

1/27

EnRUPT Hash Function Specification

Sean O’Neil
VEST Corporation

France

Karsten Nohl, PhD
University of Virginia

USA

Luca Henzen
ETH Zürich University

Switzerland

www.EnRUPT.com

http://www.EnRUPT.com

2/27

1. Introduction... 3
1.1 Definitions...4

1.1.1 Glossary ...4

1.1.2 Symbols and operations...4

1.1.3 Terms and parameters ...4

1.2 Bit strings, w-bit words and integers ..5

2. EnRUPT Structure and Operation... 6

2.1 EnRUPT parameters ...6

2.2 EnRUPT round function (ïr1)...7

2.3 EnRUPT structure ...7

2.4 EnRUPT operation in ïrRUPT mode...8

2.4.1 Preprocessing ..8

2.4.2 Message processing...8

2.4.3 Finalization ...8

2.4.4 Output ..8

2.5 PRF, MAC, HMAC, AE and randomized hashing ...9

2.6 Parallel modes ..9

3. Design Principles ... 9

3.1 Kerckhoffs desiderata..9

3.2 Design methodology.. 10

3.2.1 Monomial distribution .. 11

3.2.2 Luby-Rackoff theory .. 11

3.2.3 Partial analysis of large ANF .. 12

3.2.4 Randomness tests .. 13

3.3 Design ... 14

3.4 Parameters... 14

3.4.1 s, security, set to 4 .. 14

3.4.2 P, parallelisation, set to 2 ... 14

3.4.3 r, round number... 15

3.4.4 w, word width .. 15

4. Security ... 15

4.1 Linear and differential cryptanalysis, min(2H⋅w–h,2h) ... 16

4.2 Length extension, min(2H⋅w–h,2h) ... 16

4.3 Collision resistance, min(2H⋅w/2,2h/2) .. 16

4.4 First and second preimage resistance, min(2H⋅w–h,2h) .. 16

4.5 K-way second preimage resistance, min(2H⋅w/2,2h) .. 17

4.6 K-way multicollision resistance, min(2H⋅w/2,2(k−1)⋅h/k) ... 17

4.7 CTFP preimage resistance, min(2H⋅w–h,2h) ... 17

4.8 HMAC, PRF, AE, randomized hashing, min(2H⋅w/2,2h) ... 17

4.9 Guess-and-determine, min(2H⋅w/2,2h)... 17

4.10 Linearization, min(2H⋅w–h,2h) .. 18

4.11 Partial state collisions, min(2H⋅w/2,2h/2,22⋅s⋅P⋅w) .. 18

4.12 Backtracking.. 18

4.13 Timing and side channel attacks .. 19

4.14 Parallel brute-force ... 19

5. Software Performance ... 19

5.1 Embedded 8-bit processor performance estimates ... 20

6. Hardware Implementations ... 21

6.1 High Efficiency Architectures ... 21

6.1.1 Implementation.. 21

6.1.2 Performance.. 23

6.1.3 Evaluation .. 24

6.2 Minimum size irRUPT MAC ... 25

7. Probable Disadvantages .. 26

8. References .. 27

3/27

1. Introduction

This document specifies the ïrRUPT stream hashing mode of the EnRUPT family
of cryptographic algorithms first published at SASC 2008 [ER007]. ïrRUPT is an
iterative stream hash function that processes a message one w-bit word at a time
to produce a condensed representation of the message called message digest.

Seven stream hash functions are proposed herein for the general-purpose use:
ïrRUPT32-128, ïrRUPT32-160, ïrRUPT32-192, ïrRUPT64-224, ïrRUPT64-256,
ïrRUPT64-384 and ïrRUPT64-512. The seven proposed algorithms differ mostly
in the number of bits of security that are provided for the data being hashed,
which is half of the message digest size. Other algorithms may require the use of
a secure hash algorithm that provides a certain number of bits of security. For
example, ïrRUPT64-256 providing 128 bits of security can be used if a message is
being signed with a 128-bit secure digital signature algorithm requiring the use
of a secure hash function that also provides 128 bits of security.

Additionally, the seven proposed algorithms differ in their word size and size of
internal state. Basic properties of the seven algorithms are presented in Table 1.

Table 1 Basic properties of the proposed EnRUPT stream hash functions

All seven proposed general-purpose algorithms use the same security and
parallelization parameters defined in section 2.1, s=4 and P=2. All the specified
parameters can be varied to obtain hash functions with desired properties.

Hash ïrRUPT-128 ïrRUPT-160 ïrRUPT-192 ïrRUPT-224 ïrRUPT-256 ïrRUPT-384 ïrRUPT-512

Message Size
(bits) <264 <280 <296 <2112 <2128 <2192 <2256

Word Size
(bits)

32 32 32 64 64 64 64

State Size
(bits)

256+96 320+96 384+96 512+192 512+192 768+192 1024+192

Hash Size
(bits) 128 160 192 224 256 384 512

Security
(bits)

64 80 96 112 128 192 256

Rounds per
Word

8 8 8 8 8 8 8

Additional
Rounds per

Message
104–112 128–136 152–160 104–112 104–112 152–160 200–208

4/27

1.1 Definitions

1.1.1 Glossary

Bit A binary digit having values of either 0 or 1.

Byte A group of eight bits.

Word A group of either 32 bits (4 bytes) or 64 bits (8 bytes), depending on
the algorithm parameter w.

1.1.2 Symbols and operations

mod Remainder of division, the result of x mod n is a remainder of
division of x by n; % operator in C programming language.

+ Arithmetic addition operation limited to w-bit integers, also known
as addition mod 2w or depicted as ⊞; + operator in C.

* w-bit arithmetic multiplication (⋅ mod 2w); * operator in C.

⊕ w-bit bitwise XOR (exclusive-OR) operation; ^ operator in C.

& w-bit bitwise AND operation, also known as ∧; & operator in C.

| w-bit bitwise OR operation, also known as ∨; | operator in C.

¬ w-bit bitwise complement (NOT) operation; ~ operator in C.

<< w-bit bitwise shift left operation; x << n discards the leftmost n bits
of the word x padding the result on the right with n zero bits,
identical in its operation to x*2n; << operator in C.

>>> w-bit bitwise rotation right, where rotr(x,n) = x >>> n is computed
by cyclic rotation of the word x to the right by n bits.

/ Rounded integral division operation; / operator in C.

1.1.3 Terms and parameters

c Word of ciphertext, in big-endian format.
d A set of P delta accumulators.

di ith (i mod P) delta accumulator.

(ïr1) Irreversible EnRUPT round function; returns dP–1.
f Temporary variable containing intermediate result of (ïr1).

h Size of the final hash value in bits; s⋅w⋅P/2 ≤ h ≤ 3⋅s⋅w⋅P.

H Number of words in the internal state x; s⋅P ≤ H ≤ 6⋅s⋅P, 2⋅h ≤ H.

m Number of bits in the input message.

N Number of sealing rounds; N=2⋅s⋅H for all EnRUPT stream modes.

oi ith word of hash output or keystream, in big-endian format.

M or p message or ‘plaintext’ to be hashed or encrypted or both.

pi ith word of plaintext input, in big-endian format.
P Parallelization parameter, generally 1≤P≤4.

r Round number, starts with 0.
s Security parameter, s≥4 is recommended.

w Word width, 32 or 64 bits.

x H words of internal state, recommended H=(h+P*w–1)/w/P*P.
xi ith (mod H) word of internal state.

5/27

1.2 Bit strings, w-bit words and integers
The following terminology related to bit strings and integers will be used:

1. A hex digit is an element of the set {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B,
C, D, E, F}. Each hex digit represents a 4-bit string corresponding
to the same number in binary form. For example, the hex digit "7"
represents the 4-bit string "0111", and the hex digit "B" represents
the 4-bit string "1011".

2. A word is a w-bit string that may be represented as a sequence of
hex digits. To convert a word to hex digits, each 4-bit string is
converted to its hex digit equivalent, as described in (1). For
example, the 32-bit string

1010 1101 0101 1011 0101 0001 1010 1110

can be expressed as "AD5B51AE", and the 64-bit string

1110 1101 0000 1101 1110 1100 0010 1011
1010 1101 0101 1011 0101 0001 1010 1110

can be expressed as "ED0DEC2BAD5B51AE".

Throughout this specification, the “big-endian” convention is used
when expressing both 32-bit and 64-bit words, according to which
the most significant bit is stored in the left-most bit position within
each word.

3. An integer may be represented as a word or a number of words. An
unsigned integer between 0 and 232–1 inclusive may be represented
as a 32-bit word (from 00000000 to FFFFFFFF). The least
significant four bits of the integer are thus represented by the
rightmost hex digit of the word representation. For example, the
integer 4680 = 212 + 29 + 26 + 23 = 4096+512+64+8 is represented by
the hex word 00001248. Similarly, an unsigned integer between 0
and 264–1 inclusive may be represented as a 64-bit word (from
0000000000000000 to FFFFFFFFFFFFFFFF).

4. Only single-word w-bit unsigned integers are used in EnRUPT
hash functions. The words of internal state x, the delta
accumulators d, the round number r and the temporary variable f
are all w-bit unsigned integers. For EnRUPT32, the message is
represented in 32-bit words, and for EnRUPT64, the message is
represented in 64-bit words.

6/27

2. EnRUPT Structure and Operation

ïrRUPTwxP-h/s

input m bits of message p and location for h bits of hash o;

set pm/w = (1 << (¬m & (w–1))) | pm/w & (–1 << (¬m & (w–1)));
set H = (2*h+P*w–1)/w/P*P;
set x0..H–1 = d0..P–1 = r = 0;

for i = 0 to m/w execute ïr2s(pi), set i += 1;
execute ïr2s(h);
for i = 0 to H–1 execute ïr2s(0), set i += 1;
for i = 0 to (h–1)/w set oi = ïr2s(0), set i += 1;

Return h bits of o as the final hash value.

ïr2s(p) execute (ïr1) 2*s times; set dP–1⊕=p; return dP–1;

(ïr1), P=2
set xr+2 ⊕= f = rotr(2*xr⊕1 ⊕ xr+4 ⊕ dr&1 ⊕ r, w/4)*9,
set dr&1 ⊕= f ⊕ xr, set r += 1;

Fig. 1 Complete EnRUPT stream hashing mode specification in pseudocode.

(ïr1), P=1
set xr+1 ⊕= f = rotr(2*xr ⊕ xr+2 ⊕ d0 ⊕ r, w/4)*9,
set d0 ⊕= f ⊕ xr+H/2+1, r += 1;

(ïr1), P=4
set xr+4 ⊕= f = rotr(2*xr⊕1⊕(r&1)*2 ⊕ xr+8 ⊕ dr&3 ⊕ r, w/4)*9,
set dr&3 ⊕= f ⊕ xr, r += 1;

(ïr1), any P
set xr+P ⊕= f = rotr(2*xr/P*P+((r+1)%P) ⊕ xr+2*P ⊕ dr%P ⊕ r, w/4)*9,
set dr%P ⊕= f ⊕ xr+H*P/2+(P&1), r += 1;

Fig. 2 (ïr1) round function pseudocode for other P values.

Note: All x indexes in the pseudocode are evaluated as modulo H.

2.1 EnRUPT parameters

Parameter Description Acceptable values

W Word size w = 32 for h=128, 160, 192, 224, 256, … 768
w = 64 for h=256, 320, 384, 448, 512, … 1536

P Parallelization level P = 2n, P=2 for general-purpose applications

h Final hash bits h = s⋅w ≤ h ≤ 6⋅s⋅w

s Security level s = 1 for non-cryptographic applications
s = 2 to resist passive distinguishers
s = 3 to resist non-adaptive attacks
s = 4 to resist all adaptive attacks
s = 4 for general-purpose applications
s > 4⋅sw for high-assurance applications

Fig. 3 ïrRUPT[w]x[P]-[h]/[s] required parameters

7/27

2.2 EnRUPT round function (ïr1)
The following two figures demonstrate the structure of one (ïr1) round function
and the structure of two (ïr1) round functions executed in parallel.

Fig. 4 Single (ïr1), P=2. Fig. 5 Two parallel (ïr1), P=2.

In pseudocode, the irreversible EnRUPT round function (ïr1) is defined as

(ïr1)

set f = rotr(2*xr/P*P+((r+1)modP) ⊕ xr+2*P ⊕ drmodP ⊕ r, w/4)*9
set x'r+P = xr+P ⊕ f
set d'rmodP = drmodP ⊕ f ⊕ xr+H*P/2+(P&1)
set r' = r+1,

where x', d' and r' represent next-round values of the updated word of internal
state, delta accumulator and the round number. ïr2s(p) defines 2*s rounds of
(ïr1) linearly combining dP–1 with the word p and returning dP–1 as output.

2.3 EnRUPT structure
Each ïrRUPT[w]x[P]-[h]/[s] algorithm consists of H w-bit words of internal state
x0..xH–1, P delta accumulators d0..dH–1 and the round function (ïr1), which also
uses round number r in its operation. The number of words in x is calculated as

H = (2*h+P*w–1)/w/P*P

H should not be less than s⋅P, although smaller states can be used for research,
cryptanalysis and non-cryptographic applications.

Fig. 6 EnRUPT structure, P=1. Fig. 7 EnRUPT structure, P=2.

At the high level, EnRUPT structure is almost identical to that of XXTEA [XXT].
The unparallelizable (ïr1) with P=1 is identical to (ir1) [ER007] round function.
All seven proposed general-purpose hash functions use 2x parallelization.

8/27

2.4 EnRUPT operation in ïrRUPT mode
The basic (unkeyed/unrandomized/etc) ïrRUPT stream hashing mode of operation
consists of four stages: preprocessing, computation, finalization and hash output.

1. During the preprocessing stage, a message is padded and parsed into w-
bit words, and the internal state is reset.

2. The computation stage updates the internal state with word operations
using words of the padded message and the round number.

3. The finalization stage seals the internal state by diffusing the last input
bits securely throughout the state.

4. The final value generated by the hash output stage is the message digest.

2.4.1 Preprocessing

1. Append one bit 1 to the end of the message, followed by w – ((m+1) mod w)
bits 0. Then pad the message in a multiple of w-bit words as the protocol
requires, where randomization, message length, hash bit length, message
number and any other variables and parameters may be included.

2. Set all H=(2*h+P*w–1)/w/P*P words of the internal state x to 0. Set N =
2*s*H. Set r = 0. Set d0 = 0. Set d1 = 0.

2.4.2 Message processing

1. Execute ïr2s(pi) once for each word of the message.

2.4.3 Finalization

1. Execute ïr2s(h) once.
2. Iterate ïr2s(0) H times.

2.4.4 Output

1. Save oi=ïr2s(0) as the ith word of the final hash value.
2. Repeat the above step (h+w–1)/w times.
3. Truncate the last bits of o for the odd-size hash values.

Being a stream hash, ïrRUPT processes the message one w-bit word at a time:

Fig. 8 Hashing the first p0 word of the message (s=4).

9/27

2.5 PRF, MAC, HMAC, AE and randomized hashing
Construction of PRF, T/PRNG, MAC or HMAC, authenticated encryption or
randomized hashing from ïrRUPT is straightforward for any of the variants:

1. Initialise the state according to 2.4.1. The key/IV/salt and the plaintext
must be padded according to 2.4.1.

2. If necessary, hash the secret key according to 2.4.2.
3. Hash the IV/salt according to 2.4.2.

4. Seal the internal state according to 2.4.3.

5. Further continuous output of ïr2s(0) is a PRF/PRNG (RUPT mode), which
can be used as keystream for binary additive encryption (a stream cipher);
continuous output of ïr2s(pi) can be used as ciphertext for authenticated
encryption (aeRUPT mode) or as a true RNG continuously loading entropy
as pi; the message stream is also processed with ïr2s(pi) for randomized
hashing or HMAC (mcRUPT mode) but disregarding the output.

6. After processing the message with ïr2s(pi) and sealing the internal state
according to 2.4.3 for the second time, the final hash value from the step
2.4.4 can serve as a MAC, HMAC or a randomized hash value.

2.6 Parallel modes
ïrRUPT can also be safely used in any of the parallel hashing modes such as tree
hashing [TREE], 4-time XOR hashing proposed by Bernstein in [XOR4] or MD6
[MD6] by dividing the stream into blocks or chunks of fixed size and hashing
them in parallel according to 2.4.

3. Design Principles

The design of cryptographic functions remains largely a trial-and-error process in
which known attacks are tested against arbitrarily guessed candidate functions
until constructs that withstand all attacks are found. The AES competition has
found the current standard in block ciphers by soliciting constructs that are hard
to break, but did not require the design methodology of the constructs to be
reproducible or even comprehensible. While the functions that come out of a
cipher competition are usually strong, little insight is gained into how the
different components of a function interact to provide its strength. Furthermore,
the evaluation of new cryptographic functions is often limited to the analysis of
its different parts, all of which must be strong for a cipher to be accepted. This
design approach leads to algorithms unnecessarily complex and expensive. We
demonstrate that equally strong while significantly cheaper designs can be found
by evaluating candidate functions as a whole with automated cryptanalysis tools.

3.1 Kerckhoffs desiderata
In 1883 Auguste Kerckhoffs has published six desiderata for cryptographic
systems in his work La Cryptographie Militare [LCM]. We translate these
desiderata to the modern age cryptography as:

1. The cost of breaking the cryptosystem should be higher than the benefit.
2. Compromise of one system should not affect [the users of] other systems.
3. Keys should be as short as possible and rekeying should be as fast as possible.
4. It should store and process data in the most conveniently aligned binary form.

10/27

5. The algorithm should occupy as little area, code and memory as possible.
6. The algorithm should be of minimal complexity, as fast as possible,

and its implementation should not cause any mental strain.

The real users of modern cryptosystems are software and hardware developers.
While “no security through obscurity” has become a popular slur misquoting the
second desideratum, the sixth one requiring simplicity seems to have been so far
overlooked. EnRUPT is designed to be as simple as possible. Although security
was never sacrificed, some of its performance was traded in favour of simplicity.

3.2 Design methodology
In order to find functions that are simple yet strong, we have developed tests that
measure the cryptographic strength of candidate functions by evaluating
randomness of distribution of monomials in all the polynomial relationships
between bits. We use these tests to find the strongest constructs from a design
space containing a vast number of simple functions. Randomness of the
polynomial structure of a function ensures sufficiently high complexity and
absence of a detectable bias, guaranteeing unbiased pseudorandom output.

To test a candidate function for polynomial randomness, we reconstruct the
weakest possible parts of its polynomial structure and run standard randomness
tests on those parts. Given a set of sufficiently independent round functions that
are indistinguishable from random, the Luby-Rackoff theory [LR] provides us
with a straightforward way of building functions verifiably resistant to all
statistical attacks. Luby-Rackoff theorem states that a Feistel Network
construction iterating four independent round functions, all of which are
indistinguishable from random in polynomial time, will resist all adaptive and
non-adaptive statistical attacks. Therefore, finding verifiably secure
cryptographic functions that are immune to statistical attacks can be reduced to
finding functions indistinguishable from random and combining them in Feistel
network constructions. Ciphers with a sufficiently random structure also seem to
be highly resistant to algebraic attacks since these attacks rely on the sparseness
of a cipher's polynomial structure.

By design, any function selected by this process is resistant to all attacks
considered in the design methodology, as long as the right heuristics are chosen
in making the design tools practical. Anchoring the security claims in the
automated design methodology and not in any concrete function has the
additional advantage that further cryptanalysis is significantly accelerated and
its value is increased because the number of structural flaws that may have been
overlooked is significantly reduced. Cryptanalysts can concentrate on the simple
tools used to create a cipher instead of having to cut through the (often
unnecessary) layers of complexity inherent in many cryptographic primitives.
Should new statistical attacks be discovered through cryptanalysis, useful
feedback is gained for improving the design tools’ heuristics to consider the new
attacks as well. Our approach, therefore, provides a positive feedback loop that
converts new cryptanalysis techniques into improved tools to create ciphers that
are inherently resistant to the new attacks. All known statistical attacks such as
linear and differential cryptanalysis as well as algebraic attacks were already
considered in the design tools used to find EnRUPT.

11/27

We demonstrate the effectiveness of our design methodology by identifying
EnRUPT from a large design space predominantly populated with weak design
choices. Our design space is defined by all round functions that only use a small
number of shifts, rotations, arithmetic additions and XOR operations.

The following sections discuss the mathematical foundation of our design
methodology demonstrating their direct correlation with all statistical attacks
including but not limited to, linear cryptanalysis, differential cryptanalysis and
Mod n cryptanalysis [MODN].

3.2.1 Monomial distribution

A function can be defined by a set of polynomials that express output bits in
terms the input bits. The ith bit of a string x is denoted xi. We consider functions
that take one input string, x consisting of all the input bits including both, the
key and the data bits, and produce an output string:

!

y" f x() . Each bit of the

output string,

!

yi , can be expressed as a binary function of the input bits. Each
term, known as a monomial, in the algebraic normal form (ANF) of these binary
functions is a conjunction of one or more input bits. Each ANF of a function with
n input bits (key bits plus data bits) has the general form:

!

yi = a1,1 " x1 + a1,2 " x2 + ...+ a1,n " xn

+a2,1 " x1 " x2 + ...+ a
2, n#1()n

" xn#1 " xn

+...+ an,1 " x1 " x2 " ..." xn

where the jth monomial of degree i has a coefficient

!

ai, j " 0,1{ } and the terms
correspond to the powerset of the input bits. The string formed by these

coefficients,

!

a1,1 || a1,2 || ... || an,1 completely describes the function. Next we show that
if the combined set of ANFs of those functions is sufficiently random, the
complete function is indistinguishable from a random function and can be used
for construction of cryptographically strong algorithms.

3.2.2 Luby-Rackoff theory

A pseudorandom function family (PRF) is a family of functions for which the
output of a randomly chosen member of the family is indistinguishable from
random for any efficient (i.e., polynomial time) distinguisher. The randomness of
the output is a much weaker property than the randomness of the ANF of a
function: a random ANF always leads to an output that is indistinguishable from
random (Proposition 1 in [SAAR]), while a random-looking output can also be
produced by a complex, but not random ANF that can be distinguished from
random by either statistical or algebraic attacks.

Given a PRF (or a function that is indistinguishable from a PRF), we rely on the
Luby-Rackoff theory to build a more globally pseudorandom permutation that is
resistant to adaptive and non-adaptive cryptanalysis [LR]. The Luby-Rackoff
theorem states that after three iterations of a Feistel network with independent
PRFs, the mapping between (random) inputs to the Feistel network and its
output cannot be distinguished from a random function by a polynomial time
attacker. If the inputs to the Feistel network are not random, a fourth iteration is
required to make the function indistinguishable from random by an adaptive
polynomial time attacker with access to the decryption process.

12/27

Let r be the number of rounds after which a construct becomes a PRF or LRF.
Normally, 2r Feistel rounds resist passive distinguishers from random without
known plaintext, 3r rounds resist non-adaptive statistical attacks by known or
chosen plaintext or ciphertext attacks, and 4r rounds resist all adaptive attacks
(including square, rectangle, boomerang, etc.). Patarin, Naor, and Reingold
provided similar proofs for Benes networks and for unbalanced Feistel networks
[PRP], [BBSR].

EnRUPT is a source-heavy unbalanced Feistel network. Although the exact
number of subrounds required for provable resistance to adaptive attacks is
smaller than 4r for unbalanced Feistel networks, we have adopted the highest
value 4r for its simplicity, since it is not significantly higher than the actual
number of rounds that will resist all attacks and cryptographers always
appreciate an extra security margin.

3.2.3 Partial analysis of large ANF

To test conclusively how well a given design implements a function that is
indistinguishable from a PRF we would have to compute its complete ANF and
test it for randomness. However, exhaustively computing and analysing ANFs of
arbitrarily large functions is intractable. Instead, we apply heuristics designed to
provide good coverage for all known cryptographic attacks. These heuristics can
show immunity to statistical and (known) algebraic attacks that operate on small
sets of inputs and outputs.

We argue that it is the non-randomness of the ANF detectable for a sufficient
number of rounds that is responsible for the success of all the known statistical
and algebraic attacks on symmetric cryptographic primitives, although the
function’s outputs may appear perfectly random. Differential and linear
cryptanalysis, for instance, exploit the strong connection between small groups of
input and output bits [DC], [LR], and algebraic attacks exploit the sparseness of
ciphers in their polynomial representation [ALG], which is detectable as
sparseness, non-randomness or otherwise “compressability” of their ANF.

As our heuristic, we choose to compute the monomials for each subset of input
bits up to a certain size. For a cipher with n input bits, we generate the
polynomial relations between the output bits and all sets of p input bits for all
the values of p up to an upper bound m. This upper bound is usually constrained
by computational power, since computing the ANF of p input bits of an arbitrary

function takes

!

p "2
p#1() executions of the function by Algorithm 1 in [SAAR]. The

algorithm takes the truth table of a function (or an oracle that generates it) and
computes the monomials starting from the smallest ones and iteratively xors
these smaller monomials into the truth table as more inputs are set to 1. All
input bits that are not part of the p inputs under consideration are set to 0 so
that the polynomials can have at most 2p monomials.

Values up to m=40 can be computed on commodity hardware for simple ciphers
within minutes. During our tests, we find that all detectable flaws are reflected
in subsets of lower degrees (around p=16..20), while the higher degree tests can
almost never distinguish a function that is passed as pseudorandom by the lower-
degree tests. The tests that operate on large numbers of inputs often do not even
detect the flaws that are detected by testing smaller subsets since the noise in

13/27

the tests is increased as more bits are included that do not contribute to the flaw.
Therefore, it is important that smaller sets of inputs are tested first.

Our observation that most weaknesses are caused by small sets of inputs is
consistent with results from linear and differential cryptanalysis, which always
lead to attacks involving only small sets of inputs and outputs. Differential
cryptanalysis is a class of attacks where a known difference in the input bits
produces a known difference in the output bits with an exploitably high
probability. Linear cryptanalysis is a related attack that finds the best affine
approximations to the Boolean functions iterated for many rounds and exploits
the higher probability of approximation to find some of the key bits faster than
by brute-force. Linear and differential analysis, hence, exploit a strong
connection between small sets of input and output bits.

Algebraic attacks are another example of attacks that exploit only local non-
randomness since they rely on the sparsity of monomials. Low sparsity has led to
successful attacks on a number of stream ciphers [ALG], but is detected by our
tests automatically. We therefore conjecture that testing ANF of all low degree
subsets is sufficient for detecting exploitable cryptographic weaknesses.

3.2.4 Randomness tests

Counting monomials of ciphers to detect statistical weaknesses a [STAT]. His d-
monomial test computes the number of monomials present in the polynomials of
a given function and requires that roughly half of all possible monomials are
present. The same test was applied by Saarinen to the candidates of the
eSTREAM competition for stream ciphers [SAAR]. Many of the analysed ciphers
were found to have polynomial structures that are too sparse and would hence
potentially be vulnerable to statistical and algebraic attacks. While any overly
sparse (or overly dense) polynomial is distinguishable from random, the inverse
does not hold. We propose to test polynomial structures for properties beyond the
average monomial count by applying standard randomness tests.

Our analysis is constrained by the general infeasibility of conclusive randomness
tests. None of the strings we generate are truly random (since we know a way of
generating them), but they may still be indistinguishable from random in
polynomial time. We define a sufficient level of local randomness in a practical
way: any bias that the attacker could possibly exploit can also be tested for with
the right randomness tests. It should, therefore, be possible to prevent all
statistical attacks through sufficient randomness testing of the algebraic
structure of all the relationships between all the input and output bits.

As shown by the Luby-Rackoff theorem, once a function is indistinguishable from
random after a certain number of rounds, a Feistel Network built with that
function becomes resistant to all statistical attacks after only four times that
number of rounds. If the round functions are independent as required, slide
attacks [SLID] also do not apply. Our tests also verify that property.

The choice of ordering of the monomials matters very little for the randomness
tests. The amount of entropy is not altered by any fixed transpositions, thus
randomness tests distinguish differently ordered ANF sequences equally well.
Simple accumulation of all the monomials into a single stream in the order they
are generated (by Algorithm 1 in [SAAR], for instance) is sufficient to detect local
non-randomness.

14/27

Our tests rely on well-known randomness tests such as the NIST and diehard
statistical test suites. For example, the diehard bitstream test takes a string of

!

2
n binary symbols and counts how often different n-bit words are found as

subsets of the string. In a random

!

2
n-bit long string, the number of missing n-bit

words should be normally distributed with mean

!

2
n

e
. The test is performed on a

number of different

!

2
n-bit strings from the source under the test and is passed if

all of them have a distribution reasonably close to the random distribution
according to a Z-test.

By applying these standard tests to monomial distributions, weaknesses in the
polynomial structure of several cryptographic primitives have been found.
Randomness tests from the diehard suite successfully detect the vulnerability of
the TEA cipher to related-key attacks for any number of rounds, detect large
classes of weak keys in complete IDEA, as well as distinguishing up to 4 rounds
of AES and up to 27 rounds of SHA-1 from random [47].

3.3 Design
Formally speaking, the structure of EnRUPT is a consistent incomplete source-
heavy heterogenous UFN (unbalanced Feistel network) [UFN]. Despite its
apparent simplicity, it seems to be an optimal structure preserving its strength
with states of any size. Simplicity of every aspect of the complete design was our
primary goal and turned out to be the hardest thing to achieve while maintaining
high performance with a single simple set of rules for all the possible sizes. It is
actually very easy to save a few clock cycles per byte at the cost of simplicity.

3.4 Parameters

3.4.1 s, security, set to 4

A certain minimal amount of message expansion is required for ïrRUPT to hash
data securely. Therefore the proportion between the word size and the state size
must be sufficiently high. The internal state should not be less than H=s⋅P words
and cannot be less than 2⋅h, which makes the smallest supported hash to be s=4
words in size for the proposed ïrRUPTx2.

It is not advised to reduce the security parameter below s=4 for general-purpose
applications. However, some applications may benefit from the higher speeds if
security against certain classes of attacks is not required. Protocol designers
wishing to modify ïrRUPT parameters outside the recommended ranges must
consider the security implications presented in sections 4.6, 4.10 and 4.11 below.

3.4.2 P, parallelisation, set to 2

The parallelisation parameter P=2 is proposed for the general-purpose hashing.
This offers the most optimal balance between constrained environments and
extra large microchips, pipelined parallel CPUs and GPUs.

EnRUPT with P=4 is of course two times faster in FPGA and ASIC, but it allows
only at least P⋅4 (16-word) internal states with 4-word increments, suitable only
for the 256-bit and 512-bit hashes. While P=1 lets small RFID chips implement
even 64-bit or 96-bit hashes with small 128-bit or 192-bit states, its lack of

15/27

parallelisability makes it too inflexible for a wide range of pipelined software
processors and too slow for the unconstrained hardware.

Different parallelization options for different hash sizes would confuse developers
making it difficult to reuse the round function. Therefore we chose P=2
sacrificing the top hardware speed to preserve simplicity and balanced efficiency.

3.4.3 r, round number

EnRUPT is not the first and certainly not the last algorithm to use the round
index as means to break self-similarity of the round function, at least for each
group of 2w rounds, which is more than enough to render slide attacks infeasible.

Our tests described in 3.2 and the previously discovered collision attacks against
hash functions make it clear that pseudo-random round constants contribute
nothing to the security of the algorithm other than breaking self-similarity of the
round function and possibly also removing fixed points. The round number or any
other long counter is a much more reliable way to achieve both those objectives.

3.4.4 w, word width

The word width is set to 32 for ïrRUPT-128, -160 and -192 and to 64 for ïrRUPT-
224, -256, -384 and -512 to support the register sizes of the modern and the
immediate future processors to make current software implementations efficient.
However, all of the EnRUPT variants can safely use either 32-bit or 64-bit words.

EnRUPT32 and EnRUPT64 cannot be directly compared with EnRUPT16 or
EnRUPT128 or any other word-width scaled variants. The word width plays a
significant role in the stability of the algorithm. Odd word widths require careful
adjustment of the rotation and shift amounts and may not be secure at all.

4. Security

EnRUPT is an ADD-ROL-XOR algorithm that owes its security to the non-
linearity provided by the rotated arithmetic addition operation when it is
interleaved with linear addition (XOR).

 PRF rounds / input words

State Size: 2 4 5 6 8 10 12 14 16

TEA ∞ – – – – – – – –

XTEA 4.75 – – – – – – – –

XXTEA 5.25 – – – – – – – –

MD5-3 – 1.69 – – – – – – –

MD5-1 – 1.5 – – – – – – –

SHA-0/1 – – 1.69 – – – – – –

irRUPT32 4 2.5 2.2 1.83 1.75 1.6 1.58 1.57 1.56

irRUPT64 4.5 2.75 2.4 2 1.88 1.8 1.67 1.64 1.63

ïrRUPT32 4 4 3 2.67 2.25 2.1 2 2 2

ïrRUPT64 4.5 5 3.2 3 2.63 2.4 2.33 2.29 2.25

Table 2 Strengths of different ADD-ROL-XOR round functions (P=1 and P=2)

16/27

As can be seen from Table 2 above, the strength of the ïrRUPT round function is
comparable to other ADD-ROL-XOR ciphers. The number of PRF rounds does not
grow linearly for very small state sizes. Only states of at least H=8 words for P=2
are advised for cryptographic applications, at which size the number of full PRF
rounds for ïrRUPT lowers sufficiently close to 2. It is consistent with the
requirement for a sufficient state/input proportion discussed in Section 3.4.1. The
state sizes of 12, 14 and 16 words proposed in this specification for SHA-3 can
benefit from the lowest number of rounds, while the states with less than 8 words
would obviously require more rounds to maintain the required security level.

ïrRUPT is a stream hash and there is currently no set of known attacks that can
be applied directly. Therefore we can only speculate on the potential effectiveness
of known attacks and explore other possible directions for cryptanalysis.

4.1 Linear and differential cryptanalysis, min(2H⋅w–h,2h)

The source heavy structure of (ïr1) makes differential attacks more effective
than linear [UFN]. Our preliminary analysis shows absence of iterative
characteristics in EnRUPT with blocks or states of any size. Our basic statistical
attacks quickly grow beyond 2h in complexity for any EnRUPT with s≥3, but
advanced linear and differential attacks must be studied in more detail.

4.2 Length extension, min(2H⋅w–h,2h)

Being a stream hash with a state much larger than the output, ïrRUPT mode is
naturally resistant to the length extension attacks unlike Mercle-Damgärd
constructions. Knowledge of the hash output is insufficient to continue hashing.
h+P⋅w bits of the internal state are missing. The attacker must guess those to
continue hashing the stream correctly. Thus we can safely assume at least h-bit
security against length extension attacks.

4.3 Collision resistance, min(2H⋅w/2,2h/2)

We believe that hash function collision resistance is identical to resistance to
adaptive statistical, algebraic and structural chosen key+plaintext+ciphertext
attacks nondifferent from those applied to block ciphers or stream ciphers. Since
collision attacks are new and largely unexplored, we will refrain from speculation
leaving it to the cryptologic community to research collision resistance of
EnRUPT stream hashing. Unlike the P delta accumulators d0..dP–1, the 2⋅h-bit
state of ïrRUPT is updated bijectively preventing local collisions until more than
2⋅h bits of input is hashed. All the recently discovered collision attacks depend on
local collisions. Local collisions occur in MD5 after 5 rounds, in SHA-1 after 6
rounds and in SHA-2 after 9 rounds. In ïrRUPT-128, -160, -192, -224, -256, -384
and -512, local collisions occur only after 2⋅s⋅(H+P) rounds (that is 80, 96, 112, 80,
80, 112 and 144 rounds respectively).

4.4 First and second preimage resistance, min(2H⋅w–h,2h)

We believe the different kinds of preimage resistance to be identical to finding an
encryption key for a block/stream cipher with conditions ranging from one known
plaintext-cipher text pair to a large number of chosen plaintext-ciphertext pairs.
Finding ïrRUPT preimages is no different to breaking it as a stream cipher.

17/27

In order to find a valid preimage to a given hash value, the attacker must first
reverse the hash output process using recursive backtracking discussed in section
4.12 below. Although it is normally impossible to perform without the missing
more than h bits of information about the state, the attacker may choose their
own values and find any state that could produce the given hash value. If the
attacker did not need to guess the missing h+P⋅w bits of the final state, finding
preimages of short messages would be trivial with a meet-in-the-middle attack.

In order to find a preimage for a final state with the guessed h+P⋅w missing bits,
2⋅s⋅(H+P) rounds of (ïr1) must be attacked, which is 112 for ïrRUPT-384, 128 for
ïrRUPT-224 and 144 for ïrRUPT-256 and ïrRUPT-512. The cheapest generic
attack is a meet-in-the-middle search, complexity of which is 2h+P⋅w/2, providing a
P⋅w/2-bit security margin for possible optimisations. The search is further
constrained by the difficulty of backtracking the ïrRUPT round function.
Knowledge of the first preimage should not provide the attacker a significant
amount of additional information that would facilitate the 2nd preimage search.

4.5 K-way second preimage resistance, min(2H⋅w/2,2h)

Unless significant shortcuts are discovered, finding k-way second preimages for
ïrRUPT has complexity of no less than O(log2(k)⋅2h+P⋅w/2+2h) operations [MULT]
due to its large internal state of 2⋅h+P⋅w bits.

4.6 K-way multicollision resistance, min(2H⋅w/2,2(k−1)⋅h/k)

A k-way multicollision search must require at least 2(k−1)⋅h/k hashing operations for
a hash to be considered secure. Iterative constructions with h-bit states (chaining
variables) were found by A. Joux to require only O(log(k)⋅2h/2) operations for any
k-way multicollision search [MULT], which is much lower than what it should be
for k>2. The same attacks applied to ïrRUPT with its large internal state require
at least O(log(k)⋅2h+P⋅w/2) operations. It is unreasonable to expect any minor
optimisations of these attacks to reduce that complexity below O(2h), which is
higher than the required ≥2(k−1)⋅h/k complexity for any k.

4.7 CTFP preimage resistance, min(2H⋅w–h,2h)

Due to its large internal state of 2⋅h+P⋅w bits, unless significant shortcuts are
discovered, building the diamond structure with 2k+1–2 states for ïrRUPT herding
should take no less than 2k/2+h+P⋅w/2+2 hashing operations [HERD] and the chosen
target forced prefix search should take 22⋅h+P⋅w–k operations.

4.8 HMAC, PRF, AE, randomized hashing, min(2H⋅w/2,2h)

Besides the security parameter s, security of EnRUPT in these modes depends on
the sizes and randomness of the key, IV, salt and other randomization material.

4.9 Guess-and-determine, min(2H⋅w/2,2h)

Unlike block ciphers or block hash functions, the structural integrity of stream
ciphers and stream hash functions requires additional verification to ensure their
resistance to guess-and-determine attacks that care very little about complexity
of the functions. Guess-and-determine attacks work by guessing a few bits of the

18/27

state and determining whether there is a configuration of the remaining state
bits that is consistent with the guessed bits and the observed output bits.

Our tool set includes such automated verification for algorithms with any
structure. The structure of ïrRUPT has also been verified to ensure that at least
a half of its state must be guessed for a state of any size before the attacker can
gain any advantage by learning more information about the state than was
guessed. Table 3 below demonstrates the number of words for different state
sizes, which the attacker must guess before benefitting from it.

Words: 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

s=1 0 2 1 1 3 3 4 4 5 5 5 6 6 6 7 7 7 8 8 8 8 9 9 10 9 10 10 11 10 12 11

s=2 1 2 3 3 4 4 5 6 6 7 7 8 8 8 9 9 9 10 10 11 11 11 12 12 12 13 13 14 14 14 15

s=3 2 2 3 3 4 4 6 6 7 7 8 8 8 9 9 10 10 11 11 12 12 12 13 13 13 14 14 15 15 16 16

s=4 2 2 3 3 4 6 6 7 7 8 8 9 9 9 10 10 10 11 11 12 12 13 13 14 14 15 15 16 16 16 17

Table 3 ïrRUPT resistance to GD attacks (words to guess), P=2

4.10 Linearization, min(2H⋅w–h,2h)

The most straightforward way to attack EnRUPT algorithms is to approximate
each arithmetic addition operation with XOR. It results in the rest of the cipher
turning into an easily solved system of linear equations. ïrRUPT processes each
word 2⋅s times. It means that in order to define the state [disregarding the first
and the last full cycles], at least 2⋅(s–1)⋅H rounds must be attacked, containing
more than 2⋅(s–1)⋅H consecutive arithmetic additions to approximate. Therefore,
in order to be able to break ïrRUPT faster than 2h, the attacker must be able to
approximate each arithmetic adder at a cost of less than w/4⋅(s–1) bits, which is
highly unlikely even for s=2. Only the non-cryptographic applications using s=1
could be successfully attacked in this way.

4.11 Partial state collisions, min(2H⋅w/2,2h/2,22⋅s⋅P⋅w)

Each full cycle propagates a change in one word of the internal state only directly
to the nearest 2⋅P neighbours. Therefore a controlled or a guessed change in
those 2⋅P directly neighbouring words could terminate further propagation to the
rest of the internal state. Each full cycle adds 2⋅P to the number of words that
need to be guessed or controlled.

Thus, for instance, in order to attack 8 full cycles of ïrRUPTx2, a change in one
word would have to be contained by at least 32 words around that word with at
least 16 more words available to verify with any degree of certainty that the
match was not random. The complexity of this search is at most 22⋅s⋅P⋅w time with
22⋅s⋅P⋅w memory.

Although it is highly unlikely that this property could be exploited to attack the
complete hash even with reduced s values, users of parallel modes wishing to
combinine in a weak way (e.g. linearly) the internal states themselves instead of
their compressed outputs, must be aware that the internal states greater than
6⋅s⋅P words may not provide the expected higher security.

4.12 Backtracking
While direct execution of ïrRUPT round function in reverse should have no effect
on its security, it is not a trivial task. Since unlike the rest of the internal state,

19/27

the P delta accumulators d0..dP–1 are updated non-bijectively by the (ïr1) round
function, reversing their operation requires execution of a recursive search
process known as ‘backtracking’.

Although it is reasonably inexpensive, the backtracking process contributes a
noticeable cost to the attacker. While it may prevent some adaptive attacks that
require direct access to the “decryption” process (such as boomerang attacks or
meet-in-the-middle attacks) from succeeding, it will most likely merely increase
their cost or shift the “middle” forcing them to attack a larger number of rounds
at the benefit of a slightly increased number of possible solutions. The authors
have published their ïrRUPT backtracking C source code on www.enrupt.com.

4.13 Timing and side channel attacks
It is becoming increasingly important for cryptographic algorithms to resist
timing and side channel attacks. EnRUPT does not use variable rotations, S-
boxes or other data-dependent or key-dependent memory operations to make its
software implementations naturally invulnerable to timing attacks. Hardware
implementations, however, should take all the necessary precautions to ensure
their resistance to side-channel attacks. EnRUPT simplicity should make
implementation of side-channel attack countermeasures easier than for other
more complicated algorithms.

4.14 Parallel brute-force
The cheapest generic attacks are the parallel brute-force attacks. One ïrRUPT
circuit is equivalent to about (H+P+5)⋅w bits of memory. ïrRUPT updates P words
of the state per clock cycle. Thus only the attacks requiring fewer clock cycles
than would do as many ïrRUPT circuits as can fit in the same area as the code,
all the processors and all the memory required for the attack, can be considered
faster or cheaper than the brute force. Please measure your attacks correctly.

5. Software Performance

Only the H state words, the P accumulator words and the round number must be
stored between iterations, however performance can be improved by caching a
number of words to be hashed with a speed-optimised implementation. Table 4
below provides memory usage (in bytes) and speed (in CPB) of the three included
32-bit and 64-bit implementations demonstrating some of the possible time / code
size / implementation flexibility tradeoffs. Properly optimized SIMD assembly
implementations should show even higher speeds.

 ïrRUPT-224 ïrRUPT-256 ïrRUPT-384 ïrRUPT-512

 ref avg opt ref avg opt ref avg opt ref avg opt

Unrolled, times 1 6 32 1 6 32 1 6 48 1 6 64

RAM, bytes 92 160 120 92 160 120 152 256 192 184 320 240

ROM, bytes 0 0 0 0 0 0 0 0 0 0 0 0

Speed, CPB 217 32 5.18 217 32 5.18 217 32 5.18 217 32 5.18

Table 4 Submitted 32-bit/64-bit software implementations

The following table lists 32-bit and 64-bit Core-2-Duo performances of three
implementations: an optimal generic implementation that supports hashes of any

http://www.enrupt.com

20/27

size, an unrolled C implementation and an unrolled ANSI C implementation of
ïrRUPT32 with MMX and ïrRUPT64 with SSE compiler intrinsics.

s=4 Compiler ïrRUPT32
generic

ïrRUPT32
MMX

ïrRUPT64
generic

ïrRUPT64
SSE

IC32 13.3 13.4 20.2* 8.37

MSC32 15 13.5 23–30.7* 9.09
X86 on x64,

CPB
GCC32 17 14.4 24 9.87

IC64 30 25.4 5.18 14.2

MSC64 13.4 – 7.86 9.71 x64, CPB

GCC64 27.5 14.4 10.9* 9.87

Finalization, clock cycles 478–691 482–697 373–704 602–1138

Table 5 ïrRUPT Intel performance with different compilers on 16K messages
(*) u32-only implementation

The small code size of ïrRUPT also makes it an ideal candidate for the high-level
language implementations with Java, JavaScript, Perl, Python, Basic, PHP, etc.
significantly reducing the processing and download overheads for web pages. For
comparison, the smallest implementation of MD5 in JavaScript to support secure
password authentication in web pages occupies 7 kilobytes of code to download.

Platform Hash 1 byte 10 bytes 100 bytes 1,000 bytes 10,000 bytes 100,000 bytes

ïrRUPT-224 112 184 904 8112 80112 800112

ïrRUPT-256 112 184 904 8112 80112 800112

ïrRUPT-384 160 232 952 8160 80160 800160
Total Rounds

ïrRUPT-512 208 280 1000 8208 80208 800208

ïrRUPT-224 718 76.3 12.1 5.81 5.21 5.14

ïrRUPT-256 718 76.3 12.0 5.81 5.21 5.14

ïrRUPT-384 955 100 14.5 6.09 5.23 5.15

IC64 on x64,
Plain C,

Total Clock Cycles
ïrRUPT-512 955 125 17.1 6.32 5.23 5.13

ïrRUPT-224 1161 123 19.5 9.39 8.42 8.31

ïrRUPT-256 1161 123 19.4 9.39 8.42 8.31

ïrRUPT-384 1544 162 23.5 9.85 8.46 8.32

IC32 on x86,
SSE intrinsics,

Total Clock Cycles
ïrRUPT-512 1951 202 27.7 10.2 8.46 8.29

Table 6 Optimized ïrRUPT64x2/4 speed in C for messages of different sizes

5.1 Embedded 8-bit processor performance estimates
EnRUPT is designed to be smartcard-friendly with its tiny memoryless round
function, a single 8-bit or 16-bit rotation and mostly XOR operations.
Multiplication by 9 can be implemented as either a 3-bit shift across 32-64 bits
and one 32-64-bit addition or as 4 calls to the adder implemented as 4-8 8-bit
adders with carry. The rest of the cipher is trivially implemented with 8-bit
XORs. Thus the total number of simple 8-bit operations to implement one round
of ïrRUPT32 (64) is 50 (98). That is 21 (41) XORs, 8 (16) copy operations and
either 21 (41) arithmetic additions or 16 (32) 1-bit shifts and 5 (9) arithmetic
additions, with additional 4 (8) XOR operations once every 8 rounds to load each
input word. That is 6 to 8 times faster than AES-128 and 10 times faster than
SHA-1, with a much smaller code and with lower memory requirements as can be
seen from Table 7 below:

21/27

Primitive Code RAM ROM CPB Extra clock cycles / message

AES-128[6805] 1K 50 879 592 or 846 0 or 2278

ïrRUPT32-128 0.1K 44 0 101 3636 or 4040

SHA-1[6805] 2K 118 798 1058 0 or 67722

ïrRUPT32-160 0.1K 52 0 101 4444 or 4848

ïrRUPT32-192 0.1K 60 0 101 5252 or 5656

ïrRUPT64-224 0.2K 88 0 99 7128 or 7920

ïrRUPT64-256 0.2K 88 0 99 7128 or 7920

ïrRUPT64-384 0.2K 120 0 99 10296 or 11088

ïrRUPT64-512 0.2K 152 0 99 13464 or 14256

Table 7 8-bit processor performance comparison

Since 8-bit ïrRUPT32 implementations and 8-bit and 16-bit ïrRUPT64
implementations do not use bitwise rotations, we also anticipate significantly
higher speeds on those processors comparing to other ADD-ROL-XOR designs.

6. Hardware Implementations

We evaluate several hardware efficient architectures of ïrRUPT stream hashing
modes of EnRUPT for ASIC and FPGA target devices. The implementations
described in Section 6.1 are meant for medium to high throughput applications.
A minimum-size implementation is described in Section 6.2.

6.1 High Efficiency Architectures
We simulated hardware implementations of ïrRUPT32-256 and ïrRUPT64-512
with the internal state of H=16 words and the security parameter s=4. We chose
these two variants for closer comparability with the existing hash functions such
as SHA-256 and SHA-512. The iterative mode of the round function ïr2s suggests
a straightforward hardware implementation based on a round unit and a
memory to store the internal state x and the delta accumulator d. For every
parallelization degree, two distinct architectures have been investigated to
evaluate the relation between speed and area.

6.1.1 Implementation

The 8-ïrRUPT designs are isomorphic architectures of the algorithm in which
eight (ïr1) function units are instantiated. The sequential dependency between
the words of x is exploited parallelizing the (ïr1) units according to the chosen
parallelization parameter P. A full ïr2s round is computed in one clock cycle.

With P=1, the iterative decomposition of 8-ïrRUPT architecture leads to the
implementation of only one (ïr1) unit. This architecture, referred to as 1-ïrRUPT,
reuses the same hardware through eight cycles to compute a complete ïr2s
round. The 2-ïrRUPT core is an efficient circuit for P=2, in which two parallel
(ïr1) units operate on the state x in parallel to execute one ïr2s round in 4 clock
cycles. The last architecture is the 4-ïrRUPT design. With P=4, four parallel (ïr1)
units compute one ïr2s round every two clock cycles.

In the 8-ïrRUPT architectures, a new message word pi is injected into the core on
every cycle, while in the output phase every new dP–1 constitutes an element of
the final hash value. In the three remaining P-ïrRUPT cores, pi is injected into

22/27

the function every 2s/P clock cycles. Respectively, the final digest word oi is
generated every 2s/P clock cycles, in the output phase.

Fig. 9 8-ïrRUPT (A) and 2-ïrRUPT (B) architectures (P=2)

The block diagrams of the 8-ïrRUPT and 2-ïrRUPT architectures for P=2 are
depicted in Figure 9. The double-ïr1 module hosts two parallel (ïr1) units.

The design strategy used in the implementation of the round function is based on
a progressive word-shift of the state combined with P parallel (ïr1) units. Instead
of using time-expensive multiplexers and demultiplexers, the (ïr1) modules take
as inputs always the same xi words to update xr+P and dr. Hence, according to the
algorithm, every word is shifted by P words after the computation of one ore more
parallel (ïr1) functions. This final word shift operation is equivalent to the
increment of the index variable r. Figure 10 below shows the application of this
strategy inside the double-ïr1 module for the basic P=2 architectures.

Fig. 10 Word-shift structure of the double-ïr1 module
(all connections are w-bit wide)

23/27

Furthermore, all the explored architectures are controlled by a dedicated control
unit, which computes the round number and routes the signal inside the cores.
With the aid of enable signals, it switches between the message processing, the
finalization, and the output phases. This unit relies on a finite state machine. Its
contribution to the core area is estimated to be 400 to 800 GE depending on the
ïrRUPT architecture.

6.1.2 Performance

Because of its stream hashing structure, the overall performance of the ïrRUPT
hashing process depends on the length of the input message, while the processing
time per word of input remains constant. Although the area and the operational
frequency are constant characteristics of the circuit, the throughput varies with
different message sizes. This is due to the additional clock cycles taken by the
finalization and output phases. The throughput is computed as:

1 1 1
1

m
T f

m w h
H

k w w

= !
+ " "# $

+ + +% &
' (
) * + ,

(1),

where f is the circuit frequency and m is the message size. The constant k defines
the iterative degree of the architecture. In 8-ïrRUPT, k is equal to one and in the
P-ïrRUPT cores, k=P/(2s). Figure 11 below shows the m-dependency of the
circuit’s normalized throughput on frequency. Using long message sizes, the
speed converges to f⋅k⋅w.

Fig. 11 Throughput/message size trade-off of the architectures.

The hashing cores have been coded in functional VHDL and synthesized with the
Synopsys Compiler, using a 0.18 µm CMOS technology. The hardware analysis
also includes the evaluation on a Xilinx Virtex-4 LX100 FPGA device. Table 8
and Table 9 below list the resource utilisation, the maximal clock frequency and
the throughput of the architectures for ïrRUPT32 and ïrRUPT64. The efficiency

24/27

ratio gives a criterion to compare the hardware performances of the circuits. To
illustrate the additional per-message latency, we provide the efficiency ratio for
16-word messages and for infinitely long messages. Figure 12 below depicts the
relation between the area and processing time for 1Gb long messages.

Fig. 12 Area vs. processing time for the ïrRUPT cores

6.1.3 Evaluation

As defined in Section 6.1.2 and seen on the Figure 11 above, the speed and the
hardware efficiency of the circuits gradually increase with message size. The
results illustrate the advantage of EnRUPT stream hashing. In ASIC and FPGA,
the 8-ïrRUPT circuits are the fastest (especially for P=4) matching the needs of
modern high-speed communication links, while the 1-ïrRUPT architecture is a
more suitable alternative for the limited-resource applications.

Throughput
[Gbps]

Efficiency
[Kbps/GE1] Architecture

Area
[kGE1]

Freq.
[MHz]

Latency
 [Cycles]

16w-bit m Long m 16w-bit m Long m

8-ïrRUPT32 14.70 103 1.281 3.282 87.1 223.3

8-ïrRUPT64 30.89 92
m/w+25

2.287 5.861 74.0 189.7

1-ïrRUPT32 6.12 568 0.887 2.273 145.0 371.6
P=1

1-ïrRUPT64 11.91 578
8*(m/w)+200

1.805 4.624 151.5 388.2

8-ïrRUPT32 15.07 195 2.434 6.238 161.5 413.9

8-ïrRUPT64 32.60 175
m/w+25

4.382 11.228 134.4 344.4

2-ïrRUPT32 8.03 538 1.678 4.301 209.0 535.5
P=2

2-ïrRUPT64 14.87 571
4*(m/w)+100

3.568 9.143 240.0 615.0

8-ïrRUPT32 14.79 346 4.321 11.073 292.1 748.4

8-ïrRUPT64 33.73 292
m/w+25

7.303 18.713 216.5 554.8

4-ïrRUPT32 9.73 602 3.761 9.639 386.6 990.6
P=4

4-ïrRUPT64 21.97 526
2*(m/w)+50

6.573 16.842 299.1 766.4

Table 8 ASIC post synthesis results

1 One GE corresponds to the area of a two-input drive-one NAND gate of size 9.7µm2

25/27

Throughput
[Gbps]

Efficiency
[Mbps/Sl.] Architecture

Area
[Slices]

Freq.
[MHz]

Latency
[Cycles]

16w-bit m Long m 16w-bit m Long m

8-ïrRUPT32 842 49 0.606 1.553 0.720 1.845

8-ïrRUPT64 1930 35
m/w+25

0.877 2.248 0.455 1.165

1-ïrRUPT32 343 283 0.442 1.133 1.289 3.304
P=1

1-ïrRUPT64 739 230

8*(m/w)+200
 0.719 1.843 0.973 2.494

8-ïrRUPT32 834 88 1.101 2.822 1.320 3.384

8-ïrRUPT64 1878 65
m/w+25

1.635 4.188 0.870 2.230

2-ïrRUPT32 379 275 0.858 2.198 2.263 5.799
P=2

2-ïrRUPT64 867 220
4*(m/w)+100

1.372 3.516 1.583 4.055

8-ïrRUPT32 799 152 1.892 4.848 2.368 6.068

8-ïrRUPT64 1754 121
m/w+25

3.025 7.752 1.725 4.420

4-ïrRUPT32 479 251 1.565 4.010 3.267 8.372
P=4

4-ïrRUPT64 1195 204
2*(m/w)+50

2.548 6.531 2.133 5.465

Table 9 FPGA post place & route results

Smaller designs synthesised with relaxed timing constraints can fit in much
more compact areas. However, such solutions will have a lower global efficiency
of the circuit, which is why their evaluation was omitted.

We have demonstrated the high degree of hardware flexibility of the ïrRUPT
stream hashing mode. The proposed architectures are indeed able to reach a wide
range of performance requirements and can be adapted to various environments.

6.2 Minimum size irRUPT MAC
We chose to implement one of the smaller irRUPT variants for use as a MAC,
because of its specific application to RFID. Keyed one-way functions are needed
on resource-constrained devices such as RFIDs for authentication or private
identification [PRIV]. We find that irRUPT can be implemented smaller than any
secure alternative that has been proposed so far for RFID tags such as AES. Our
smallest implementation of irRUPT MAC uses 223 gate equivalents (GE), while
the smallest known implementation of AES uses 3,800 GE [CAHF]. It is even
smaller than some other stream ciphers that were specifically designed for RFID
tags, but which were found to be insecure [MIF].

The small minimum size of a hardware implementation of irRUPT is made
possible by (a) serializing all operations to work on single bit data, (b) realizing
rotations and shifts (including multiplication) as delay elements, and (c) reusing
one register to store all intermediate values.

The minimum size implementation of irRUPT32 round function for P=1 is shown
on Figure 12 below. On each clock cycle, one bit of the current data word and its
higher neighbour are loaded from memory. The lower neighbour is left in the
internal state from the last round (the very first round only loads that data
word). The higher neighbour is combined with the round counter, then delayed
by one clock cycle and combined with the lower neighbour. The delay realizes the
1 bit shift between the neighbours. The data is then loaded in a 32-bit internal
state. After the first 11 clock cycles (8 of which realize the rotation), an adder

26/27

consumes the data from two cells of the state (which realizes multiply by 9). The
added values are then combined with the current data word and also loaded into
the state. After 32 clock cycles, the state contains the new data word that is
stored back to memory during the next round.

Fig. 12 Minimum size implementation of irRUPT32 round function, P=1.

Each execution of the round function takes 43 clock cycles (3 clock cycles for the
data from the last round to propagate, 8 for rotation, and 32 to process the data).
Assuming an RFID with 100 kHz, and a security level of 64 bits (64-bit key, 128-
bit state, 32 sealing rounds), one complete MAC operation takes 17 ms.

The hardware implementation of the round function uses a total of 37 flip-flops
(FF), 3 XOR, one adder, and one multiplexer. When implemented in the same
technology that is used for some NXP RFID tags, the implementation uses 223
GE. The round counter needs another 5 FFs and adders and uses 58 GE.
Therefore, an implementation of irRUPT can be more than an order of magnitude
smaller than the smallest known implementation of the AES.

7. Probable Disadvantages

With two different word widths to support, EnRUPT implementations required to
support hash values of all the different sizes are more complicated than we
wished for. Actually, both ïrRUPT32 and ïrRUPT64 can be used for the SHA-3
hash sizes (224 to 512 bits). We chose ïrRUPT64 for its higher efficiency.

Different state sizes for different hash sizes may also be seen as a complication.
Of course, ïrRUPT64 with H=16 (truncated ïrRUPT64-512) can be used to
provide hash values of all the smaller sizes, but we chose the different state sizes
for their higher hardware performance, especially in constrained environments.

ïrRUPTx4 is probably a better choice with its double hardware performance over
the proposed ïrRUPTx2, but P=4 requires 16-word or larger states. That excludes
ïrRUPT32-128, ïrRUPT32-160, ïrRUPT32-224 and ïrRUPT64-384, thus forcing
the use of truncated ïrRUPT32-256 for SHA3-128, SHA3-160, SHA3-192 and
SHA3-224, and either ïrRUPT32-384 or truncated ïrRUPT64-512 for SHA3-384.
We leave it up to NIST to choose the most suitable variants.

EnRUPT’s simplicity also makes it appear too simple to be a secure algorithm. It
may hinder its public acceptance at first, but we hope that its resistance to
cryptanalysis will build trust faster than for other more complex algorithms.

27/27

8. References

[XXT] R. Needham, D. Wheeler, TEA extensions, Technical Report 1997.

[ER007] S. O'Neil, EnRUPT – First all-in-one symmetric cryptographic primitive, SASC
2008.

[HAC] A. Menezes, P. van Oorschot, S. Vanstone, Handbook of Applied Cryptography,
CRC Press, Inc. 1997.

[TREE] R.C. Merkle, A digital signature based on a conventional encryption function,
CRYPTO 1987

[XOR4] D.J. Bernstein, What output size resists collisions in a xor of independent
expansions? http://cr.yp.to/rumba20/expandxor-20070503.pdf 2007

[MD6] C. Crutchfield, Security Proofs for the MD6 Hash Function Mode of Operation,
MIT masters thesis 2008.

[LCM] A. Kerckhoffs, La cryptographie militaire, Journal des sciences militaires 1883.

[LR] M. Luby, C. Rackoff, How to Construct Pseudorandom Permutations and
Pseudorandom Functions, SIAM Journal on Computing 1988.

[MODN] J. Kelsey, B. Schneier, D. Wagner, Mod n Cryptanalysis, with Applications
Against RC5P and M6, FSE 1999.

[PRP] M. Naor, O. Reingold, On the Construction of Pseudo-Random Permutations:
Luby-Rackoff Revisited, Journal of Cryptology 1999.

[BBSR] J. Patarin, A. Montreuil, Benes and Butterfly Schemes Revisited, ICISC 2005.

[DC] E. Biham, A. Shamir, Differential Cryptanalysis of DES-like Cryptosystems,
Journal of Cryptology 1991.

[ALG] N. Courtois, W. Meier, Algebraic Attacks on Stream Ciphers with Liner
Feedback, EuroCrypt 2003.

[SAAR] M.-J.O. Saarinen, Chosen-IV Statistical Attacks on eSTREAM Stream Ciphers,
ECRYPT 2006.

[STAT] E. Filiol, A New Statistical Testing for Symmetric Ciphers and Hash
Functions, ICISC 2002.

[SLID] A. Biryukov, D. Wagner, Slide Attacks, FSE 1999.

[CAHF] M. Feldhofer, C. Rechberger, A case against currently used hash functions in
RFID protocols, Workshop on RFID Security 2006.

[ASD] S. O’Neil, Algebraic Structure Defectoscopy, Cryptology ePrint Archive 2007.

[UFN] B. Schneier, and Kelsey, J. Unbalanced Feistel Networks and Block-Cipher
Design, FSE 1996.

[MIF] K. Nohl, D. Evans, Starbug, H. Plötz, Reverse-Engineering a Cryptographic
RFID Tag, USENIX Security 2008.

[PRIV] D. Molnar, D. Wagner, Privacy and Security in Library RFID: Issues,
Practices, and Architectures, ACM CCS 2004.

[MULT] A. Joux. Multicollision on Iterated Hash Function, Advances in Cryptology,
CRYPTO 2004.

[6805] G. Keating, Performance Analysis of AES candidates on the 6805 CPU core,
Proceedings of The Second AES Candidate Conference 1999.

[HERD] J. Kelsey, T. Kohno, Herding Hash Functions and the Nostradamus Attack,
EUROCRYPT 2006.

http://cr.yp.to/rumba20/expandxor-20070503.pdf

