ESSENCE: A Family of Cryptographic Hashing
Algorithms

Jason Worth Martin

January 12, 2009

Abstract

This paper describes the compression functions for a family of Merkle-
Damgard based cryptographic hashing algorithms.

The compression functions are based on a nonlinear, key-dependent
permutation, E, of 256 or 512 bits built from 32 or 64 eight-bit nonlinear
feedback shift-registers run in parallel with linear mixing between the
shift-registers.

The E permutation has been designed so that it can execute completely
within the register file of modern 64-bit microprocessors and in constant
time, thus increasing its resistance to side-channel attacks.

We give a complete description of all criteria used for the constructions
and provide differential and linear cryptanalysis.

1 Introduction

This paper describes a family of compression functions designed to be used to
construct cryptographic hashing algorithms. The compression functions are in-
tended to be used within a Merkle hash tree (similar to the Tiger hash tree)
where the lowest level blocks are hashed with a Merkle-Damgard construction.
As such constructions are dealt with elsewhere in cryptographic literature, this
paper focuses on the ESSENCE compression functions. As Merkle hash tree al-
gorithms are inherently parallel, we will limit our discussion of parallel speedups
to the instruction level parallelism within the compression function itself.
Since many real-world successful attacks against cryptosystems exploit vul-
nerabilities in the implementation rather than the theoretical underpinnings of
the system, the ESSENCE compression functions have been designed with sev-
eral pragmatic, as well as mathematical, criteria in mind. For example, Daniel
J. Bernstein demonstrated in [Ber04] that standard server-side AES implemen-
tations were vulnerable to timing attacks even though the AES evaluation com-
mittee had considered timing attacks impractical. Bernstein’s work showed
that what made AES susceptible was its reliance on data-dependent look-up
tables and that any implementation of AES which did not rely on look-up ta-
bles would be unacceptably slow. Since cryptographic hashing algorithms are

often employed for tasks such as key generation or message authentication codes
on publicly accessible servers, we wish to protect against timing attacks. So,
one of the principal design criteria for ESSENCE algorithms is that it should
be possible to construct implementations which have constant execution times
(meaning that data of the same size are processed in the same time) which
are reasonably fast. As such, ESSENCE algorithms do not require any look-
up tables or operations whose timing might be data-dependent for reasonable
implementations.

Likewise, to help protect the internals of the executing algorithms from side-
channel attacks such as power analysis, fault analysis, memory leaks, etc. on
a multi-user system (such as a server), it seems prudent to design an algo-
rithm where the compression function can be performed completely within the
processor’s register file. The ESSENCE compression functions can indeed be
implemented completely within the CPU registers of a modern 64-bit proces-
sor (such as the x86_64 family). There is no requirement for a “key-setup” or
“input-expansion” phase involved in computing the compression function.

Another important design consideration is to make the algorithm easy to
implement in systems with limited processing capability (e.g. 8-bit micropro-
cessors). To this end, the operations in the compression function are limited to
bit-wise AND, NOT, XOR, and SHIFT.

All of these design constraints do force a performance trade off, and a serial
implementation of ESSENCE runs much slower than a similar implementation
of any of the SHA-2 family of hashing algorithms. However, the design of
ESSENCE emphasizes security through a simple algorithm structure while al-
lowing for performance through parallel implementations. A serial version of
ESSENCE restricted to only 32-bit general purpose registers runs at over 176
cycles per byte on a single core of an Intel Core 2 processor. However, a parallel
version running on a quad-core Intel Core 2 processor and using assembly code
to access 128-bit vector registers is capable of running at nearly 12 cycles per
byte.

2 Notation and Numbering Conventions

The notation used within this document should be familiar to most C pro-
grammers. This section is intended for the mathematical audience who may be
unfamiliar with the C programming language.

Unless otherwise stated, through this document we will attempt to adhere
to the following conventions:

1. Bits and bytes.

We use the term “bit” to denote a single binary digit (e.g. a value of
either 0 or 1). We use the term “byte” to denote an 8-bit unsigned integer
(taking values between 0 and 255 inclusive).

2. Use of C notation for hexadecimal constants.

We use the prefix 0x to denote a hexadecimal number, and we use the
letters a,b,...,f to denote the values 10,11,...,15 in hexadecimal.
For example, we write Oxabcd1234 to denote the hexadecimal constant
abcd1234 which is equal to the decimal number 2882343476.

3. Indexing begins at 0 instead of 1.

We begin all of our indexing at 0 instead of 1. This choice is to make all
of our notation consistent with the C programming language.

4. Little Endian bit, byte, and block numbering.

We use the principle of “less significant components receive a smaller in-
dex” when indexing the components of any regular structure. For example,
we shall say that the integer Oxabcd1234 has byte 0 equal to 0x34 and
byte 3 equal to Oxab, and it has bit 0 equal to 0 and bit 31 equal to 1.

We follow this principle when coercing a string of bits to be a polynomial
in Fy[z]. For example, we may regard 0x87 in Fy[z] as the polynomial
27+ 22+ 41 since we assign the least significant bit to be the coefficient
of the smallest power of x.

Note that our convention refers to the index of a component, not neces-
sarily its position on the printed page.

5. Use of C array notation for indexing components of regular structures.

We will use the C array notation (e.g. someobject[il) for indexing the
components of any regular structure. For example, let rO be a 64-bit
integer, then we might use rO[0] to denote the least significant bit of r0,
and r0[63] to denote its most significant bit.

Unless otherwise stated, we use the array index notation to denote the
smallest natural components of the object. Therefore rO[0] is the least
significant bit of r0, not its least significant byte. Should we wish to
discuss the bytes of r0, we will explicitly state the change in notation.

3 The E Permutation

The E permutation is constructed from the update function represented in Fig-
ure 1. In the diagram, r0,71,...,r7 represent 8 unsigned integers each consisting
of either 32 or 64 bits depending upon the hash size desired. For hashes of 256
bits or less, r0,71,...,r7 are all 32-bit integers. For hashes of more than 256
bits (up to 512 bits), r0,r1,...,r7 are 64-bit integers. The variable labeled k is
likewise an integer of the same size as 70,71,...,77.

In Figure 1 the symbol @ represents bit-wise xor (i.e. bit-wise “exclusive
or” or simply vector addition when the inputs are regarded as vectors over Fs).
The arrows in the diagram represent assignment or the inputs to functions. The
triangle labeled “F” represents a bit-wise application of the function expressed
in equation (1) and the circle labeled with an “L” represents a linear function

|r7Hrl6Hrl5Herr‘3Hri2Hrll H/rOI‘—®

(1)

&) &)

Figure 1: E Permutation Logic Diagram

tmp
r7
r6

rd

rl
r0

rb5 :=
=13
r3 :=
r2 :=
:= 10

:= tmp xor k

= 16
:=rb

:= F(r6,r5,r4,r3,r2,r1,r0) xor r7 xor L(r0)

rd

r2
rl

Figure 2: Pseudo-code for E Permutation Logic

expressed in equation (4). The diagram represents a single “step” used for
updating the values of 70,71, ...,r7. Figure 2 gives the pseudo-code for a single
step of the E permutation logic.

For each step of the update logic the value of k may vary (although in some
instances it may be fixed to zero). The number of times the update logic is
stepped is implementation specific, however the recommended number of steps
is 24 and it should always be a multiple of 8. This is justified in sections 3.5

and 3.6

3.1 Motivation for Design of E

In [Sie84] Siegenthaler shows that if a Boolean function, a(z1, ..., zy), is correlation-
immune, then it is essentially just an affine combination of the inputs. So if the
values of the z; were to come from linear sources, such as linear feedback shift
registers, then the result of combining the z; using a correlation-immune «
would be a completely linear system, and hence vulnerable to well known linear

methods. If a is taken to be non-linear, then it becomes more vulnerable to
correlation attacks.

So, our design approach is to use nonlinear feedback to drive the shift reg-
isters. We design the linear combining function, L, to maximize resistance to
correlation attacks, while maximizing the linear complexity of the registers to
maximize the resistance to linear analysis.

3.2 F — The Feedback Function

Let Fy denote the field of two elements. We define the feedback function, F, as
the Boolean map F : F7 — Fy given by

F(a,b,c,d,e, f,g) = abedefg+ abedef + abeefg+ acdefg +

abceg + abde f + abdeg + abefg +
acdef 4+ acdf g+ acefg + adefg +
bedf g + bdefg + cdefg +
abcf 4 abcg + abdg + acdf + adef +
adeg + adf g + bede + beeg + bdeg + cdef +

(1) abc + abe + abf + abg + acg + adf +
adg + aef + aeg + bef + beg + bde +
bdf + beg + bfg + cde + cdf + def +
deg + dfg +
ad + ae + bc + bd + cd +
ce+df +dg+ef+ fg+
a+bt+c+f+1

where the multiplication and addition are taken in Fy (e.g. the addition is the
same as bitwise “xor” and the multiplication is the same as bit-wise “and”).

Any Boolean function may be expressed uniquely, up to rearrangement, as
a minimal sum of products over Fy (often called the “algebraic normal form”).
Equation (1) is such a representation for F. However, it is not a computationally
efficient representation. Appendix A gives better representations of F for both
hardware and software implementations. For clarity, and to allow for error
checking, Tables 2 through 5 in appendix D give the explicit value of F for each
possible input.

A note of caution: in computer science and engineering literature it is com-
mon to see the addition symbol, +, used to denote “inclusive or” in a “sum
of min-terms” presentation for a Boolean function. That is not the case in
equation (1).

3.2.1 Selection Criteria for F

As F is the only nonlinear function in the ESSENCE algorithms, the security
of the algorithms is heavily dependent on F. We first consider the F function
used as the feedback function for a single shift register. In Figure 3 the stages
of the shift register are labeled as x7, g, ...,z and I is the input. The stages
Z7,%6,--.,2o and I are all single bits.

o HHaa o e o011

o
&

Figure 3: F Based Shift Register

Solomon Golomb demonstrates in [Gol67] (ch. VI §2 Theorem 1) that a
maximal length shift register sequence on n stages is obtained from a feedback
function on the first n — 1 stages added to the last stage as shown in Figure 3,
which explains why F takes only seven inputs instead of eight. The F function
used in ESSENCE was found using a pseudo-random search with respect to the
following criteria (in order of importance).

1. The shift register sequence formed by F must be a de Bruijn sequence.

A de Bruijn sequence for an n-bit shift register sequence is a sequence
generated by an n-bit shift register which contains all possible 2™ values
that the register can hold. This is equivalent to the sequence being of
maximal length for the register.

The function F produces a de Bruijn sequence from the shift register
illustrated in Figure 3 with I set to zero.

2. The shift register sequence formed by F must have maximal linear com-
plexity.
Given any sequence, the linear complexity of the sequence is the length
of the smallest linear feedback shift register (LFSR) which can generate
the sequence. The maximal linear complexity for a shift register sequence
generated by an n-bit register is 2" — 1.

The function F, used in the configuration shown in Figure 3 with I set

to zero produces a shift register sequence with maximal linear complexity.
Its linear complexity is 255 with connecting polynomial Zifo z*.

3. The shift register sequence formed by F minimizes the differential charac-

teristic.
Let hp g, 0 F§ — F§ be defined as follows. Let a € F§ be an 8-bit value.
Place the bits of a in the shift register in Figure 3 with 7 = a[7],..., 20 =

al0]. Hold I to zero and step the register m times. Let b € F§ be the
resulting value of the register (i.e. b[7] = z7,...,b[0] = xg). We define
hg.m(a) =b. For all values of m, hp ,,, is a bijection.

We may now construct the differential table for hp,, as described in
[BS91]. The rows of the table correspond to the differences in the in-
put (Ajn) and the columns correspond to the differences in the output
(Aout). The entry in each table position corresponds to the total number
of times that a given input difference yields a given output difference as
we run through all possible pairs with distinct differences.

As we are dealing with functions on F§, the differential table has (255)(255) =
65025 non-trivial entries. The number of distinct possible pairs of inputs
yielding a non-trivial difference is %2(255) = 32640 (we divide by 2 be-
cause symmetric pairs yield the same difference). Ideally, then, we would
like the 32640 possible results to be distributed close to uniformly in the
differential table, and we wish to avoid having any single entry in the table
be particularly large.

In our search algorithm for F' we begin with a candidate feedback function,
F*, and for 1 < m < 16 we construct the differential characteristic table
for hg« . For each of these tables we find the maximal non-trivial entry
in the differential characteristic table. The m corresponding to the table
with the smallest maximal non-trivial entry is called the best stepping for
F*. We call the maximal non-trivial entry in the differential characteristic
table corresponding to the best stepping the differential characteristic of
F*. Given two candidate functions to compare, we select the one with the
smallest differential characteristic. If the differential characteristics are
equal, we select the function whose best stepping is smallest.

The function, F, that was found has 8 as its best stepping and a differential
characteristic of 4.

. The shift register sequence formed by F minimizes the stream differential
characteristic.

Consider the shift register described by Figure 3 with a fixed input stream
of k-bits (entering the register via I'). We label the stream as Iy, I1, ..., Ix_1,
and consider the what happens as the register is stepped k times with
I = Iy on the first step, I = I; on the second step, etc. This pro-
vides us with a key-dependent permutation on F§ with the key being
o, Iny .o oy Ii—1).

Let a € F§ be an 8-bit value. We define the function hg(a; Iy, ..., Ix—1)
by placing the bits of a in the shift register in Figure 3 with z; =
a[7],...,xo = a[0]. Put I = I and step the register once. Put I = I and
step the register again. Continue stepping the register with I = I;_; for
the i*% step until the register has been stepped k times. Let b € F§ be
the resulting value of the register (i.e. b[7] = x7,...,b[0] = z¢). We define
he(a; Lo, Iy, .. Ig—1) = b.

We now define the stream differential table by running through all 2% pos-
sible values for (Io,...,Ir—1) for each distinct input pair and computing
the output difference.

More precisely, let A;j, be a non-trivial input difference. Let (a,a’) run
through the 128 distinct pairs of inputs with input difference equal to
A, and let (Io,...,Ix_1) run through all 2% possible values. Compute
Aout = hp(a; Iy, ..., Ig—1) D hp(a’; Iy, ..., Ix—1) for each case. The stream
differential table, like the the differential table described in the previous
section, consists of entries indicating the total number of times that a
given input difference yielded a given output difference. (However, due to
the additional 2* applications of the function, the stream differential table
can be much closer to uniformly distributed than the differential table.)

In our search algorithm for F' we begin with a candidate feedback function,
F*, and set k = 16 (computational limits prevented analysis of larger
streams). We construct the stream differential characteristic table for
hp-. Since there are 128 - 255 possible non-trivial distinct input pairs, 2%
possible key values, and 255 - 255 possible non-trivial entries in the table,
the mean value of the entries in the table is

128255216

~ 32896.5.
255 - 255 32896.5

Since we want to ensure the the table is close to uniformly distributed, we
want to ensure that each entry is close to the mean value. So, we define
the stream differential characteristic of F* to be the greatest absolute dif-
ference of any non-trivial table entry from the mean. Given two candidate
functions that are equal with respect to the previous criteria, we take the
one with the smallest stream differential characteristic.

The function, F, that was selected has a stream differential characteristic
of 6911.498.

5. The Boolean function F maximizes Hamming distance from any affine
approximation.

Given two candidate functions which are equal with respect to the previ-
ous criteria, we choose the one which has the greatest Hamming distance
from any affine approximation. For the chosen F, the best possible affine
approximation agrees with the function for 79 out of 128 possible entries.

3.3 L — The Linear Function

The linear function L is defined differently depending upon the size of the in-
put (32-bit versus 64-bit). In both cases L is defined in terms of a generating
polynomial in Fy[z], and may easily be implemented via a linear feedback shift
register in Galois configuration. We give the mathematical definition here and
discuss the shift register implementation in appendix B.

Let pgs € Fo[z] be given by

264 | 63 | 61 4 260 4 155 4 053 50 | 49
) 246 | 4 | o414 40 4 036 033) B2
31 4 280 4 229 4 226 4 225 4 23 4 20 4 218 4 1Ty
Gl 13 1l a8 T L a2

pea(r) =

and let Cp,, be the companion matrix of pgs(z). (The polynomial pes is prim-
itive, which means that it is irreducible and that Z, the natural image of x
from Fy[z] into the field Fao[z]/(pss(z)), is a generator of the multiplicative
group of Fao[x]/(pea(z)).) Recall that the companion matrix of a polynomial

f(x) =a™ + b, 12" 1+ -+ byx + by is the n X n matrix

o 1 0 0 .. 0
o o0 1 0 .. 0
Cy =
o o0 o0 0 .. 1
by —by —by —by ... —bu_y

Now let v € F$* be a row vector, then we define

L64(U) = UC§:4.
Recall our little endian convention that less significant coefficients correspond
to smaller indices. So, if r0 is a 64-bit integer, then to compute Lg4(r0) we
treat the least significant bit of r0 as the first component of the vector in F§?,
the reader is cautioned because this requires mentally reversing the order of the
bits. Note, however, that in appendix B we demonstrate that no bit reversing
is actually necessary in the practical implementation, which is just a linear
feedback shift register in Galois configuration which is loaded with the input
and stepped 64 times.

Likewise in the 32-bit case we define

3) pa(x) = 232+ 23 + 22 422 4219 4 217+
218 412 4 g1l 00 L 08 L 05 L gy 02 1
(which is primitive) and let Cj,, be the companion matrix of ps2(z). For v € F32
a row vector, we define
L32 (’U) = ’U032

p32”

Finally, to be complete with our definition we define

| Lea(v) if v is 64-bit
@) L) = { Laa(v) if v is 32-bit

3.3.1 Selection Criteria for L

The first selection criteria for L (for both 32 and 64 bits) was that it should
be a linear transformation whose rational canonical form (i.e. Frobenious form)
consists of a single irreducible block. This prevents the existence of any proper,
non-trivial, invariant subspaces of the linear transformation. An easy method
to construct such a matrix is to use the companion matrix, C,), of a primitive
polynomial, p(z). The minimal polynomial of such a matrix is p(z). Hence the
minimal polynomial is irreducible, so the linear transformation has no proper
non-trivial invariant subspaces. (Likewise, it has no eigenvalues in the ground
field.)

This matrix has order 2" — 1 in the group of invertible n x n matrices
over Fy. (In fact, the subgroup generated by the matrix is isomorphic to the
multiplicative subgroup of the field Fo[z]/(p(z)), and the action of Cp(,) is
equivalent to multiplication by Z in Fo[x]/(p(x)).)

After forming the companion matrix, Cp,) we take C;Ff)(p @) o form the
matrix which represents the linear transformation. For our purposes, we are
using polynomials of degree 32 or 64. Since any positive power of 2 is relatively
prime to 2" — 1, the minimal polynomial of L is also p(x), thus L also has no
proper non-trivial invariant subspaces.

The second criteria for L is, informally, “every bit of input should affect
approximately half of the output bits, and every bit of output should be affected
by approximately half of the input bits.” More precisely, given a vector, v, over
F5, we define the bias of v as

bias(v) = 1 number of ones in v

2 number of elements in v |

Given a matrix, M, over Fy let Sj; be the set of all row and column vectors of
M. We define the matrixz bias of M as,

bias(M) = max bias(v).
vESN
The formal statement of the criteria is then: given a matrix M representing the
linear transformation L with respect to the standard basis, we wish to minimize
the bias of M.

To use a linear feedback shift register (LFSR) to implement the linear func-
tion and satisfy the second criteria, the register must be shifted at least as many
times as it has entries. This is why the companion matrices Cp,, and Cp,, are
raised to the 64" and 32" powers respectively.

The search algorithm used to find pg4 and p3o was to pseudo-randomly search
for primitive polynomials, form the companion matrices of the polynomials, take
the 64" or 32" power of the companion matrix and compute its bias, keeping
the polynomials which generated the smallest bias.

The biases for C’gé and C’;’?Z are both 0.093750. Thus, for Lgs at least 26
out of 64 bits of input affect each bit of output and likewise at least 26 out of
64 bits of output are affected by each bit of input. For L3o at least 13 out of 32

10

bits of input affect each bit of output and likewise at least 13 out of 32 bits of
output are affected by each bit of input.

3.4 Avalanche Criteria for E

One important criterion is to determine the number of steps of the registers in
E needed to ensure that every bit of input has, on average, a 50% chance of
affecting any given bit of output. This was determined heuristically by Monte-
Carlo methods to be 16 steps.

3.5 Differential Cryptanalysis of E

The first line of defense against differential cryptanalysis based attacks is that
the F function has been chosen to minimize the differential characteristic of the
shift registers when viewed as 8-bit functions.

Also, the entry in the differential table for the 7-bit function F with maximum
probability has a probability of %. We use this information to determine
the upper bound on the number of times we need to step the system to resist
a differential cryptanalysis attack on the F function. Equation (5) gives the
probability that a given differential characteristic is propagated to a single bit
through n steps.

(5) 892 an/8
127 - 64

Where n is the number of steps, and a is the minimum number shift-registers
which are involved in a single bit of output. (This is similar to the number
of “active S-boxes” described in other cryptographic literature). The value of
a comes from the bias of L as a is just the minimum number of inputs to L
affecting a single bit of output. Hence a = 26 for Lgs and a = 13 for Lss.

The number of steps is divided by 8 in the exponent because a given bit is
modified only once every 8 steps.

In the 512-bit case we have

]2 (26)n/8 B 1
127 - 64 2512

5128
93.76.
"7 26)(6 + log,(127) — log,(82))

In the 256-bit case we have

]2 (13)n/8 B 1
127 - 64 2256

which yields

11

which also yields

256 - 8
23.76.
"7 (13)(6 + log,(127) —logy(52)) ~ 10

So, in both cases we take n = 24 to be the number of steps to defend against
a differential cryptanalysis based attack.

3.6 Linear Cryptanalysis of E

The best affine approximation of the F function is the linear function
E(a,b,C,d,€7f7g) = a+d+ga

which agrees with F for 79 out of 128 possible inputs (or 15/128 more times
than random guessing).

If we form a LFSR by replacing F with ¢ in Figure (3), then we wish to
know, given any equal initial fill, how many steps of the register are required
before the LFSR based on ¢ is different from the F based shift register. From
an exhaustive search, we determined that the worst case occurs when the initial
fill is all ones, and in this case it takes 12 steps before the registers diverge.

Therefore, suppose then that we form a permutation, E’, by replacing F with
¢ in the description of E. After 12 steps r0 is now different in E and E’. After
13 steps, we expect at least 26/64 = 13/32 of the bit positions in r0 to differ
between E and E’ (due to our criterion for L). After 15 steps, we expect, on
average, that half of the bits in r0 will differ between E and E’. After 8 more
steps, we expect that half of the bits of E are now different from E’.

Therefore we expect to need at least 23 steps to defend against a linear
cryptanalysis based attack. So, we take 24 steps just as in the case for defending
against differential cryptanalysis.

4 The ESSENCE Compression Function

The ESSENCE compression function, G, consists of two instances of the E
permutation illustrated in Figure 4. One instance, Ex, shown by k0-k7 in
Figure 4, plays a role similar to key scheduling in a traditional block cipher
system, and does not receive input while stepping. The other instance, Eg,
shown by r0-r7 in Figure 4, receives input from Eg. Figure 5 gives the pseudo-
code for the compression function stepping logic.

To be precise, there are two compression functions. By Ggs we mean the
case where all of rO-r7 and k0-k7 are 64-bit integers. By Gs2 we mean the case
where all of rO-r7 and k0-k7 are 32-bit integers. When the discussion applies
to both, we shall simply refer to G.

To define G, let R and K each be blocks consisting of eight integers. We
define G(R,K,n) as follows:

1. Initialize r0 to R[0], r1 to R[1], etc. and k0 to K[0], k1 to K[1], etc.

12

o) o)
& & &

Figure 4: The ESSENCE Compression Function Logic

tmp_r
r7 :=
r6 :=
rb5 :=
r4 :=
r3 :=
r2 :=
rl :
r0 :
tmp_
k7 :
k6 :
kb :=
k4 =
k3 :=
k2 :=
k1 :=
kO :=

= nn

:= F(r6,r5,r4,r3,r2,r1,r0) xor r7 xor L(r0)
r6

rb5

r4

r3

r2

rl

r0

tmp_r xor k7

:= F(k6,k5,k4,k3,k2,k1,k0) xor k7 xor L(k0)

R R R R R
=N W oo

b
o

tmp_k

Figure 5: Pseudo-code for Compression Function Logic

13

2. Step the logic n times

3. The value of G(R,Kn) is defined to be the values in rO-r7 bitwise xored
with the values R[0]-R[7].

The value of n, the number of times that the logic should be stepped, is
implementation dependent. From the analysis of differential and linear crypt-
analytic attacks given in sections 3.5 and 3.6, n should be at least 24 and should
be a multiple of 8. As a measure of caution, we recommend that a value of n = 32
be used.

5 Acknowledgements

We would like to thank Meltem Sonmez Turan and Nicky Mouha for their ex-
tremely helpful comments correcting errors in earlier versions of this document.

References

[Ber04] Daniel J. Bernstein. Cache-timing attacks on AES.
http://cr.yp.to/papers. himl#cachetiming, 2004.

[BS91] E. Biham and A. Shamir. Differential cryptanalysis of DES-like cryp-
tosystems. In Advances in Cryptology—CRYPTO ’90 Proceedings,
pages 2—-21. Springer-Verlag, 1991.

[Gol67] Solomon W. Golomb. Shift Register Sequences, Revised Edition. Aegean
Park Press (Orig. ed. Holden-Day), 1982 (Orig. ed. 1967).

[Sie84] T. Siegenthaler. Correlation-immunity of nonlinear combining functions
for cryptographing applications. IEEE Transactions on Information
Theory, IT-30(5):776-780, September 1984.

14

A Implementation Notes for F

The description given for F in equation (1) is not optimal for most compilers.
An alternative expression for the F function for software implementation is

F(a,b,c,dye, f,g) = abcdefg + abcef’g + abde’ g+
abefg+ ab'def + acefg + ac'df g+
adef'qg + bedf g + bdef'g + cdefg'+

(6) abc’ g + a’bef’ + bee' g + b de + abf+
ab'e + acg + adg’ + aeg + d’ef + bdf'+
beg+b'fg+cde +cdf +def+
de'g+dfg+a +b+ f

where the symbol a’ indicates the bit-wise negation of a, and the addition and
multiplication are taken bit-wise in Fy (i.e. addition is just bit-wise XOR and
multiplication is bit-wise AND.)

A standard C macro which will implement the F function is given in Figure 6.

For a hardware implementation, the F function can be implemented by two-
level AND-OR (or NAND-NAND) logic using the prime implicants listed in
Table 1. The prime implicants listed were obtained from the Quine-McCluskey
algorithm.

15

#define F_func(a,b,c,d,e,f,g)
(
(@& MN&(c)e(@&(e)&(E)&("(g)))~
((@)&)& (c)&(e)& (" (£))&(g))"
((@QEM&@&((e))&(g)"
((@Q&M)&(e)&(£)&(g))"
((@&C®N&DE&(e)& ()"
((@&()&(e)&(f)&(g)) "
(@& C(eN&@&E)&C ()"
(@& (D &)&(C(E))&(g)) "
(B&(N&(@&(E)&(g)) "
(M&@&)&(C"(E))&(g)"
((&(@&()&(£)&("(g)))"
((@&Mm&(C(c))&(g))”
(C@N&M&(c)& (" (£)))"
((M&)&("(e))&(g))”
(ME&CeN&@&(ed))”
(@& M&(£)) "
((@&C M®))&(e))"
((@)&(c)&(g))"
((@&D&C(g))"
((@&)&(g)™
(CC@N&e)&(£))"
(ME&@&CEN
(M&(e)&(g))"
(CMdN&E)&(g)) "
(& @HeC)"
(CEeN&@&(£))"
((D&(e)&(£))"
(@& (e&lg))"
((D&(E)&(g))"
(C@)N-
()~
£

P A L A A G A L L L A A L A A A L A A L L A A A A A A A

Figure 6: F Implemented as a C Macro

16

|

Prime Implicants for F

|

a’b’c’d’e’'f’'g’ | a’bede’fg’
a’b’c’d’e’f’'g a’bede’fg
a’b’c’d’e’'fg | ab’c’d’e’fg’
a’b’c’d’ef’g’ | ab’c’d’ef’g’
a’b’c’d’ef’g | ab’c’de’f’g’
a’b’c’d’efg’ | ab'c’de’f'g
a’b’c’de’f’'g’ | ab’c’de’fg
a’b’c’de’fg’ ab’c’def’g
a’b’c’def’g’ ab’c’defg’
a’b’c’def’'g | ab’cd’e’f’g’
a’b’c’defg’ ab’cd’ef’g’
a’b’c’defg ab’cd’ef’g
a’b’ed’e’fg’ | ab’cde’f’g’
a’b’cd’ef’g’ ab’cde’fg
a’b’cd’ef’g ab’cdefg’
a’b’cd’efg’ ab’cdefg
a’b’cde’f’g’ | abc’d’e’f’g’
a’b’cde’fg abc’d’e’fg’
a’b’cdef’g’ abc’'d’ef’g’
a’b’cdef’g abc’d’efg’
a’b’cdefg’ abc’d’efg
a’bc’d’e’fg’ | abc’'de’f’g’
a’bc’d’e’fg abc’'de’t’g
a’bc’d’ef’g abc’defg
a’bc’d’efg abcd’ef’g’
a’bc’de’t’g’ abcd’ef’g
a’bc’defg’ abcd’efg’
a’bc’defg abcde’f’g’
a’bed’e’f’g abcde’fg
a’bed’e’fg abcdef’g’
a’bed’ef’g’ abcdefg
a’bed’efg

17

Table 1: Prime Implicants for F

B Implementation Notes for L

The companion matrix of a polynomial acts on row vectors exactly as a linear
feedback shift register in Galois configuration. Hence, it is extremely easy to
implement multiplication by a companion matrix as a LFSR. However, efficient
software implementation for a LFSR in Galois configuration is subtly due to the
instruction pipeline used in modern processors. The naive approach, as demon-
strated in Figure 7, is to use a conditional branch inside a loop. The problem
with this approach is that the branch prediction logic in most processors cannot
predetermine which branch will be taken. Since the loop is very small, specula-
tive loading of both branches is also ineffective as the next iteration of the loop
presents another unpredictable branch within a few machine instructions. Thus,
the instruction decoding pipeline inside the processor must stall completely for
each iteration of the stepping loop. On the Intel Core2 architecture this was
measured to be a delay of 12-15 clock cycles for each iteration of the loop.

However, the conditional branch can be removed by taking advantage of
signed integer arithmetic, provided the compiler and platform support a signed
arithmetic right shift which copies the sign bit. Figure 8 demonstrates C code
which, on all compilers the author tested for the x86 architecture, produces
correct results. (The Gnu, Intel, and Microsoft compilers for the x86 family
emit the SAR assembly instruction for arithmetic shift right. The SAR instruction
shifts the bits of the integer to the right while duplicating the most significant
bit. Thus performing an arithmetic shift right of 63 bits on a 64-bit signed
integer has the effect of filling the entire result with the value of the most
significant bit of the integer.)

A second advantage of this approach is that it allows for SIMD (Single In-
struction Multiple Data) capable processors to execute multiple LFSR instances
in parallel. For example, the 128-bit SSE instructions in the x86_-64 family of
processors can execute two instances of the Lg4 function or four instances of the
L35 function in parallel on a single processor core.

A third advantage is that every step takes the same amount of time ensuring
that no information can be leaked via timing side-channel attacks.

The implementer is strongly cautioned, however, that the ANSI C99 stan-
dard does not require this behavior. The C99 standard explicitly leaves the
behavior of arithmetic shift right on signed integers as compiler dependent. A
careful C implementation of the linear function should verify the behavior before
using it.

A similar software implementation of Lzo is given in Figure 9.

If the implementer is willing to use data-dependent look-up tables (which
might make the implementation vulnerable to timing-attacks), the L function
can be made considerably faster by pre-computing look-up tables values based
upon the most significant byte of input. This trick is illustrated for Lgs in
Figure 10 and for L3y in Figure 11.

Note that in both Figures 10 and 11 there is an initialization routine that is
used to build the look-up table. This routine need not be part of an implemen-
tations since the table can simply be pre-computed and included in the code.

18

/%

* 64-bit integer representing the p_64 polynomial

*/

#define P_64 0xb0a65313e6966997LL

/%

* An inefficient implementation of L_64

*/

uint64_t L_64(uint64_t input)

{

int 1i;
uint64_t temp;

temp = input;
for (i=0;i<64;i++)

{
/*
* SLOW: Un-predictable conditional branch
* stalls the instruction pipeline. This might
* even create a timing attack problem. Do not
* use this method... unless you’re running on
* an Itanium or similar processor which can
* use speculative execution and predication to
* execute both branches in parallel.
*/
if ((temp & 0x8000000000000000LL) ==
0x8000000000000000LL)
{
temp = (temp << 1) ~ P_64;
I
else
{
temp <<= 1;
X
}
return(temp) ;

Figure 7: Inefficient Lgq4 Implementation in C

19

/%

* 64-bit integer representing the p_64 polynomial

*/

#define P_64 0xb0a65313e6966997LL

/%

* An efficient implementation of L_64

*/

uint64_t L_

{

int 1i;

64 (uint64_t input)

int64_t temp;

temp =

for (i=

{

(int64_t)input; /* Convert to signed integer */
0;i<64;i++)

CAUTION: Arithmetic Shift Right of signed integers
is compiler dependent. It is left unspecified by
the ANSI standard. The implementor must verify
that the sign bit (most significant bit) is
preserved.

temp = ((temp >> 63) & P_64) ~ (temp << 1);

}

return((uint64_t)temp) ;

}

Figure 8: Efficient Lgs Implementation in C

20

/%

* 32-bit integer representing the p_32 polynomial

*/

#define P_32 0x814a3b35

/%

* An efficient implementation of L_32

*/

uint32_t L_

{

int 1i;

32(uint32_t input)

int32_t temp;

temp =

for (i=

{

(int32_t)input; /* Convert to signed integer */
0;1i<32;i++)

CAUTION: Arithmetic Shift Right of signed integers
is compiler dependent. It is left unspecified by
the ANSI standard. The implementor must verify
that the sign bit (most significant bit) is
preserved.

temp = ((temp >> 31) & P_32) ~ (temp << 1);

}

return((uint32_t)temp) ;

}

Figure 9: Efficient Lo Implementation in C

21

We give the routines here just to clarify how such tables would be computed
(and because listing the tables would be tedious).

To see how this method works in the case of Lgys consider the row vector v €
F$*. Write v = [vg,v1, ..., V62, Ue3], and then let u = [vg, v1,...,vs5,0,0,...,0]
and w = [0,0,...,0,vs6,057,...,063]. S0 v = u+ w. Now recall that Cp,,
has ones on the super-diagonal, the coefficients from pgs along the bottom row
and zeros elsewhere. So, the matrix structure of C’SM has ones along the ninth-
diagonal non-zero values in the last eight rows, and zero everywhere else:

000000O0UO0T1TO0 0 ... 0
00000O0O0GO0GO0OT1 0 ... 0
o8 —
pos 0 0 0 0 0
koook o ok ok Xk ok X ok *

Hence uCIS,6 , 18 just equal to u shifted by eight positions since u is zero in the
last eight positions. For wC?® we consult a look-up table which is easily pre-

P64
computed because w can only take on 2° values. Since vC3. = (u+w)C3 =
uC’ffG LT wC’S6 ,» we have replaced 8 matrix multiplications with a shift and a

table look-up. We repeat this 8 times to compute Lgs. A similar observation
works for L3s. One advantage of this approach is that the processor only needs
to deal with 8-bit shifts. On an 8-bit processor, we may thus avoid having to
shift bits across byte boundaries and simply move the bytes.

While a direct hardware implementation of the LFSR is simple, it requires
a counter and 64 or 32 clock cycles. Therefore, hardware implementers are
advised to simply construct the matrices Cpe and C22, as the linear logic is
very simple and can execute in one clock cycle.

22

/*
* This FAST look-up table based implementation of L_64
* might be vulnerable to timing attacks.

x/
void init_L_64_table(uint64_t L_64_tablel[])
{
int 1i,j;

uint64_t lin_tmp;

for(i=0;i<256;i++)
{
lin_tmp = ((uint64_t)i) << 56;
for(j=0;3j<8;j++)
{
lin_tmp = (((((int64_t)1lin_tmp) >> 63) & P_64) ~
(lin_tmp << 1));
}
L_64_table[i] = lin_tmp;
}
}

uint64_t L_64(uint64_t input, uint64_t L_64_tablel[])
{
int 1i;
for (i=0;i<8;i++)
{
input = L_64_table[(input >> 56) & Oxff] ~
(input << 8);
}
return(input) ;

}

Figure 10: Fast Look-up Table Lgs Implementation in C

23

/*

*

might be vulnerable to timing attacks.

* *

x/
void init_L_32_table(uint32_t L_32_tablel[])

{
int 1i,j;
uint32_t lin_tmp;

for(i=0;1i<256;i++)

{
lin_tmp = ((uint32_t)i) << 24;

for(j=0;3j<8;j++)

{
lin_tmp = ((((int32_t)lin_tmp) >> 31) & P_32
(1in_tmp << 1);
}
L_32_table[i] = lin_tmp;
}
}
uint32_t L_32(uint32_t input, uint32_t L_32_tablel[])
{
int 1i;
for (i=0;i<4;i++)
{
input = L_32_table[(input >> 24) & Oxff] ~
(input << 8);
}
return(input) ;
}

Figure 11: Fast Look-up Table L3, Implementation in C

24

This FAST look-up table based implementation of L_32

)

C Implementation Notes for the Compression
Function

On most 64-bit processors (and many 32-bit processors) the two instances of E
in the compression function can be implemented in parallel at the instruction
level by taking advantage of the largest registers available in the processor. For
example, to implement Gz on a 64-bit processor, we place rO and kO in the
same 64-bit integer: rO occupies the most significant 32-bits and k0 occupies
the least significant 32-bits. Likewise, we place the other r and k values in
the upper and lower portions of 64-bit integers. Then, a single evaluation of
F on the 64-bit integers simultaneously computes F(r6,r5,r4,r3,r2,r1,r0)
and F(k6,k5,k4,k3,k2,k1,k0). On machines supporting 128-bit SIMD reg-
isters and instructions (such as the SSE instructions on the x86_64 family of
processors), one may likewise compute the two instances of E in Ggy in parallel.

D Explicit Values of the F function

The following tables give the explicit value for the F function for each possible
input. The 128 possible values for F have been divided up into four tables of 32
values each based upon the value of the first two entries.

25

[a[bfcld]e]f]g] Flabedefsg) |

0
1
0
1
0

0

1
1
0
0

0
0

0

0

0

1
1
1
1
0
0
0
0
1
1
1
1

1
1
1
1
1
1
1
1

0/0]01]0

1

0

070100

0/0{0]0]0|O0

0/0]0]|0

0/0[0]0]0

0/0]0]|0
0/0]0]0
0/0]0]0
0/0]0]|0

01010
01010
01010
01010
01010
01010
01010
01010

0

Table 2: Values of F with (a,b) = (0,0)

26

[a[bfcld]e]f]g] Flabedefsg) |

1

1

1

0/0]01]0

0]0|10]|0

0700

1

1

1

1

0

0

Table 3: Values of F with (a,b) = (0,1)

27

[a[bfcld]e]f]g] Flabedefsg) |

0
1
0
1
0

0

1
1
0
0

0
0

0

0

0

1
1
1
1
0
0
0
0
1
1
1
1

1
1
1
1
1
1
1
1

0/0]01]0

1

010710

0[(0|0]0|O0

0[0]0

0[{0]01]0

0]0]0
0]0]0
0]0]0
0[0]0

01]0
010
00
010
010
010
010
010

0

1
1
1
1
1
1
1
1

Table 4: Values of F with (a,b) = (1,0)

28

[a[bfcld]e]f]g] Flabedefsg) |

1

1

1

0/0]01]0

0]0|10]|0

0700

1

1

1

1

(L,1)

Table 5: Values of F with (a,b)

29

