
ESSENCE: Change Log

Jason Worth Martin

January 12, 2009

Abstract

This document describes changes from the original NIST submission
for ESSENCE. No changes have been made to the algorithm or the source
code. The only changes are clarifications of the specification and correc-
tions to typographical errors and exposition.

1 Changes to ESSENCE: A Family of Crypto-
graphic Hashing Algorithms

1. In the introduction, the last paragraph has been rewritten to reflect code
performance as of January 2009.

Original Version: All of these design constraints do force a performance
trade off. For example, we have written naive C code implementa-
tions of the E permutation with and without look-up tables. The
implementation without the look-up tables runs at approximately
160 processor cycles/byte (on an x86 64 Linux platform), while the
implementation with look-up tables executes at approximately 53
cycles/byte on the same platform. (We expect that highly tuned as-
sembly code would perform better, but at the time of this writing
that has not been implemented.) So, there is certainly a trade-off for
resistance to timing attacks. However, that trade-off is not severe for
ESSENCE, and the existence of demonstrated real-world successful
attacks against the timing-sensitive implementations of otherwise se-
cure cryptosystems leads us to believe that it is necessary to have
an algorithm which can have reasonable implementations that are
resistant to side-channel attacks.

Corrected Version: All of these design constraints do force a perfor-
mance trade off, and a serial implementation of ESSENCE runs much
slower than a similar implementation of any of the SHA-2 family
of hashing algorithms. However, the design of ESSENCE empha-
sizes security through a simple algorithm structure while allowing
for performance through parallel implementations. A serial version
of ESSENCE restricted to only 32-bit general purpose registers runs

1



at over 176 cycles per byte on a single core of an Intel Core 2 proces-
sor. However, a parallel version running on a quad-core Intel Core 2
processor and using assembly code to access 128-bit vector registers
is capable of running at nearly 12 cycles per byte.

2. In Figure 2 the line of pseudo-code r1 := r1 was corrected to r2 := r1.

3. In Figure 5 the line of pseudo-code r1 := r1 was corrected to r2 := r1.

4. In section 3.3 the aside reminding the reader of the definition of a com-
panion matrix had the indices reversed for the polynomial coefficients in
the matrix and ignored the fact that the leading coefficient is 1. This has
been corrected.

Original Version: Recall that the companion matrix of a polynomial
f(x) = bnxn + bn−1x

n−1 + · · · + b1x + b0 is the n× n matrix

Cf =



0 1 0 0 . . . 0
0 0 1 0 . . . 0

. . .

0 0 0 0 . . . 1
−bn−1 −bn−2 −bn−3 −bn−4 . . . −b0


.

Corrected Version: Recall that the companion matrix of a polynomial
f(x) = xn + bn−1x

n−1 + · · · + b1x + b0 is the n× n matrix

Cf =



0 1 0 0 . . . 0
0 0 1 0 . . . 0

. . .

0 0 0 0 . . . 1
−b0 −b1 −b2 −b3 . . . −bn−1


.

5. Meltem Sonmez Turan pointed out an error in section 3.2.1, the criteria for
the F function. Criteria 2 incorrectly listed the maximal linear complexity
possible for a sequence generated by an n-bit shift register as 2n. The
correct upper bound is 2n − 1. The shift register used in ESSENCE with
the given F function has linear complexity 255, not 256, and the connecting
polynomial is

∑255
k=0 xk, not x256 + 1 as was originally written.

Original Version: Given any sequence, the linear complexity of the se-
quence is the length of the smallest linear feedback shift register
(LFSR) which can generate the sequence. The maximal linear com-
plexity for a shift register sequence generated by an n-bit register is
2n.

2



The function F, used in the configuration shown in Figure 3 with
I set to zero produces a shift register sequence with maximal lin-
ear complexity (i.e. its linear complexity is 256 with the connecting
polynomial x256 + 1).

Corrected Version: Given any sequence, the linear complexity of the
sequence is the length of the smallest linear feedback shift register
(LFSR) which can generate the sequence. The maximal linear com-
plexity for a shift register sequence generated by an n-bit register is
2n − 1.
The function F, used in the configuration shown in Figure 3 with
I set to zero produces a shift register sequence with maximal linear
complexity. Its linear complexity is 255 with connecting polynomial∑255

k=0 xk.

6. Nicky Mouha pointed out an error in Figure 7: Inefficient L64 Implemen-
tation in C. The line

temp = (temp << 1) & P_64;

should be

temp = (temp << 1) ^ P_64;

This has been corrected.

7. Added an Acknowledgment section to thank individuals who have pointed
out errors.

2 Changes to ESSENCE: A Candidate Hashing
Algorithm for the NIST Competition

1. Inserted section 3 labeled “Some Overloaded Definitions”. This new sec-
tion gives a clearer explanation of some of the terms used in the specifi-
cation documents. In particular, it explains the differences between the
overloaded usages of the word “block”. Note that the insertion of this
section has increased the section numbers of all following sections by one.

2. In section 7, “Running Hash”, a statement to clarify what is computed
for a hash of a message with zero length was added. In particular, the
description of bytes 0-7 of the final block hash been changed as follows:

Original Version: An unsigned 64-bit integer representing the number
of complete Merkle-Damg̊ard blocks processed.

Corrected Version: An unsigned 64-bit integer representing the num-
ber of complete Merkle-Damg̊ard blocks processed. If ESSENCE is
requested to hash a message of zero length, then all bits in this field
will be set to ones.

3



3. In section 7, “Running Hash”, added subsection 7.1, “Resistance to Length
Extension Attacks” to clarify how ESSENCE is resistant to length exten-
sion attacks.

4


