131040 included, letZ,, be the1024 bit word equal to:
Zy = Ky[|[Eyqall- - - [[ Ky

Finally:
gj(i) = (Z»y(j,i))(83+8)...1023"(ny(j,i))o...(83—1)
and
9;(1) = (Zv’(j,i))(8j+8)...1023|’(Zv’(j,i))o...(Sj—l)
The definition ofg; (i) uses consecutive predefined constants, and ter16, g;(i) is equal to a con-
catenation of bits frong, modis((4,7)) and fromg; mod16((J,4) —1).

7 The Compression Function

G and G’ﬁ are the two encryption permutations obtained in the previous section. Theorigession
functionCj is defined by

Cs(I) = (Gp(I) ® G(1))g_(p-1)

For example, if3 = 224, Cs24(1) will take the 224 leftmost bits ofi5(1) © G5(I).

Taking the Xor of two secret permutations increases the security prapelttis shown in [7] and [8],
that for the Xor of two secret permutations frombits to L bits the security bound for the number of
messages ig".

8 Secure Hash Algorithm

The CRUNCH algorithm is described in this section. Boe {224, 256, 384, 512} the final result will be

a 3-bit digest of the messaga/ is the message to be hashéd.is the padded message which contals
m-bits blocks.I'V is the initialization vector. The compression functi@pis used. The algorithm proceeds
as follows (see also Figure 4):

HY = Cy(Ip)
Fori=1toN —1
I, = H(i)H]\}_/(i)
HH) = Cy(L)
EndFor

HW) is the message digest.

The mode of operation of this hash algorithm is shown below:

CHAINING MODE

9 9 900 90



MW-1)

Io

MO

In_a

HWN-1)

MW=

Figure 4: CRUNCH hash algorithm
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9 Example

MessageVl = abcede fgh, of length equals td8 bits.
We show below the first values éfand values of the internal functions.

Round number O:
Iy

®
g0(0Xbb = 187)

I = I
®
90(187)

Round number 1:
I

®
91(0x46 = 70)

®
g, (0x80 = 128)

Fo&
bb5523¢2463dbab4210386db0dee7777abe07d783c3e31564182309bea34a80a
6162636465666768800000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000040

.. 13 £8c0b2009d384d48893331€92¢680206 f5a3b0aT72c464c9¢e fc234962ca3
ec9ebeb25b8¢cb3184bc96d1 f f f fbfc52594644374¢ fI8b6Teadbbae2740679752
3d402551ac2ca2 f80d3eccd0220d807546ad796ebac3eab7010cac68bbe63 f24
45cddbeel f f988470e9e0800ab94362b3b3¢3381424¢b2bbea0d7 f0d4b0 f £394
ForG”:
bb5523¢2463dbab4210386db0deeT777abe07d783¢3e31564182309bea34a80a
6162636465666768800000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000040

..d52d5d17bb7 f0b92a5 f3dc f41603¢e0593a73286¢7c464c0a02b87d9Ib0bTd2

6e36 f0ee656c6adal8 f d3dadade31b0Tbed530 f f72457d238d364376 f3 f 99687
9443abal fObe f c6¢cTbTababadd59ddab042881e69a f40a f2 fe23 fe22081d9cbe
a2d4e666 f5 fa04d8 f76a51d8981452bec505c680cd447 f0e80091bd76¢421854

Fatr
46db02 f436278c6¢4b0 fe83¢c075b1 fa95688db8¢991d100d1cdf 59dea284a98d
fedd363eeadd70cbc96d1f f f fbfc52594644374¢ fI8b67eabbae27400797523d
402551ac2ca2 f80d3ecc40220d807546ad796ebac3eab7010cac68bbe63 f2445
cddbeel f f988470e9e0800ab94362b3b3¢3381424cb2bbea0d7 f0d4b0 f f3d4bb

..a015¢f80583a fab839%¢acfT77370bc79df cacd07143 f8aall f82db17d6a707e
805ab467a6¢b2€92a b5 fc0629587b046a4d8d8 f0d97T7e69d4d78b7d3943cTad
ede9bbacaldda9 fcfa8ad03c4335824d25 fcdacfal226b5¢c4c1168df66 flecfb
9¢60e1c0eee520d896558bd43 f77939d365958¢3308ebd84c51b4ab5ch9cl2dde
ForG':

80069 f5186¢5b fb3a67507 f9f574b9ae73dadabad9 f53281221b1¢33841 fd80 f
54938a000a0db20 f d3dadade31b07bed530 f f72457d238d364376 f3 fe9968794
43a5al fObe fc6cTbTabadadd59ddab042881e69a f40a f2 fe23 fe22081d9cbeca?
d4e666 f5 fa04d8 f76a51d8981452bec505c680cd447 f0e80091bd76c421814bb

..d131eb2 f92e83c5d4aa942¢8280dadccTcle0978279927¢1e8ba4910 f43bb7
a446 f f06d03 f50bf011e7943653a5 f1a4453581260630 f a9eeeeda35b29b8846
a34690e933 f f6d45ceb8185 fddbbc2 f f f03€9545254b9062ae20b f eda f2db92e
9b24075425d050b2ce54e8 fd83aac139aeeeda507b6303adbab56618 fOcIdf 52
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Round number 255: Fdar

I5s5

©
9255 (0X56)

I>s5

9255 (0X58)

5e483df fcd08T4aT FOLT3f fecdb29e £61421397cT12deab f4806 £37130e79a56
2d18938eda567a836366d8d5b40d38a3a f22d8cc f972983e153454¢2TbTeabed
0bab2 f788bdf69dd8d359b1187e626006b £6367148b705a7d091d52256b F93¢2
4cd 7119 fb0baTc2561bbb £ 18d8ad6 f7¢262d8a72b60 f7c7852d21051a f64a710

00ed47461030e8c0e45140c543b1 fb2b74 f f848713365192504 f4131baa f648d
5b15ea6d6 fc71334bc3d03abe3004d02611c2a f7c9a58c3ccc272ad6¢951 f42e
6ce6e6a38 £380093126¢7a f579 f fcA4041d385840be70571627e fad f74823106a
7362947d8¢b6dc1768 f37665 f 7489960 f a568¢5924a55¢6666280a93¢6d0a338
ForG’

58a17694a9b9eab01df56bel1b7cl feaadld1068d5937358 f431908eb f9ddb854
72e fe6bd29d720b1e718b338 fb28¢45¢3663 f6 f 503ddd49033a6a870a1146053
0e88bd1 fb78b08a34adaced51584a0c0157e85293864b670d413ba5044ae8298
a7 f9cabde29b3b34 f57584dc38063ae00e1daa617310190962ccal7a9499717

0063da77d68354 fd216d947¢9683862f3ccadld3T fc5ddab239b7049d8 f4alee
2 f £65317a8a5 fe8ael1050bc845 f df c76b89ddb285400ddf 719dch286937€1021
07ed4c9855931 fd8464220a7 fde f dba34a22bd65¢0e62022a351be59c38dcb06
3866644477157 £82d743eTadclT fdf a08a4650b402¢ f487e f47c185a95d33a

Finally the hash value of "abcdefgh”:

676b5a0202222a283e80a6a6411d588dcH6aab44e9b3d978cbecae2ab61e6612b

We can notice thal7 = 48 @ ed ® al & 63

Part Il

Computational efficiency

10 Memory Size/Speed

All of the constants to be stored (namely the S boxes) require arbuhl of storage. It is small enough to
fitin the L2 (L3) caches of most of the recent general purpose miocoggsors (x86 for example). Fitting
the S boxes in the L1 caches might be much more difficult due to the very limitedfsihe L1 Dcache

(typically 32 KB). However, experimentally we have checked that fitting icadhe will only give marginal

performance improvement due to the good bandwidth of L2 caches aciémfforefetch mechanisms from
L2 to L1. At the other end of the spectrum (on smart cards), 1 MB of gioraquirements might be hard to
accomodate within the current generation but we first believe that therbendlgeneral trend to improve
storage capacity and second we describe a mechanism to compute on theSflydkes allowing to reduce

the storage requirements.
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One excellent feature of CRUNCH is that besides data access (readirgsfrom S boxes), the com-
putational structure is remarkably simple: a loop around XOR operationgh{vig one of the simplest
operations to perform, much simpler and efficient than an add or a shifatigr®). There is no complex
control structure (which could lead to branch misprediction). In fact gyegerformance limiting factor of
CRUNCH is data access.

11 Implementation

For the implementation, it is far better to avoid shifting data between each rduhd permutations: this
can be simply done by a clever adressing. Except maylkelfitiprocessors, because data is already divided
into 8 bit-blocks, so it might be easier to shift them.

12 64-bit processors

Machine 1:

Processor: Intel Core 2 Duo E6400 @2.13GHz (cache L1 data 32&dBed_2 2MB)
RAM: 4GB DDR2 dual channel

OS: kubuntu 8.04.1 64bits with KDE 3.5

compiler: icc v10.1

compilation options: -fast

Message digest Message Size Number of cycles Speed
(bits) (MB) (MB/s)
256 100 16,95 x 10° 12,59
384 100 29,62 * 10” 7,24
512 100 46,97 * 107 4,55

13 32-bit processors

Machine 1:

Processor: Intel Core 2 Duo E6400 @2.13GHz (cache L1 data 32xBed.2 2MB)
RAM: 4GB DDR2 dual channel

OS: kubuntu 8.04.1 64bits with KDE 3.5

compiler: icc v10.1

compilation options: -O3 -march=pentium4

Message digest Message Size Number of cycles| Speed
(bits) (MB) (MB/s)
224 100 25,16 * 10° 8,48
256 100 29, 87 * 10° 7,15
384 100 52,36 % 107 4,08
512 100 86,42 * 10° 2,47

13



Machine 2:

Processor: Intel Core Duo T2300e @1.66GHz (cache L1 data 32&dBed.2 1MB)
RAM: 1GB DDR2 dual channel

OS: kubuntu 8.04.1 32bits with KDE 3.5

compiler: icc v10.1

compilation options: -O3 -march=pentium4

Message digest Message Size Number of cycles| Speed
(bits) (MB) (MB/s)
224 100 29, 26 % 10° 5,68
256 100 34,23 % 10° 4,88
384 100 60, 55 * 107 2,74
512 100 100, 38 * 10” 1,66

14 8-bit processors

The following estimate has been obtain on an 8-bit simulator of a smart-camgd,tbe compiler IAR / AVR.
(AVR is the standard 8 bits atmel)

Message digest Message Size Number of cycles| Speed
(bits) (bits) (KB/s)
224 800 535585 3,82
256 768 612097 3,21

Part Il
Known Answer Tests and Monte Carlo Tests

We reproduce here some results of CRUNCH with a digest size eqRab toits. For the complete results,
see the appropriate file.

Len = 5
Msg = 48
MD = D609F9048F694543DD90603ABD8A4D590E2E7 7FBO953E90FCCA3FE381F9CE3D28

Len = 6

Msg = 50

MD = 04BB153937A7AEAA2060C3FFC2E545C357FBE3DFB60CD14B9A053717F6FD7441
Len = 7

Msg = 98

MD = B152F5410BFA280431D520806C1D6443A3ACDOD49D3E314257AA2DCDC1B74EES
Len = 8

Msg = CC

14



CRUNCH-224 < 2064 1024 32 224 112
CRUNCH-256 < 264 1024 32 or 64 256 128
CRUNCH-384 < 2128 1024 64 384 192
CRUNCH-512 < 2128 1024 64 512 256

2In this context, “security” refers to the fact that a birthday attack [HAGJaomessage of size produces a collision with a
factor of approximately2™/?.

Figure 5: Secure Hash Algorithm Properties.

MD = A819196D71E8CDFABEA307A61A59302DD3FB71FCEOEOD84BOBF656E8FA36D180

Repeat = 16777216
Text = abcdef ghbcdef ghi cdef ghi j def ghi j kef ghi j kil f ghi j kl nghi j kl rmhi j kl o
MD = 6521EDFAD4166903A03239D021DFC77CA5CBB44D4AA45D90CDD336B91CF17C82

Part IV
Expected Strength

The expected strength of the CRUNCH algorithm is summarized in Figure 5.

Part vV
Analysis of Known Attacks

15 Background

The design of CRUNCH is based on the XOR of two (fixed) permutations.

The idea of using a block cipher goes back to Preneel, Govaerts anéwalhe [10] and further ana-
lyzed by Black, Rogaway and Shrimpton [2] who proved that among 6dilplesconstructions, 20 of them
are collision-resistant up to the birthday bound in the black-box model.

However, in all these constructions, the key is changed every rouridhws usually a serious drawback
as concerns efficiency. Hence the idea of building a hash function with biphers whose keys are fixed.

The possibility of designing a secure hash function whose underlyingre@sipn function uses exactly
one call to a (fixed key) block cipher was studied by Black, CochranSiminpton [1]. They essentially
proved that such a construction cannot reaphavenlevel of security, by exhibiting a collision attack with
O(n) oracle accesses to the block cipher (modelized as an ideal cipher)ifEvisrattack is not practical
(it requires building a tree witf2(2"™) nodes, where: is the bit size of the blocks), it shows that it is not
possible to obtain a proof of security against adversaries with unlimited datignal abilities.

As an example, we could consider a variant where, instead of Xoring éwauydation, the compression
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function with one encryption permutati@; is defined by

Co(I) = (Gs(I) ® 1)y (5-1)

The obtained scheme will be approximately twice faster than CRUNCH, bubtée proven secure.
As a consequence, hash functions using with a compression functiantwsircalls to (fixed key) block
ciphers are worth considering.

16 Collision attacks

Rogaway and Steinberger [12] investigated the case of hash functioosevecompression function uses
two calls to fixed key block ciphers. They describe a generic attack fosioa finding, which gives an
upper bound for the security. More precisely, the best known attaghkres©(2"/2) oracle accesses to the
permutations and a time complexi€¥(n.2"/2). This means that — for the best constructions based on 2
permutations — one cannot have a security, against collisions, bettePt4f?). Note also that [5] gives
an attack in0(23"/%) oracle accesses and time complexit{23"/%).

For CRUNCH#, we haven = 1024, and the best known attack is the birthday attack, whose complexity
isin O(2°/2).

Moreover, for similar constructions (see [5]), Fouque, Stern and Zinpmoed that finding a collision
on the compression function (and thus for the whole hash function) e=fi2"/*) oracle accesses to the
permutations.

17 Preimage attacks

In [12], Rogaway and Steinberger also investigated preimage attackagbrfunctions based on a com-
pression function using two calls to (fixed key) block ciphers. Theyrilgsa generic attack for preimage,
which gives an upper bound for the security. More precisely, thekmestn attack require®(2"/2) oracle
accesses to the permutations (and a time complexi®*). This means that — for the best constructions
based on 2 permutations — one cannot have a security, against preiratigethar®(2"/2). Note also that
[5] gives an attack i) (23"/4) oracle accesses, time complexi®yfn.2°"/*) and space)(2%"/4).

For CRUNCH#, we haven = 1024, and the best known attack has a complegt2®).

Moreover, for similar constructions (see [5]), Fouque, Stern and Zinpmosed that finding a preimage
for hash function require®(2"/?) oracle accesses to the permutations.

It should be noted that we carefully studied preimage attacks for manyt&@gbCRUNCH. In partic-
ular, some variants lead to very efficient hash functions, but unfaeilynare trivially broken. For instance
if, instead of Xoring permutation, only one encryption permutatipnis considered and if the compression
function is defined by dividing>3(I) into two parts and then Xoring them, the following attack will be
possible. Given a digedt, it is possible to obtaird so thatC3(/) = H. Since the internal function are
public, it is enough to go backward from the elemgitS @ H| € {0, 1}1924 whereS is any element of
{0, 1}512_
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Part VI
Advantage and limitations

18 Parallelization

Our algorithm can greatly benefit from the new coming multicore organizatioohas becoming a de facto
standard on most of the general purpose microprocessors.

First of all, the way the message is compressed can be easily changexarigple, the message can be
compressed level by level, as shown on the figure below (datial) :

AN
i\/ag
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This is a real advantage when the message to be hashed is very lonagnijmatational time becomes then
proportional to the logarithm of the size of the message.

Second, the two permutation functions can be evaluated in parallel, sincedhgiutations are inde-
pendent. This gives an extra performance gaip. of

19 \ectorization

Our CRUNCH algorithms lends itself very well to “vectorization?28 bits long XOR operations can
be easily used for performing the operations of the innermost loop. Suetations are available on a
large number of modern general puropose microprocessors (SSEecAdtic.). Future extensions of these
instruction to 256 or 512 bit long operations can also be easily used bygmuithm. Tests performed using
a state of the art compiler such as ICC (Intel C Compiler) V10 has showrhbahnermost loop can be
easily fully vectorized and optimized using the full set of registers availatitb@ut having to hand code in
assembly language to get peak performance).

20 8-bit processors

We can easily implement the algorithm in a 8-bit processor machine, for trer@@omplicated operation.
The figurel show that it works well in a 8-bit environment. Nevertheless there is auliffito store all the
S-boxes { MB). Such a difficulty could be avoided if we implement a little algorithm to genevatg the
values of the S-boxes that we need (on the fly). There, we need a \wanéorate efficiently and exactly the
35 first decimals of the sinus of an integer betwéeand262173. Of course, we can imagine other ways to
generate these boxes. For example, as the AES is often implemented onaisyrine could replace the
S-boxes by a random number generated by the AES. For this purpesegthits of AES(i) could be used
to generatel constants. This surely will slow the process, although this also a way tasethe security
as1024 different S-Boxes instead of onB2 can be generated in the same way .
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21 Other Digest Size

Any other size of digest message smaller than bits. If we want a digest size bigger thah2 then we
have to change the size of the message block, which has to be at least ailigetst size. For security, we
recommend a number of rounds equal to the maximum between the digestdizZzian

Part VII
Variants

There are several possible variants for the CRUNCH hash function.

22 Variants on the S-Boxes

e To implement the CRUNCH hash function on smart cards, the AES block cfjptstead of the sine
function) can be chosen to generate the constants needed for theliteatians.

e Another variant is to have true random internal functions.

¢ In order to construct the encryption permutation, it is also possible to Havwes8ad of 16 internal
functions. This choice of 16 functions is due to the L2 cache memory.

23 Variants on the design

A variant is to consider only one encryption permutati@@nd to computé& (1) @ I instead of taking the
Xor of two permutations as explained in Part V. However we do not recordriiés variant.

24 Variants on the encryption permutations

In the design of the encryption permutations, it is also possible to choosegsthe laws (e.g. addition
modulo2'%?) and to have different laws for each encryption permutation.

25 Variants on the Merkle-Damgard construction

As explained in Section 9, the CRUNCH algorithm is parallelizable.

26 The Future

With more memory space, instead of having internal functions from 8 bits @ i@ it could be possible to
choose internal function from 16 bits to 1024 bits with an analogous steufitnbalanced Feistel schemes
with expanding functions).
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Part VIII
Conclusion

The proposed hash algorithm (CRUNCH) has an extremely simple struttasesally the innermost loop
amounts to accessing S-boxes and XORing the data accessed. Its simpliegytesdur design because
it allows simple and efficient implementation on almost any microprocessor, it siespité protection
and finally it makes easier to establish a direct relation between CRUNCHitgemnd a generic (well
known) security problem. The simplicity of its computational structure is congteddy the requirement
of accessing (and storing) S-boxes whose total size is around 1 M8sfdrage requirement can be lifted
by computing on the fly the S-boxes. Although it increases the computatenatements, it does not alter
any properties on the security of CRUNCH.
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