
ESSENCE: A Candidate Hashing Algorithm for

the NIST Competition

Jason Worth Martin

October 21, 2008

Abstract

This paper gives the technical specification for the ESSENCE cryp-
tographic hashing algorithm submitted to the NIST competition for se-
lecting SHA-3. ESSENCE is a hybrid design using Merkle hash trees
combined with Merkle-Damg̊ard iterative hashing structures. The size
of each component to be hashed with the Merkle-Damg̊ard construction
and the height of the trees are parameterized to allow for a selection
which balances parallel versus serial performance in specific applications.
The ESSENCE compression functions can be implemented in a constant
time form which is immune to cache-timing based attacks or in a faster
form using look-up tables. Both forms feature extensive instruction-level
parallelism to take advantage of SIMD instructions available on modern
processors.

The additional implementation submitted to the NIST competition
using thread-based parallelism together with hand tuned assembly code
was capable of hashing messages of greater than eight megabytes at 12.1
cycles/byte on a quad-core, Xeon-based Linux server.

1 Overview

Figure 1 provides an overview of the ESSENCE hashing construction. ESSENCE
is a hybrid design in which the data to be hashed is sub-divided into a small
collection of large, equal sized, components. Each of these components, which
we refer to as a Merkle-Damg̊ard Block (abbreviated MD Block), is hashed
separately using a Merkle-Damg̊ard based iterative construction with varying
initialization vector. The resulting sub-hashes are combined with Merkle hash-
ing tree structures, and the resulting root hashes of each tree are combined again
with a final Merkle-Damg̊ard structure called the running hash. The running
hash is padded with a final block containing the length of the data hashed and
the algorithm parameters used. The size of each Merkle-Damg̊ard Block and
the height of the trees are parameterized to allow for a selection which balances

1



parallel versus serial performance in specific applications. Section 3 gives a list
of all the algorithm parameters, their meanings, and their default values.

Data

MD Blocks

* * *

* * *

* * *

* * *Running Hash

Merkle Trees

Figure 1: Overview of ESSENCE Construction

The compression functions used for ESSENCE are detailed in the accompanying
document ESSENCE: A Family of Cryptographic Hashing Algorithms where
the full mathematical description and analysis of the compression functions are
given. There are two compression functions: one operates on 256-bit blocks
and the other on 512-bit blocks. Both compression functions are Davies-Meyer
constructions based on key-dependent permutations E256 and E512. The 256-bit
and 512-bit functions differ only in the size of the registers used (32-bit registers
for the 256-bit function and 64-bit registers for the 512-bit) and L, the linear
combining function.

r6 r5 r4 r3 r2 r1 r0r7

F L F L

k7 k6 k5 k4 k3 k2 k1 k0

Figure 2: The ESSENCE Compression Function Logic

Figure 2 provides an overview of the compression function stepping logic. Rather
than using look-up tables for the non-linear portion of the logic, the non-linear
function F is computed with each step and takes constant time. The linear
function, L, can be implemented in constant time via a linear feedback shift
register in Galois configuration, or it can be accelerated using a look-up table.

2



The trade off is that the accelerated version may be vulnerable to cache-timing
attacks. Since cryptographic hashing algorithms are often used to hash secret
data (such as when generating cryptographic keys or verifying authentication
credentials), implementers should consider resistance to side-channel attacks as
well as performance. The details for both approaches are given in Appendix B
of ESSENCE: A Family of Cryptographic Hashing Algorithms.

ESSENCE internally generates only 256-bit or 512-bit hash sizes but uses trun-
cation combined with different initial values to support varying hash sizes. This
is similar to the approach used in the SHA-2 family of hashing algorithms.

1.1 Advantages

Here we list some of the important advantages of ESSENCE.

1. High Server-Platform Performance

The ESSENCE design has been optimized for parallel implementations.
Therefore, it runs best on large platforms featuring both high instruction-
level parallelism (such as the vector processing SSE instructions in the
x86 64 family or the very-long-instruction-word paradigm of the Itanium
family) and high thread-level parallelism (such as multi-cored platforms).
On a quad-core Xeon-based machine (a typical server platform), ESSENCE
can hash at 12.1 clock cycles per byte of data.

2. Good Constant-Time Implementations Possible

ESSENCE can easily be implemented to run in constant time. This
thwarts timing attacks such as those demonstrated by Bernstein against
AES implementations in [Ber04]. On a quad-core Xeon-based machine, a
constant-time implementation of ESSENCE can hash at 46.2 clock cycles
per byte of data.

3. Very Scalable

ESSENCE is also extremely scalable, so as future platforms featuring more
parallelism become available, it will show even better performance char-
acteristics.

4. Very Simple Embedded Implementation

The ESSENCE design was also deliberately constrained to ensure that it
can be reasonably implemented on 8-bit embedded platforms; the com-
pression function can be implemented entirely from AND, XOR, NOT,
and SHIFT. Furthermore, if look-up tables are used to implement the lin-
ear function, then there is no need to shift bits across byte boundaries.
This allows for very simple 8-bit implementations.

3



5. Simple Hardware Implementation of Compression Functions

The only non-linear function is F whose prime implicants are listed in Ap-
pendix A of ESSENCE: A Family of Cryptographic Hashing Algorithms.
The shift-register based design then makes the compression function ex-
tremely simple to implement in hardware.

6. Designed to Defend Against Linear and Differential Cryptanal-
ysis

As described in sections 3.5 and 3.6 of ESSENCE: A Family of Crypto-
graphic Hashing Algorithms, ESSENCE has been specifically designed to
be resistant to differential and linear cryptanalysis.

7. Well Established Design Principles

The compression functions are based entirely on the theory of shift register
sequences. The non-linear function, F, is used to drive non-linear feedback
shift registers, and the linear function, L, which combines the non-linear
streams is implemented as a linear feedback shift register. The theory of
shift registers sequences is old and well developed.

The compression functions are then used in Merkle-Damg̊ard based it-
erative chaining structures and Merkle hash trees. Both structures are
thoroughly established and well studied.

The Merkle-Damg̊ard structure also allows ESSENCE to be used in other
Merkle-Damg̊ard based protocols such as HMAC, pseudo-random number
generation, etc.

8. Tunable Security Parameter

ESSENCE provides a security parameter in the number of steps used
within the compression function. The minimum number of steps is 24
(cryptanalysis becomes possible if fewer than 24 steps are used and trivial
if fewer than 16 steps are used). The recommended number is 32, which is
the value used for the NIST competition. However, implementations may
choose to use a larger number (which must be a multiple of 8). The run
time of the algorithm scales linearly with the number of steps used.

9. Tunable Parallelism Parameter

The size of the Merkle hash trees used in ESSENCE is tune-able. Since the
NIST competition appears to focus primarily on sequential performance,
the value used for the NIST competition is 0 (corresponding to only one
Merkle-Damg̊ard block per tree, so each tree consists of only a root node).
However, applications needing a greater level of parallelism (e.g. whole
file-system hashing, distributed peer-to-peer based systems, etc.) may
choose much larger tree structures (and store intermediate results) to give
far superior performance and prevent re-hashing entire data sets when
only a small portion has been modified.

4



1.2 Disadvantages

Here we list what we consider to be the most serious disadvantages of ESSENCE.

1. Requires Assembly and Parallel Programming for High Speed
Implementations

Because the C programming language does not allow the programmer
to explicitly describe parallelism, it is not possible to get good perfor-
mance from pure C language implementations of ESSENCE. Assembly
programming is required to take advantage of the instruction-level paral-
lelism and to access vector instructions. Parallel programming constructs
such as OpenMP, MPI, or Threads are required to take advantage of the
thread-level parallelism designed into ESSENCE. In short, fast ESSENCE
implementations are highly non-trivial. An example of such an implemen-
tation using hand tuned assembly language and OpenMP is provided in
the Additional Implementations submitted to the NIST competition.

2. Slower Performance on Short Messages

The very designed structure which allows ESSENCE to take advantage
of parallelism adds overhead. For short messages, the overhead involved
in padding and other bookkeeping can be significant. Hence ESSENCE
performs poorly when processing very short messages.

3. Slower Performance on 8-bit Processors

Even though ESSENCE was designed to be simple to implement on resource-
limited processors, the implementation will necessarily be much slower
than on a large register processor. ESSENCE was designed to take full
advantage of instruction-level parallelism by using larger register sizes. On
small processors (with only 8 or 16-bit registers), the processor will have
to execute many more instructions to compensate for the smaller register
size. We estimate an execution rate of 2124 cycles per byte of message
size on an 8-bit processor.

4. Common Merkle-Damg̊ard Based Weaknesses

Since ESSENCE is based on Merkle-Damg̊ard iterative chaining, it shares
the weaknesses inherent in Merkle-Damg̊ard based hashing algorithms.

5. No Mathematical Proof of Reduction to a Known Hard Problem

Some current proposed hashing algorithms provide mathematical proofs of
security by demonstrating a reduction to a known hard problem (e.g. find-
ing a minimal length vector in a lattice, discrete logarithms, factorization,
etc.). Unfortunately, ESSENCE does not lend itself to such a reduction.
Although the compression function is shown to be resistant to differential
and linear cryptanalysis in ESSENCE: A Family of Cryptographic Hashing
Algorithms, this does not prove that it is secure.

5



2 Endian Conventions

Since ESSENCE must treat bytes of data as 32 or 64-bit integers, it is important
to have a convention for the byte ordering. We have chosen to use Little Endian
byte ordering. In other words, the least significant byte of an integer will be the
byte located in the smallest memory address. This is a pragmatic choice based
in the prevalence of the x86 architecture which uses Little Endian storage for
multi-byte integers. Figure 3 illustrates the difference between Big and Little
Endian conventions by showing the way the same sequence of eight bytes in
memory would be interpreted as a 64-bit integer (qword), two 32-bit integers
(dword), or four 16-bit integers (word).

byte[7]

Memory
Address

Data

0x00

0x11

0x22

0x33

0x44

0x55

0x66

0x77

0xaaaabb00

0xaaaabb01

0xaaaabb02

0xaaaabb03

0xaaaabb04

0xaaaabb05

0xaaaabb06

0xaaaabb07

Little Endian

Big Endian
0x0011223344556677

0x7766554433221100

byte[7] byte[6] byte[5] byte[4] byte[3] byte[2] byte[1] byte[0]

0x000x110x220x330x440x550x660x77

0x33220x55440x7766 0x1100

0x332211000x77665544

qword

qword

word[0]word[1]word[2]word[3]

0x00112233 0x44556677

dword[1]dword[0]

dword[1] dword[0]

0x66770x44550x0011 0x2233

word[0] word[1] word[2] word[3]

0x00 0x11 0x22 0x33 0x44 0x55 0x66 0x77

byte[0] byte[1] byte[2] byte[3] byte[4] byte[5] byte[6]

Figure 3: Byte Ordering

Although ESSENCE uses a Little Endian convention, that does not prevent it
from running on Big Endian processors, it simply requires a thoughtful imple-
mentation. (The reference implementation submitted to the NIST competition
runs correctly on Big and Little Endian processors. The additional implemen-
tation submitted has a configuration parameter which is used to indicate the
Endianness of the target platform.)

3 Algorithm Parameters

In this section we describe the algorithm parameters. It is important to note
that the value of the hash is dependent upon the algorithm parameters used.

6



3.1 Number of Steps in Compression Function

Name: ESSENCE COMPRESS NUM STEPS

Default Value: 32

ESSENCE COMPRESS NUM STEPS is the security parameter of the algo-
rithm. It defines the number of iterations of the update logic in the ESSENCE
compression function. As shown in ESSENCE: A Family of Cryptographic Hash-
ing Algorithms, a value of less than 24 is insecure, and the value used should be
a multiple of 8. For the NIST competition the value of this constant will be 32.

3.2 Size of Merkle-Damg̊ard Block

Name: ESSENCE MD BLOCK SIZE IN BYTES

Default Value: 1048576

This is the size, in bytes, to use for the Merkle-Damg̊ard Blocks. The MD Block
sizes must be multiples of 64 to ensure that the resulting blocks have a data
size in bits that is divisible by 512. For the NIST competition the value of this
constant will be 1048576 which is equal to 220.

3.3 Size of Merkle Hash Trees

Name: ESSENCE HASH TREE LEVEL

Default Value: 0

The ESSENCE HASH TREE LEVEL defines the “level” or “height” of the
Merkle hash trees used in the given implementation. There is a trade-off
between serial and parallel performance. Larger hash trees allow for greater
parallelism at the cost of a slower serial implementation. Likewise, smaller
hash trees result in faster serial implementations, but less parallelism. The
ESSENCE HASH TREE LEVEL changes the resulting value of the hash, so it
must be a fixed standard agreed upon for the given use. The number of Merkle-
Damg̊ard blocks hashed within a given tree is 2ESSENCE HASH TREE LEVEL. So,
a tree height of zero means there is only one MD block per tree. This parameter
is restricted to values between 0 and 255 inclusive. For the NIST competition
the value of this constant will be 0.

3.4 Small Organizational Constant

Name: ESSENCE ORGANIZATIONAL SMALL CONSTANT

7



Default Value: 0xb7e15162

The point of this parameter (and the following one) is give an organization
the flexibility to produce implementations of the algorithm that are unique to
the organization, project, network, server etc. The choices of values for these
to constants is arbitrary. There are no known “weak” choices. NOTE: These
values can not be considered secret, proprietary, or otherwise protected since
they can be easily recovered.

ESSENCE ORGANIZATIONAL SMALL CONSTANT is an unsigned 32-bit
integer. For the NIST competition, the value for this constant shall be the
first 8 hexadecimal digits of the fractional part of the base-16 expansion of the
Euler constant e.

3.5 Big Organizational Constant

Name: ESSENCE ORGANIZATIONAL BIG CONSTANT

Default Value: 0x8aed2a6abf715880

As with the previous parameter, this parameter provides flexibility for imple-
mentations.

ESSENCE ORGANIZATIONAL BIG CONSTANT is an unsigned 64-bit inte-
ger. For the NIST competition, the value for this constant shall be the next 16
hexadecimal digits of the fractional part of the base-16 expansion of e.

4 Merkle-Damg̊ard Blocks

Let us clarify some terminology. When we refer to a Merkle-Damg̊ard block, we
mean a very large block of data which will be hashed using a Merkle-Damg̊ard
construction. When we refer only to a “block” we mean a small amount of data,
either 256 or 512 bits, which is used as input into the compression function in
the Merkle-Damg̊ard construction. Hence, a “Merkle-Damg̊ard block” is divided
into “blocks” on which the compression function operates.

The data to be hashed is divided into Merkle-Damg̊ard blocks where each one,
except perhaps the last one, is ESSENCE MD BLOCK SIZE IN BYTES bytes
long. Each Merkle-Damg̊ard block is divided into blocks of either 256 or 512
bits depending upon the size of the requested hash. Hashes 256-bits or less
will use the 256-bit compression function with 256-bit blocks. Hashes of greater
than 256-bits will use the 512-bit compression function with 512-bit blocks. The
blocks are then hashed using a Merkle-Damg̊ard construction with an initial-
ization vector that depends upon the block number and algorithm parameters.

8



Let
G(R,K) = G(R,K,ESSENCE COMPRESS NUM STEPS)

denote the compression function as described in section 4 of ESSENCE: A Fam-
ily of Cryptographic Hashing Algorithms, then the construction is given by:

H0 = IVb

Hi = G(Hi−1,Mi−1)

where IVb is the initialization vector for Merkle-Damg̊ard block number b (see
below), and Mi is a 256 or 512-bit block. The final Hi is the value of the hash
of the Merkle-Damg̊ard block. Note that each Mi is defined to be an array of
eight integers (of either 32 or 64-bits), whereas the data is a stream of bytes.
We use Little Endian byte ordering to interpret the bytes as integers.

Except for the last Merkle-Damg̊ard block, there is no padding used on the
Merkle-Damg̊ard blocks. This is because each Merkle-Damg̊ard block is of the
same size (except perhaps the last). The total number of Merkle-Damg̊ard
blocks, the size of each Merkle-Damg̊ard block, and the length of the last block
are incorporated into the “final block” of the running hash (see section 6) to
prevent length extension attacks.

The last Merkle-Damg̊ard block is simply the remaining data. If needed, the
last block of the last Merkle-Damg̊ard block is padded with zeros to ensure that
it is the correct size for the compression function. Length extension attacks are
prevented by including the data bit length in the “final block” of the running
hash.

4.1 Merkle-Damg̊ard Block Initialization Vector

The first 32 bytes of the Merkle-Damg̊ard block initialization vector is the same
for the 256-bit and 512-bit compression function. Here are the values for the
first 32 bytes.

Bytes 0-7: An unsigned 64-bit integer representing the Merkle-Damg̊ard block
number in Little Endian format.

Bytes 8-15: An unsigned 64-bit integer representing the number of bytes used
in each Merkle-Damg̊ard block. This integer is in Little Endian format.
This is the ESSENCE MD BLOCK SIZE IN BYTES parameter.

Byte 16-17: An unsigned 16-bit integer representing the size, in bits, of the
hash requested. This integer is in Little Endian format. This value is
taken from the hashbitlen value.

Byte 18: An unsigned 8-bit integer representing the number of steps the up-
date logic in the compression function will use. This is the value of the
parameter ESSENCE COMPRESS NUM STEPS.

9



Byte 19: An unsigned 8-bit integer representing the level of the Merkle hash
trees to be used. This is the ESSENCE HASH TREE LEVEL parameter.

Bytes 20-23: An unsigned 32-bit integer. This integer is in Little Endian
format. This value is taken from the organizational algorithm parameter
ESSENCE ORGANIZATIONAL SMALL CONSTANT.

Bytes 24-31: An unsigned 64-bit integer. This integer is in Little Endian
format. This value is taken from the organizational algorithm parameter
ESSENCE ORGANIZATIONAL BIG CONSTANT.

If the 512-bit compression function is being used, then the next 32 bytes are
initialized from the hexadecimal expansion of the fractional part of pi. They
begin with the 64th digit and are as follows:

Bytes 32-39: The unsigned 64-bit integer constant 0x452821e638d01377 in
Little Endian.

Bytes 40-47: The unsigned 64-bit integer constant 0xbe5466cf34e90c6c in Lit-
tle Endian.

Bytes 48-55: The unsigned 64-bit integer constant 0xc0ac29b7c97c50dd in
Little Endian.

Bytes 56-63: The unsigned 64-bit integer constant 0x3f84d5b5b5470917 in
Little Endian.

5 Merkle Hash Trees

For the purposes of the NIST competition, this section may be ignored since
the Merkle hash trees are effectively not used (each tree consists only of a root
node whose value is just the hash of the associated Merkle-Damg̊ard block).

The Merkle hash trees are included in the definition of ESSENCE because
they allow for a very high degree of parallelism in the hashing structure, and
ESSENCE provides a parameter, ESSENCE HASH TREE LEVEL, which de-
termines the size of the trees to use. Larger hash trees favor greater parallelism
at the expense of slower sequential implementations. Since the NIST competi-
tion is primarily based on sequential performance, we choose to set this param-
eter to zero for the competition. The remainder of this sections discusses how
ESSENCE is defined to operate for non-trivial Merkle hash trees. We assume
that the reader is familiar with binary trees and the related terminology, data
structures, and algorithms.

For our purposes, a Merkle hash tree is a binary tree whose leaf nodes contain
the values of the Merkle-Damg̊ard block hashes (see Figure 4). The value of

10



Node 0

Level 0

Node 0 Node 1

Node 00 Node 01 Node 10 Node 11

Node 001 Node 010 Node 011 Node 100 Node 101 Node 110 Node 111

Level 1 Level 1

Level 2 Level 2 Level 2 Level 2

Level 3 Level 3 Level 3 Level 3 Level 3 Level 3 Level 3 Level 3

Node 000

Figure 4: A Level 3 Tree

each node is then defined in terms of the value of its children (if it has any)
according to the following rules:

1. A node exists if and only if at least one of its children exists or it is a leaf.

2. The value of a leaf node is the hash of the corresponding Merkle-Damg̊ard
block.

3. The value of a non-leaf node is:

(a) The JOIN of the values of its children if both children exist.
(b) The value of its child if only one child exists.

We define the JOIN of values of two nodes as:

JOIN(X,Y ) = G(G(IV, X), Y )

where G is the compression function as defined above and IV is an initialization
vector. Table 1 gives the initialization vector, IV, used for the JOIN for the 256-
bit and 512-bit case. The IV values are taken from the hexadecimal expansion
of the fractional part of π. Note that the 256-bit values have been chosen so
that in Little Endian representation they correspond to the first 4 integers in
the 512-bit IV.

The rules allow for incomplete trees to have a well defined value.

11



IV 512-bit case 256-bit case
IV[0] 0x243f6a8885a308d3 0x85a308d3
IV[1] 0x13198a2e03707344 0x243f6a88
IV[2] 0xa4093822299f31d0 0x03707344
IV[3] 0x082efa98ec4e6c89 0x13198a2e
IV[4] 0x452821e638d01377 0x299f31d0
IV[5] 0xbe5466cf34e90c6c 0xa4093822
IV[6] 0xc0ac29b7c97c50dd 0xec4e6c89
IV[7] 0x3f84d5b5b5470917 0x082efa98

Table 1: JOIN Initialization Vector Values

6 Running Hash

The resulting values of the root nodes of all the Merkle hash trees are combined
sequentially in a final Merkle-Damg̊ard construction we call the “running hash”.
Since there are two possible block size, either 256-bit or 512-bit, the running hash
has an initialization vector (IV) which may take one of two different possible
values depending upon which block size is used. The IV used is the same as the
IV for the JOIN operation described in the previous section. Table 1 gives the
IV values, which are just the hexadecimal expansion of the fractional part of π.

After all data has been hashed, the running hash will compress one last block
which we refer to as the “final block”. The final block contains some of the
algorithm parameters, the number of complete Merkle-Damg̊ard blocks, and
the length in bits of the final incomplete Merkle-Damg̊ard block (which may be
zero). Together, this encodes the total data length. The final block prevents
length extension attacks. The final block looks similar to the Merkle-Damg̊ard
block initialization vectors, but with the number of complete Merkle-Damg̊ard
blocks and data length of last block replacing some values. The precise descrip-
tion of the final block is below.

The final block is different depending upon if it is 256 or 512 bits. In either
case, the first 32 bytes are the same:

Bytes 0-7: An unsigned 64-bit integer representing the number of complete
Merkle-Damg̊ard blocks processed.

Bytes 8-15: An unsigned 64-bit integer representing the number of bytes used
in each Merkle-Damg̊ard block. This integer is in Little Endian format.
This is the ESSENCE MD BLOCK SIZE IN BYTES parameter.

Byte 16-17: An unsigned 16-bit integer representing the size, in bits, of the
hash requested. This integer is in Little Endian format. This value is
taken from the hashbitlen value.

12



Byte 18: An unsigned 8-bit integer representing the number of steps the up-
date logic in the compression function will use. This is the value of the
parameter ESSENCE COMPRESS NUM STEPS.

Byte 19: An unsigned 8-bit integer representing the level of the Merkle hash
trees to be used. This is the ESSENCE HASH TREE LEVEL parameter.

Bytes 20-23: An unsigned 32-bit integer. This integer is in Little Endian
format. This value is take from the organizational algorithm parameter
ESSENCE ORGANIZATIONAL SMALL CONSTANT.

Bytes 24-31: An unsigned 64-bit integer representing the number of bits hashed
in the final incomplete Merkle-Damg̊ard block. If the size of the total data
hashed is divisible by the Merkle-Damg̊ard block size, then there is no in-
complete Merkle-Damg̊ard block, so the value of this integer would be
zero.

If the 512-bit compression function is being used, then the next 32 bytes are
initialized from the hexadecimal expansion of the fractional part of pi. They
begin with the 64th digit and are as follows:

Bytes 32-39: The unsigned 64-bit integer constant 0x452821e638d01377 in
Little Endian.

Bytes 40-47: The unsigned 64-bit integer constant 0xbe5466cf34e90c6c in Lit-
tle Endian.

Bytes 48-55: The unsigned 64-bit integer constant 0xc0ac29b7c97c50dd in
Little Endian.

Bytes 56-63: The unsigned 64-bit integer constant 0x3f84d5b5b5470917 in
Little Endian.

7 Expected Strength

Since ESSENCE is primarily a Merkle-Damg̊ard based design, its strength
against first pre-image and first collision attacks is based in the compression
functions. In ESSENCE: A Family of Cryptographic Hashing Algorithms we
show that for both the 256-bit and 512-bit compression functions, a minimum
of 24 steps is required to provide resistance to differential and linear cryptanaly-
sis. We expect that the compression function will be vulnerable to those attacks
with fewer than 24 steps (and trivially vulnerable with fewer than 16 steps). As
a matter of caution, we recommend 32 steps. The number of steps taken must
be a multiple of eight.

13



With at least 32 steps used for the compression functions, we expect that the
amount of work required to find a first collision will be on the order of a brute
force search (2n/2 for an n-bit hash). Likewise we expect that the work required
to find a first pre-image will be on the order of a brute force search (2n for an
n-bit hash).

8 Computational Efficiency

8.1 Memory Required

If the accelerated version of the L function is required, then the implementation
must include a table of 256 4-byte entries (for L32) and a table of 256 8-byte
entries (for L64). This requires a minimum of 3072 bytes for the tables, but the
actual size used in the reference platform was seen to be 3448 bytes (including
symbol tables and padding for data alignment).

The executable code size is vastly dependent upon compilation parameters and
which libraries are linked in. The reference implementation required approxi-
mately 24,000 bytes on a platform similar to the NIST reference platform.

The amount of RAM required for variable storage during execution (including
stack space) is also implementation dependent. We estimate that with the
reference implementation fewer than 16,000 bytes are required. More advanced
implementation using parallel methods may require substantially more RAM
and dynamic memory allocation support.

8.2 Measured Performance on Intel Core 2 Platforms

Appendix A gives the results of timing tests on three Intel Core 2 Platforms.
The platforms tested were Windows Vista 32-bit and Windows Vista 64-bit on a
duel core Intel Core 2 machine similar to the NIST reference platform and a 64-
bit Linux distribution on a quad core Xeon based machine. The specifications
for the test platforms are also given in Appendix A. We tested the serial ANSI
C based implementation as well as a parallel version using C with OpenMP and
x86 64 assembly code. Table 2 summarize the results for message sizes of over
eight megabytes. Note that we measure performance in processor clock cycles
per byte of message size which is independent of the clock frequency.

14



Platform Implementation Hash Size cycles/byte
224 150.8

Vista 32 Serial C-only 256 149.8
Core 2 384 176.5

Dual Core 512 176.5
224 63.7

Serial C-only 256 63.6
384 64.2

Vista 64 512 64.2
Core 2 224 19.7

Dual Core OpenMP and Assembly 256 19.5
384 23.5
512 23.5
224 10.3

OpenMP and Assembly 256 9.9
384 12.1

Linux 64 512 12.1
Xeon 224 22.4

Quad Core OpenMP and Assembly 256 22.1
Constant Time 384 46.2

512 46.2

Table 2: Summary of Performance on Core2 Based Platforms

8.3 Estimated Performance on 8-bit Platforms

We did not have access to an 8-bit development platform on which to test
ESSENCE. However, based on the performance of the serial C code on the
32-bit Intel Core 2 platform we estimate

8-bit performance ≥ 177 · 4 · 3 = 2124 cycles/byte.

(The multiple of three is based on the assumption that an 8-bit processor can
only execute one instruction per clock cycle while the Core 2 can average three
instructions per cycle.)

8.4 Hardware Estimates

At the time of this writing, no hardware implementations have been constructed.
However, we can give some very gross bounds in the upper and lower limits of
the number of gates needed to implement the stepping logic in the compres-
sion function. One difficulty, though, is the definition of a “logic gate” for the
purposes of comparing estimates. Without having a fixed technology for the
hardware implementation we do not know if “logic gate” indicates only a single,

15



2-input NAND gate, or if “logic gate” might refer to something as complicated
as a 38-input XOR gate. In the following sections we provide estimates for both,
but we caution the reader that these are very broad estimates.

8.4.1 Conservative Estimate

We give here estimates of the gate count for the stepping logic to implement a
single step of the compression function. For the purposes of making conservative
estimates, we will assume that multi-input logic gates are constructed from 2-
input logic gates, and we will give our gate count estimates in terms of 2-input
logic gates. (e.g. We assume that a 7-input AND gate will be constructed from
six 2-input AND gates. While we know this is not strictly true, it gives an upper
bound on the number of gates required.)

The only non-linear function is F whose prime implicants are listed in Appendix
A of ESSENCE: A Family of Cryptographic Hashing Algorithms. The F func-
tion requires 63 prime implicants, each with seven factors. Hence, the prime
implicants require 63 ·6 = 378 2-input AND gates. The 63 prime implicants can
then be combined with 62 2-input OR gates. So, each bit of output requires at
most 440 2-input logic gates.

So, for the 256-bit compression function, F requires 32 · 440 = 14080 gates. For
the 512-bit compression function, F requires 64 · 440 = 28160 gates.

Each bit of output from the linear function L64 is dependent on at most 38 bits
of input. A 38-input XOR gate can be constructed from 37 2-input XOR gates.
So L64 uses at most 64 · 37 = 2368 gates.

Each bit of output from the linear function L32 is dependent on at most 19 bits
of input. A 19-input XOR gate can be constructed from 18 2-input XOR gates.
So L32 uses at most 32 · 18 = 576 gates.

Table 3 summarizes the result.

F function L function Total
256-bit 14,080 576 14,656
512-bit 28,160 2,368 30,528

Table 3: Conservative Estimates Using Only 2-Input Logic Gates

8.4.2 Optimistic Estimates

The conservative estimates given in the previous section assume that all logic is
being implemented with 2-input gates. If, on the other hand, we assume that

16



we have logic gates of whatever size we need, then the estimates become much
nicer.

In this case, each bit of output of the F function requires 63 7-input AND gates,
and a single 63-input OR gate, for a total of 64 gates per bit. So, the 256-bit
compression function requires 2048 gates, and the 512-bit compression function
requires 4096 gates.

The linear function L32 requires 32 19-input XOR gates.

The linear function L64 requires 64 38-input XOR gates.

The results are summarized in Table 4.

F function L function Total
256-bit 2,048 32 2,080
512-bit 4,096 64 4,160

Table 4: Optimistic Gate Count Estimates

9 Reference Implementation

The “Reference Implementation” is purely expository and is intended for debug-
ging and testing purposes. The reference implementation has been written in
ANSI C. However, the current ANSI C standard, C99, is fully supported by very
few compilers. So, it is worth mentioning that the only C99 feature required
by the reference implementation is support of the long long data type for 64-
bit integers. In the ANSI C99 standard, the data types int32_t, uint32_t,
int64_t, and uint64_t are defined in “stdint.h”. We would prefer to simply
used the data types defined in “stdint.h” since this ensures the greatest portabil-
ity. However, we discovered that some widely used development platforms did
not have the “stdint.h” file available even though a long long 64-bit integer
data type was supported. To make the reference implementation available on
the widest possible range of compilers, we define int32_t, uint32_t, int64_t,
and uint64_t in essence_api.h based on the assumption that int is a 32-bit
integer and long long is a 64-bit integer. If these assumptions are incorrect for
a particular target platform, then the typedef statements in essence_api.h
should be modified. If the target platform supports the C99 stdint.h data
types, then essence_api.h should be modified to include the stdint.h header
file and the superfluous definitions can be removed. Table 5 summarizes the
data size assumptions

The file essence_api.h also defines a constant called ESSENCE DEBUG LEVEL
which controls the amount of debugging output generated by the implementa-
tion.

17



typedef in essence_api.h Defined as Assumed to be
DataLength unsigned long long 64-bit unsigned integer
uint64_t unsigned long long 64-bit unsigned integer
int64_t long long 64-bit signed integer
uint32_t unsigned int 32-bit unsigned integer
int32_t int 32-bit signed integer

Table 5: Data Size Assumptions

10 Additional Implementation

The “Additional Implementation” includes x86 64 assembly language and OpenMP
parallel C code and is intended to demonstrate how to take advantage of the
instruction-level and thread-level parallelism present in ESSENCE. Also in-
cluded in the additional implementation are versions of the compression func-
tions which use the constant-time calculation of the linear function, L, instead of
look-up tables. The additional implementation has been designed with a mod-
ular approach allowing for compilation on a wide range of platforms (including
non-x86 64 platforms and Big Endian platforms). The compilation options are
controlled by constants declared in essence_api.h and compiler flags. Subsec-
tions 10.1 through 10.5 describes the constants and their effects.

The x86 64 assembly code included has been written for use with the YASM
assembler [Joh08]. YASM was chosen because it allowed for a single assembly file
to be used to generate object files for use with Windows Vista, Mac OS X, and
Linux. YASM is freely available open source software. The NIST submission for
ESSENCE includes source code and binary executables for YASM. We wish to
acknowledge Peter Johnson and Brian Gladman for their assistance with YASM.

10.1 Debug Level

Name: ESSENCE DEBUG LEVEL

This controls the level of debugging code that is compiled in. Level zero prevents
any debug code from being compiled, and does not require that “stdio.h” and the
corresponding C libraries be available. Each bit of ESSENCE DEBUG LEVEL
controls a different type of debugging output. The bits are given in Table 6 in
Little Endian order (i.e. bit 0 is the least significant bit).

18



ESSENCE DEBUG LEVEL bit Description

0
The hash “state” variable is printed
at the end of every call to Init, Up-
date, or Final.

1
The hash state is printed at the end
of every call to Merge Tree 256 or
Merge Tree 512.

2 The hash state is printed at the end
of every call to Join 256 or Join 512.

3

The values of all intermediate com-
putations are printed within the com-
pression functions. NOTE: this level
of output is only available with basic
C language versions of the compres-
sion functions. It is not supported
in the constant time versions or in
the assembly language versions. Also
note that this will generate a tremen-
dous amount of output!

Table 6: ESSENCE DEBUG LEVEL Bit Usage

10.2 Use Constant Time Code

Name: ESSENCE USE CONSTANT TIME CODE

If ESSENCE USE CONSTANT TIME CODE is set to 1, then the code will link
against the constant-time versions of the compression functions. The constant-
time versions do not use look-up tables and are immune to cache-based timing
attacks. This option makes the code somewhat slower (it takes approximately
three to four times as long to hash the same amount of data) however it is much
more secure and should be used for any implementation in which secret data is
being hashed.

10.3 Use Parallel Code

Name: ESSENCE USE PARALLEL CODE

If ESSENCE USE PARALLEL CODE is set to 1, then we assume that the
code is being compiled using OpenMP for a target with large memory and CPU

19



resources. This will enable options that optimize for speed on large, highly-
parallel platforms. However, these options are much slower on resource-limited
platforms. Note that the compiler probably needs to receive flags to build with
OpenMP. See the included Makefiles for details.

Also note: Microsoft Visual Studio requires vcomp90.dll for the resulting
OpenMP based executable to run. This dll is not part of the standard Vista
distribution, but it is included in the Microsoft Visual C++ Redistributable
Package which is available free of charge from Microsoft. However, the terms
of the redistribution license are too restrictive to allow this dll to be included
in the NIST submission for ESSENCE. Therefore, anyone wishing to compile
the OpenMP enabled version of ESSENCE with Microsoft Visual Studio must
obtain vcomp90.dll independently and place it in the same directory (folder)
where the ESSENCE executable is located.

10.4 Assume Little Endian

Name: ESSENCE ASSUME LITTLE ENDIAN

If this option is set to 1, then we assume that we are on a Little Endian platform
and optimize accordingly.

10.5 Use Core2 Assembly Code

Name: ESSENCE USE CORE2 ASSEMBLY

If this option is set to 1, then we assume that we are using the Intel Core 2
assembly code. This option requires that the assembly code be assembled and
linked against. Note that YASM, our assembler, must have the correct options
passed in to tell it what type of platform to target. See the included Makefiles
for details.

11 Intellectual Property Statements

I, Jason Worth Martin, am not aware of any patents applicable to the ESSENCE
hashing algorithm. I do not intend to pursue any patents on ESSENCE, and I
wish for it to be available royalty free, world-wide, with no restrictions.

20



12 Full Disclosure

I, Jason Worth Martin, worked for the Naval Research Laboratory from 1996
through 1999 in a COMSEC group. As a result of my work with classified
cryptographic algorithms, I am required to submit any potentially sensitive
papers to the National Security Agency’s pre-publication review process. I
submitted ESSENCE: A Family of Cryptographic Hashing Algorithms for pre-
publication review, and it was cleared for public release. At no time did the NSA
or any other government organization request that I make any modifications to
the algorithm or the paper. The design of ESSENCE has not been influenced
in any way by the NSA.

References

[Ber04] Daniel J. Bernstein. Cache-timing attacks on AES.
http://cr.yp.to/papers.html#cachetiming, 2004.

[Fog08] Agner Fog. Software Optimization Manuals, 2008.
http://www.agner.org/optimize.

[Joh08] Peter Johnson. The Yasm Modular Assembly Project, 2008.
http://www.tortall.net/projects/yasm.

21



A Timing Data

Included in the “Additional Implementation” section of the NIST submission for
ESSENCE are x86 64 assembly language implementations for the compression
functions (tuned to the Intel Core 2 micro-architecture) and parallel implemen-
tations, using OpenMP, of the Update function. The assembly code has been
written to work with 64-bit Windows, Linux, and Mac OS X by using the Yasm
assembler ([Joh08]). The additional implementation has header file configura-
tion parameters which, together with compiler flags and build configuration,
can be used to select various levels of optimization for the resulting code. In
this section we give the timing results for some of these configurations.

The program “speed test.c” which is included in the “Additional Implemen-
tation” was used to generate these timing data. The timing is for the “Hash”
function which performs all-at-once hashing and includes the time for “Init” and
“Final”. Therefore, we feel that the timing data is a very accurate reflection of
the total performance of ESSENCE in real world systems.

The timing analysis in these sections was performed by using the “read time
stamp counter” or “rdtsc” instruction available on the x86 platform. This ma-
chine instruction returns the value of the “time stamp counter” which is a 64-bit
unsigned counter that is incremented once per processor clock cycle. By reading
the counter once before performing the hash and once after, the total number
of processor clock cycles used during the hash can be computed. This is the
preferred method for timing execution on a x86 platform. We observed that
other timing methods (such as using the ANSI C standard library functions
included from the “time.h” header file) were often grossly inaccurate. An ex-
cellent description of software timing on the x86 architecture is given by Agner
Fog in [Fog08].

We report our timing information in “clock cycles” and “clock cycles per byte”
because we believe that is the most meaningful description of an algorithm’s
efficiency. Processors with the same architecture but clocked at different rates
will still have similar “cycles/byte” performance.

For brevity in the remaining sections, Table 7 lists the test platforms together
with a short name we will use to describe them in the following sections.

22



Vista32 (Vista Desktop)

Processor: Intel Core2 Duo E8400 (Dual Core)

Clock Freq.: 3.00 GHz

RAM: 4 GB

OS: Windows Vista Ultimate 32-bit

C Compiler: Visual Studio Professional Edition 2008

Vista64 (Vista Server)

Processor: Intel Core2 Duo E8400 (Dual Core)

Clock Freq.: 3.00 GHz

RAM: 4 GB

OS: Windows Vista Ultimate 64-bit

C Compiler: Visual Studio Professional Edition 2008 (using 64-bit tar-
get)

Assembler: Yasm version 0.7.1.2093 for Windows

Linux64 (Linux Server)

Processor: Intel Xeon E5320 (Quad Core)

Clock Freq.: 1.86 GHz

RAM: 16 GB

OS: Ubuntu (Hardy Heron 64-bit Server)

C Compiler: gcc version 4.2.3

Assembler: Yasm version 0.7.1.2093 for Linux

Table 7: Test Platforms

23



A.1 Serial C-only Code

Message Size (bytes) CPU Clock Cycles Cycles/Byte
1 52542.00 52542.000
2 24543.00 12271.500
4 23967.00 5991.750
8 23940.00 2992.500

16 23859.00 1491.188
32 23994.00 749.813
64 30816.00 481.500

128 45252.00 353.531
256 73908.00 288.703
512 131004.00 255.867

1024 245232.00 239.484
2048 473274.00 231.091
4096 937521.00 228.887
8192 1849536.00 225.773

16384 3757473.00 229.338
32768 7380783.00 225.244
65536 14852241.00 226.627

131072 29416581.00 224.431
262144 59096646.00 225.436
524288 118173843.00 225.399

1048576 173950551.00 165.892
2097152 314679636.00 150.051
4194304 631810395.00 150.635
8388608 1258976709.00 150.082

16777216 2530043235.00 150.802
33554432 5062205646.00 150.865
67108864 10614809142.00 158.173

134217728 20442744342.00 152.310
268435456 40323408885.00 150.216
536870912 80645706153.00 150.214

Table 8: Vista32 Serial C-only Code: 224 Bit Hash Length

24



Message Size (bytes) CPU Clock Cycles Cycles/Byte
1 21528.00 21528.000
2 16245.00 8122.500
4 16191.00 4047.750
8 15921.00 1990.125

16 15930.00 995.625
32 15786.00 493.313
64 20574.00 321.469

128 30195.00 235.898
256 49086.00 191.742
512 87327.00 170.561

1024 163251.00 159.425
2048 315522.00 154.063
4096 620352.00 151.453
8192 1229346.00 150.067

16384 2447856.00 149.405
32768 4884993.00 149.078
65536 9759699.00 148.921

131072 19653237.00 149.942
262144 39230316.00 149.652
524288 78464556.00 149.659

1048576 156936114.00 149.666
2097152 314040825.00 149.746
4194304 627730083.00 149.663
8388608 1254825810.00 149.587

16777216 2513877678.00 149.839
33554432 5027582601.00 149.834
67108864 10055769912.00 149.843

134217728 20120653458.00 149.911
268435456 40771364418.00 151.885
536870912 80434574253.00 149.821

Table 9: Vista32 Serial C-only Code: 256 Bit Hash Length

25



Message Size (bytes) CPU Clock Cycles Cycles/Byte
1 101583.00 101583.000
2 36243.00 18121.500
4 35883.00 8970.750
8 35757.00 4469.625

16 35676.00 2229.750
32 35730.00 1116.563
64 36693.00 573.328

128 47016.00 367.313
256 69534.00 271.617
512 114588.00 223.805

1024 204687.00 199.890
2048 384894.00 187.937
4096 745614.00 182.035
8192 1466487.00 179.015

16384 2908467.00 177.519
32768 5792571.00 176.775
65536 11708415.00 178.656

131072 23178447.00 176.838
262144 46336833.00 176.761
524288 92482965.00 176.397

1048576 185049117.00 176.477
2097152 369443169.00 176.164
4194304 739405584.00 176.288
8388608 1481332599.00 176.589

16777216 2964869199.00 176.720
33554432 5920507953.00 176.445
67108864 11847876471.00 176.547

134217728 23677354197.00 176.410
268435456 47716990668.00 177.760
536870912 95044054518.00 177.033

Table 10: Vista32 Serial C-only Code: 384 Bit Hash Length

26



Message Size (bytes) CPU Clock Cycles Cycles/Byte
1 45810.00 45810.000
2 36891.00 18445.500
4 35964.00 8991.000
8 35793.00 4474.125

16 35793.00 2237.063
32 35910.00 1122.188
64 36855.00 575.859

128 47169.00 368.508
256 69678.00 272.180
512 114741.00 224.104

1024 204822.00 200.021
2048 385056.00 188.016
4096 746208.00 182.180
8192 1467054.00 179.084

16384 2909439.00 177.578
32768 5794272.00 176.827
65536 11717190.00 178.790

131072 23185116.00 176.888
262144 47559780.00 181.426
524288 92537460.00 176.501

1048576 185820732.00 177.212
2097152 369701865.00 176.288
4194304 740017260.00 176.434
8388608 1478803347.00 176.287

16777216 2969442207.00 176.993
33554432 5924039652.00 176.550
67108864 11846315466.00 176.524

134217728 23686544520.00 176.479
268435456 47366473680.00 176.454
536870912 95320476252.00 177.548

Table 11: Vista32 Serial C-only Code: 512 Bit Hash Length

27



Message Size (bytes) CPU Clock Cycles Cycles/Byte
1 40896.00 40896.000
2 11934.00 5967.000
4 11349.00 2837.250
8 11115.00 1389.375

16 11214.00 700.875
32 11592.00 362.250
64 14067.00 219.797

128 20232.00 158.063
256 32355.00 126.387
512 56601.00 110.549

1024 105183.00 102.718
2048 202338.00 98.798
4096 403470.00 98.503
8192 791226.00 96.585

16384 1572399.00 95.972
32768 3138147.00 95.769
65536 6220620.00 94.919

131072 12683286.00 96.766
262144 25601670.00 97.663
524288 50051709.00 95.466

1048576 100535859.00 95.878
2097152 200337714.00 95.528
4194304 315884169.00 75.313
8388608 533940570.00 63.651

16777216 1067966937.00 63.656
33554432 2140471071.00 63.791
67108864 4281994476.00 63.807

134217728 8606533941.00 64.124
268435456 17163917919.00 63.941
536870912 34409397222.00 64.092

Table 12: Vista64 Serial C-only Code: 224 Bit Hash Length

28



Message Size (bytes) CPU Clock Cycles Cycles/Byte
1 13662.00 13662.000
2 7794.00 3897.000
4 7677.00 1919.250
8 7524.00 940.500

16 7488.00 468.000
32 7866.00 245.813
64 9387.00 146.672

128 13554.00 105.891
256 21591.00 84.340
512 37800.00 73.828

1024 70083.00 68.440
2048 134865.00 65.852
4096 265716.00 64.872
8192 526824.00 64.310

16384 1040760.00 63.523
32768 2353671.00 71.828
65536 4169943.00 63.628

131072 8400546.00 64.091
262144 16596027.00 63.309
524288 33469101.00 63.837

1048576 66836430.00 63.740
2097152 133322382.00 63.573
4194304 266431086.00 63.522
8388608 533262735.00 63.570

16777216 1093745862.00 65.192
33554432 2148291846.00 64.024
67108864 4526712351.00 67.453

134217728 8814521493.00 65.673
268435456 17087096790.00 63.654
536870912 34163343981.00 63.634

Table 13: Vista64 Serial C-only Code: 256 Bit Hash Length

29



Message Size (bytes) CPU Clock Cycles Cycles/Byte
1 70695.00 70695.000
2 14418.00 7209.000
4 14040.00 3510.000
8 13905.00 1738.125

16 13905.00 869.063
32 13878.00 433.688
64 14670.00 229.219

128 18054.00 141.047
256 25974.00 101.461
512 42129.00 82.283

1024 74529.00 72.782
2048 139356.00 68.045
4096 269676.00 65.839
8192 584181.00 71.311

16384 1047321.00 63.923
32768 2084742.00 63.621
65536 4162230.00 63.511

131072 8313399.00 63.426
262144 16920054.00 64.545
524288 33615603.00 64.117

1048576 66850767.00 63.754
2097152 134338158.00 64.057
4194304 269765856.00 64.317
8388608 540336816.00 64.413

16777216 1078780932.00 64.300
33554432 2157495300.00 64.298
67108864 4309556715.00 64.217

134217728 8593515063.00 64.027
268435456 17246226159.00 64.247
536870912 34485393087.00 64.234

Table 14: Vista64 Serial C-only Code: 384 Bit Hash Length

30



Message Size (bytes) CPU Clock Cycles Cycles/Byte
1 19620.00 19620.000
2 14526.00 7263.000
4 13959.00 3489.750
8 13932.00 1741.500

16 13950.00 871.875
32 13941.00 435.656
64 14535.00 227.109

128 18063.00 141.117
256 26118.00 102.023
512 42309.00 82.635

1024 74781.00 73.028
2048 139590.00 68.159
4096 269703.00 65.845
8192 528876.00 64.560

16384 1047906.00 63.959
32768 2086551.00 63.676
65536 4162644.00 63.517

131072 8314146.00 63.432
262144 16691274.00 63.672
524288 34556103.00 65.911

1048576 67321890.00 64.203
2097152 135612738.00 64.665
4194304 270102834.00 64.398
8388608 540844002.00 64.474

16777216 1073242620.00 63.970
33554432 2158172415.00 64.319
67108864 4315229118.00 64.302

134217728 8625762279.00 64.267
268435456 17217749502.00 64.141
536870912 34997906628.00 65.189

Table 15: Vista64 Serial C-only Code: 512 Bit Hash Length

31



A.2 Parallel C with Assembly Code

Message Size (bytes) CPU Clock Cycles Cycles/Byte
1 29160.00 29160.000
2 8703.00 4351.500
4 8370.00 2092.500
8 8325.00 1040.625

16 8307.00 519.188
32 8631.00 269.719
64 10368.00 162.000

128 14850.00 116.016
256 23895.00 93.340
512 42048.00 82.125

1024 78300.00 76.465
2048 150372.00 73.424
4096 300483.00 73.360
8192 589896.00 72.009

16384 1171323.00 71.492
32768 2409138.00 73.521
65536 4675824.00 71.347

131072 9444024.00 72.052
262144 19520856.00 74.466
524288 37757070.00 72.016

1048576 76409658.00 72.870
2097152 92568402.00 44.140
4194304 93318552.00 22.249
8388608 185877378.00 22.158

16777216 332907885.00 19.843
33554432 660749913.00 19.692
67108864 1585242576.00 23.622

134217728 2976319539.00 22.175
268435456 5297908599.00 19.736
536870912 10600642809.00 19.745

Table 16: Vista64 Parallel C with Assembly Code: 224 Bit Hash Length

32



Message Size (bytes) CPU Clock Cycles Cycles/Byte
1 15525.00 15525.000
2 7650.00 3825.000
4 7542.00 1885.500
8 7506.00 938.250

16 7434.00 464.625
32 7731.00 241.594
64 9270.00 144.844

128 13320.00 104.063
256 21303.00 83.215
512 37368.00 72.984

1024 69354.00 67.729
2048 133173.00 65.026
4096 262908.00 64.187
8192 520794.00 63.573

16384 1035441.00 63.198
32768 2164266.00 66.048
65536 4155606.00 63.410

131072 8303553.00 63.351
262144 16466796.00 62.816
524288 32884389.00 62.722

1048576 66897927.00 63.799
2097152 81571095.00 38.896
4194304 81811107.00 19.505
8388608 163024200.00 19.434

16777216 326044881.00 19.434
33554432 650667528.00 19.391
67108864 1308736350.00 19.502

134217728 2607859422.00 19.430
268435456 5222560113.00 19.456
536870912 10438217325.00 19.443

Table 17: Vista64 Parallel C with Assembly Code: 256 Bit Hash Length

33



Message Size (bytes) CPU Clock Cycles Cycles/Byte
1 20187.00 20187.000
2 10737.00 5368.500
4 10395.00 2598.750
8 10422.00 1302.750

16 10431.00 651.938
32 10386.00 324.563
64 10899.00 170.297

128 13311.00 103.992
256 19332.00 75.516
512 31140.00 60.820

1024 54963.00 53.675
2048 102546.00 50.071
4096 197901.00 48.316
8192 388242.00 47.393

16384 768825.00 46.925
32768 1574028.00 48.036
65536 3052593.00 46.579

131072 6096753.00 46.515
262144 12210876.00 46.581
524288 24445044.00 46.625

1048576 48906612.00 46.641
2097152 49161681.00 23.442
4194304 97927560.00 23.348
8388608 196342038.00 23.406

16777216 390873168.00 23.298
33554432 783326313.00 23.345
67108864 1573185105.00 23.442

134217728 3136766508.00 23.371
268435456 6286136454.00 23.418
536870912 12551085612.00 23.378

Table 18: Vista64 Parallel C with Assembly Code: 384 Bit Hash Length

34



Message Size (bytes) CPU Clock Cycles Cycles/Byte
1 16029.00 16029.000
2 10899.00 5449.500
4 10557.00 2639.250
8 10440.00 1305.000

16 10503.00 656.438
32 10458.00 326.813
64 10962.00 171.281

128 13419.00 104.836
256 19350.00 75.586
512 31275.00 61.084

1024 55008.00 53.719
2048 102627.00 50.111
4096 197973.00 48.333
8192 388431.00 47.416

16384 769266.00 46.952
32768 1546758.00 47.203
65536 3054501.00 46.608

131072 6160626.00 47.002
262144 12214053.00 46.593
524288 24492879.00 46.716

1048576 48757005.00 46.498
2097152 48850425.00 23.294
4194304 97885071.00 23.338
8388608 195828786.00 23.345

16777216 392298390.00 23.383
33554432 781805088.00 23.300
67108864 1579094595.00 23.530

134217728 3137515398.00 23.376
268435456 6275520387.00 23.378
536870912 12566398068.00 23.407

Table 19: Vista64 Parallel C with Assembly Code: 512 Bit Hash Length

35



Message Size (bytes) CPU Clock Cycles Cycles/Byte
1 20965.00 20965.000
2 9177.00 4588.500
4 8904.00 2226.000
8 8855.00 1106.875

16 8771.00 548.188
32 9429.00 294.656
64 11256.00 175.875

128 16464.00 128.625
256 26845.00 104.863
512 47642.00 93.051

1024 89208.00 87.117
2048 172319.00 84.140
4096 360304.00 87.965
8192 677061.00 82.649

16384 1348256.00 82.291
32768 2687167.00 82.006
65536 5368251.00 81.913

131072 10731063.00 81.872
262144 21450065.00 81.826
524288 42903560.00 81.832

1048576 86003253.00 82.019
2097152 83972945.00 40.041
4194304 85288231.00 20.334
8388608 156642185.00 18.673

16777216 171827628.00 10.242
33554432 343946687.00 10.250
67108864 687325310.00 10.242

134217728 1373095311.00 10.230
268435456 2745482292.00 10.228
536870912 5489440446.00 10.225

Table 20: Linux64 Parallel C with Assembly Code: 224 Bit Hash Length

36



Message Size (bytes) CPU Clock Cycles Cycles/Byte
1 12257.00 12257.000
2 9660.00 4830.000
4 9247.00 2311.750
8 9065.00 1133.125

16 8841.00 552.562
32 9212.00 287.875
64 11284.00 176.312

128 16492.00 128.844
256 26873.00 104.973
512 47684.00 93.133

1024 89229.00 87.138
2048 172340.00 84.150
4096 339241.00 82.823
8192 671692.00 81.994

16384 1338211.00 81.678
32768 2670598.00 81.500
65536 5333860.00 81.388

131072 10679354.00 81.477
262144 21320152.00 81.330
524288 42633521.00 81.317

1048576 85404347.00 81.448
2097152 82840996.00 39.502
4194304 82902918.00 19.766
8388608 84586159.00 10.083

16777216 166764122.00 9.940
33554432 331725639.00 9.886
67108864 663965428.00 9.894

134217728 1327106249.00 9.888
268435456 2654319528.00 9.888
536870912 5309436762.00 9.890

Table 21: Linux64 Parallel C with Assembly Code: 256 Bit Hash Length

37



Message Size (bytes) CPU Clock Cycles Cycles/Byte
1 38976.00 38976.000
2 10864.00 5432.000
4 10339.00 2584.750
8 10325.00 1290.625

16 10423.00 651.438
32 10409.00 325.281
64 11592.00 181.125

128 13300.00 103.906
256 19208.00 75.031
512 31164.00 60.867

1024 55132.00 53.840
2048 104538.00 51.044
4096 215565.00 52.628
8192 439229.00 53.617

16384 793100.00 48.407
32768 1578360.00 48.168
65536 3155684.00 48.152

131072 6340593.00 48.375
262144 12624199.00 48.157
524288 25247698.00 48.156

1048576 50598534.00 48.255
2097152 50730876.00 24.190
4194304 50806462.00 12.113
8388608 101274271.00 12.073

16777216 202395060.00 12.064
33554432 406531076.00 12.116
67108864 809916884.00 12.069

134217728 1619010379.00 12.063
268435456 3238881667.00 12.066
536870912 6478319701.00 12.067

Table 22: Linux64 Parallel C with Assembly Code: 384 Bit Hash Length

38



Message Size (bytes) CPU Clock Cycles Cycles/Byte
1 16359.00 16359.000
2 12978.00 6489.000
4 12320.00 3080.000
8 12208.00 1526.000

16 12250.00 765.625
32 12341.00 385.656
64 12873.00 201.141

128 15659.00 122.336
256 22561.00 88.129
512 31283.00 61.100

1024 55286.00 53.990
2048 103187.00 50.384
4096 199367.00 48.674
8192 397096.00 48.474

16384 789054.00 48.160
32768 1572669.00 47.994
65536 3157091.00 48.173

131072 6312124.00 48.158
262144 12681410.00 48.376
524288 25233474.00 48.129

1048576 50653701.00 48.307
2097152 50721272.00 24.186
4194304 50764903.00 12.103
8388608 101349206.00 12.082

16777216 202431915.00 12.066
33554432 404832862.00 12.065
67108864 827072561.00 12.324

134217728 1619935905.00 12.069
268435456 3239543118.00 12.068
536870912 6478436328.00 12.067

Table 23: Linux64 Parallel C with Assembly Code: 512 Bit Hash Length

39



A.3 Parallel C, Assembly Code, Constant Time

Message Size (bytes) CPU Clock Cycles Cycles/Byte
1 39536.00 39536.000
2 25186.00 12593.000
4 24857.00 6214.250
8 24766.00 3095.750

16 24647.00 1540.438
32 25634.00 801.062
64 32704.00 511.000

128 49035.00 383.086
256 81298.00 317.570
512 145362.00 283.910

1024 274190.00 267.764
2048 532063.00 259.796
4096 1052457.00 256.948
8192 2082808.00 254.249

16384 4166897.00 254.327
32768 8291206.00 253.028
65536 16573606.00 252.893

131072 33097218.00 252.512
262144 66163986.00 252.396
524288 132330856.00 252.401

1048576 264898354.00 252.627
2097152 185563749.00 88.484
4194304 186950925.00 44.573
8388608 297913833.00 35.514

16777216 390942013.00 23.302
33554432 757087303.00 22.563
67108864 1528187094.00 22.772

134217728 3003617820.00 22.379
268435456 6007080345.00 22.378
536870912 12009593533.00 22.370

Table 24: Linux64 Parallel C, Assembly Code, Constant Time: 224 Bit Hash

40



Message Size (bytes) CPU Clock Cycles Cycles/Byte
1 27643.00 27643.000
2 25802.00 12901.000
4 24773.00 6193.250
8 24773.00 3096.625

16 24738.00 1546.125
32 25410.00 794.062
64 32970.00 515.156

128 48643.00 380.023
256 80836.00 315.766
512 145299.00 283.787

1024 274218.00 267.791
2048 532287.00 259.906
4096 1068963.00 260.977
8192 2085489.00 254.576

16384 4141613.00 252.784
32768 8267434.00 252.302
65536 16524725.00 252.147

131072 33036108.00 252.046
262144 66092698.00 252.124
524288 132089832.00 251.941

1048576 264241803.00 252.001
2097152 185151757.00 88.287
4194304 185406725.00 44.204
8388608 185412850.00 22.103

16777216 371188258.00 22.125
33554432 741925905.00 22.111
67108864 1485137276.00 22.130

134217728 2967730619.00 22.111
268435456 5932775667.00 22.101
536870912 11866576617.00 22.103

Table 25: Linux64 Parallel C with Constant Time Assembly Code: 256 Bit
Hash Length

41



Message Size (bytes) CPU Clock Cycles Cycles/Byte
1 56105.00 56105.000
2 36855.00 18427.500
4 36302.00 9075.500
8 36302.00 4537.750

16 36337.00 2271.062
32 36442.00 1138.812
64 37282.00 582.531

128 48370.00 377.891
256 71764.00 280.328
512 118825.00 232.080

1024 213486.00 208.482
2048 402927.00 196.742
4096 781746.00 190.856
8192 1539279.00 187.900

16384 3050173.00 186.168
32768 6075475.00 185.409
65536 12154632.00 185.465

131072 24266998.00 185.143
262144 48428100.00 184.739
524288 96871579.00 184.768

1048576 193736340.00 184.761
2097152 193842894.00 92.431
4194304 195360256.00 46.578
8388608 387746177.00 46.223

16777216 776190205.00 46.265
33554432 1551369057.00 46.234
67108864 3104060701.00 46.254

134217728 6204598008.00 46.228
268435456 12410108935.00 46.231
536870912 24819790569.00 46.230

Table 26: Linux64 Parallel C with Constant Time Assembly Code: 384 Bit
Hash Length

42



Message Size (bytes) CPU Clock Cycles Cycles/Byte
1 40348.00 40348.000
2 36883.00 18441.500
4 36456.00 9114.000
8 36358.00 4544.750

16 36435.00 2277.188
32 36407.00 1137.719
64 36680.00 573.125

128 48244.00 376.906
256 71981.00 281.176
512 118923.00 232.271

1024 213591.00 208.585
2048 402990.00 196.772
4096 781795.00 190.868
8192 1539489.00 187.926

16384 3049900.00 186.151
32768 6086248.00 185.738
65536 12122159.00 184.969

131072 24227546.00 184.842
262144 48432636.00 184.756
524288 96865188.00 184.756

1048576 194294919.00 185.294
2097152 193858056.00 92.439
4194304 193951611.00 46.242
8388608 388310426.00 46.290

16777216 775342575.00 46.214
33554432 1551864643.00 46.249
67108864 3102265628.00 46.227

134217728 6204999206.00 46.231
268435456 12409951078.00 46.231
536870912 24819267802.00 46.229

Table 27: Linux64 Parallel C with Constant Time Assembly Code: 512 Bit
Hash Length

43


