
On LANE Hashing Modes of Operation

Elena Andreeva

SCD-COSIC, Dept. of Electrical Engineering, Katholieke Universiteit Leuven

1 Basic Definitions

Let H : {0, 1}∗ → {0, 1}n be an infinite-domain keyless hash function and F : {0, 1}b × {0, 1}n → {0, 1}n be
a finite-domain compression function. For practical reasons we set a bound λ on the domain size of H where
λ < 264. Possible additional hash function input parameters are a salt value S and a bit counter value C of
lengths s and c, respectively. Then F : {0, 1}b × {0, 1}n × {0, 1}c × {0, 1}s → {0, 1}n.

Keys versus Salts. These play very different roles both in formal security definitions and in practice. The
key K is publicly known and fixed parameter and formally selects a single function from a hash function
family, while the salt S adds randomness per message. Our hash function proposal does not make use of
fixed keys but offers an alternative randomized mode of operation that allows the use of salt values. We
motivate this choice with the fact that known fixed keys in the hash function setting do not serve as a tool
for randomization and once they are fixed they become known constants for the hash function algorithm.
On the other hand, salts provide the necessary randomization tool per message at the expense of additional
transmission and storage overhead in certain applications.

Security Notions. For a hash function H and a security property X, we measure the adversarial advantage
in breaking X by AdvX

H , where X ∈ Properties. Some of the properties X are parametrized by the message
length λ ∈ N, X[λ], for reasons having to do with uniform sampling from the message space. The set of
Properties = {Coll, sColl, swColl,Sec, sSec, eSec, Pre, sPre1, sPre2} includes the properties of collision secu-
rity, salted collision security, salted weak collision security, second preimage security, salted second preimage
security, everywhere second preimage security, preimage security and salted preimage security variants one
and two, respectively. The adversarial advantage for each of these security notions is measured as follows:

1. Collision Security (Coll)

AdvColl
H (A) = Pr

[
(M, M ′) $← A :

M 6= M ′ and
H(M) = H(M ′)

]

2. Salted Collision Security (sColl)

AdvsColl
H (A) = Pr

[
(M, S, M ′, S′) $← A : M 6= M ′ and

H(M,S) = H(M ′, S′)

]

Intuition: The adversary has a full control over the salt values S and S′ where either S = S′ or S 6= S′.
Remark: Notice that colliding tuples (M,S) and (M ′, S′) with M = M ′ and S 6= S′ have no impact in
any practical scenario. An adversary that outputs a collision for identical messages M = M ′ and distinct
salts S 6= S′ does not violate the Coll security of any practical hash function application. Therefore, we
impose the practically grounded and mild condition that a collision is only valid when the colliding M
and M ′ are distinct (independently of the salt values).

3. Salted Weak Collision Security (swColl[λ]) This notion coincides with the enhanced target collision
security of Halevi and Krawczyk [6].

AdvswColl[λ]
H (A) = Pr

[
M

$← {0, 1}λ

(S, M ′, S′) $← A(M)
:

M 6= M ′ and
H(M, S) = H(M ′, S′)

]

Intuition: An adversary is given a target message M and has to output (S,M ′, S′) where either S = S′

or S 6= S′. In practical scenarios this means that an adversary is able to influence (modify) the challenge
salt S value according to its choice prior to the target message hashing. Notice that the computational
complexity of a swColl attack against an ideal hash function H in this case is of order 2n/2.
(Note also that this notion is not equivalent to sColl. There exists a trivial counterexample function H
for which it is hard to find collisions in the swColl sense but easy to find collisions in the sColl sense, e.g.
H(M, S) = 0n when M = 1b and H(M, S) = G(M, S) otherwise, where G is swColl secure compression
function and |M | = b with b ≥ n).

4. Second Preimage Security (Sec[λ])

AdvSec[λ]
H (A) = Pr

[
M

$← {0, 1}λ

M ′ $← A(M)
:

M 6= M ′ and
H(M) = H(M ′)

]

5. Salted Second Preimage Security (sSec[λ, s])

AdvsSec[λ,s]
H (A) = Pr

[
S

$← {0, 1}s;M $← {0, 1}λ

(M ′, S′) $← A(M,S)
: M 6= M ′ and

H(M, S) = H(M ′, S′)

]

Intuition: An adversary is given a target tuple (M,S) and has to produce a colliding tuple (M ′, S′)
where either S = S′ or S 6= S′. The sSec notion depicts a real-world scenario in which the adversary
does (can) not influence the challenge salt value S.

6. Everywhere Second Preimage Security (eSec[λ, s])

AdveSec[λ,s]
H (A) = Pr

[
M ← A ; S

$← {0, 1}s;
(M ′, S′) $← A(S,St)

:
M 6= M ′ and

H(M,S) = H(M ′, S′)

]

This notion is formally introduced in [10]. A here is a stateful adversary with a state St.
7. Preimage Security (Pre[λ])

AdvPre[λ]
H (A) = Pr

[
M

$← {0, 1}λ ; Y ← H(M)
M ′ $← A(Y)

: H(M ′) = Y

]

8. Variant One for Salted Preimage Security (sPre1[λ, s])

AdvsPre1[λ,s]
H (A) = Pr

[
(M, S) $← {0, 1}λ × {0, 1}s

Y ← H(M, S) ; (M ′, S′) $← A(Y)
: H(M ′, S′) = Y

]

Intuition: The adversary is given as a challenge only the hash value Y and has to come up with a valid
tuple (M ′, S′), such that H(M ′, S′) = Y .
Commitment schemes: commit to a value Y and later reveal M and S.

9. Variant Two for Salted Preimage Security (sPre2[λ, s])

AdvsPre2[λ,s]
H (A) = Pr

[
(M, S) $← {0, 1}λ × {0, 1}s

Y ← H(M,S) ; (M ′, S′) $← A(Y, S)
: H(M ′, S′) = Y

]

Intuition: The adversary is given as a challenge tuple the hash value Y and the salt S and has to come
up with a valid tuple (M ′, S′), such that H(M ′, S′) = Y where either S = S′ or S 6= S′.
Applications: Salted password protection and commitment schemes: given S and Y an adversary has to
come up with M ′, such that H(M ′, S′) = Y (here S′ = S).

2

We say that A is (t, ε) X-secure if no adversary running in time at most t has advantage more than ε.
When giving results in the random oracle model, we will talk about (t, qRO, ε) atk-secure schemes, where
qRO is the total number of queries that A makes to its random oracles.

Note 1: The notions that are parameterized by the λ message length do exhibit ideal security with
respect to the relevant security notion only when λ ≥ n. Therefore, in our security analysis we explicitly
consider messages of length λ ≥ n. (e.g. a more intuitive argument is that no ideal function exhibits Sec
security of order 2n when its domain size is smaller than its range size, namely n bits)

Note 2: Notice that in some security notions (Sec, Pre and variants of these) we make use of uniformly
distributed target messages (Sec cases) or hash values that are the hash result from the computation over
random messages (Pre cases). A popular technique in many standard reduction-based Sec and Pre security
proofs makes use of the uniformity assumption on the input message string M in the following way. If a
message block size substring m from M where M

$← {0, 1}λ is substituted with a new random substring of
the same size, then it is clear that as long as m is chosen uniformly at random and independently from M
the new resulting message string M ′ (after the substitution) is also uniformly distributed over {0, 1}λ. This
fact is used in some of our security proofs.

1.1 Additional Properties on the Compression Function F

In addition to the standard security properties (Coll, Sec and Pre) and the newly introduced salted security
properties of hash functions we use two stronger variants of the Sec and Pre security notions. Let F :
{0, 1}n×{0, 1}b → {0, 1}n be a compression function with b > 1 and A an adversary against the cpSec (chosen
partial input second preimage security) and cpPre (chosen partial input preimage security) of F. Then we
measure the adversarial advantage in breaking these properties by the advantage functions AdvcpSec

F (A)
and AdvcpPre

F (A), respectively. Let m1 and m2 be of lengths at most b and at least n bits respectively and
|m1 +m2| = b+n. Let A be the compression function F adversary (stateful with a state St) for the indicated
notion. The adversarial advantage for each of these security notions is measured as follows:

AdvcpSec
F (A) = Pr




(m1)
$← A where |m1| ≤ b

m2
$← {0, 1}≥n

m′ $← A(m2, St)
:

m′ 6= (m1,m2) and
F(m1, m2) = F(m′) where |m′| = b + n




AdvcpPre
F (A) = Pr




(m1)
$← A where |m1| ≤ b

m2
$← {0, 1}≥n

F(m1,m2) = Y ; m′ $← A(Y, St)
: F(m′) = Y where |m′| = b + n




The (m1,m2) input to F may not always be parsed as the straightforward concatenation of both strings.
In some cases we would only require that the pair is a valid input string up to reordering, e.g. m1 = m′

1‖m′′
1

and (m1,m2) shall be parsed as m′
1‖m2‖m′′

1 . Normally, this is clear from the specification of the compression
function.

Notice that as long as the size of m2 is lower bound by the size of the output hash value n an adversary
against cpSec or cpPre needs to perform 2n evaluations of an ideal compression function F to find a second
preimage or preimage message, respectively. If F is instantiated as F : {0, 1}b+n+c → {0, 1}n with b > 1 and
c > 1 then the lengths of m2 and m1 are bound as |m2| ≥ n and |m1| ≤ b + c− n.

1.2 Min Entropy and Hash Function Balance

Definition 1. Min Entropy The min-entropy of a discrete random variable X taking values on a finite
set S = {x1, . . . , xn} where p1, . . . , pn are the corresponding outcome probabilities (or probability distribution

3

over S) is Hmin(X) = minn
i=1(− log pi) = −(maxi log pi) = − log maxi pi. A random variable has high(est)

min entropy when the distribution over S is uniform, or for any i then Pr [X = xi] = pi = 1/n.

Definition 2. Min Entropy Preserving Function Let F be a function with domain D = {0, 1}d and
range R = {0, 1}n where d > n. Let X be the random variable taking values on D and Hmin(X) = k and
Y = F (X) be the random variable taking values on R where n ≤ k ≤ d. Then we call the function F mapping
X to Y a min entropy preserving function if Hmin(Y) = n.

Definition 3. Hash Function Balance: Let a hash function have 2n range points Yi (i = 1 to 2n). Let
H−1(Yi) be the preimage of Yi under H. Let |H−1(Yi)| = di be the size of the preimage set of Yi under H
and let d be the size of the hash function domain D. The balance of the hash function H function is then
defined as r(H) = log2n [d2

d2
1+...d2

2n
].

When the balance of a function is one, then the hash function is called a regular function or di = d/2n for
every i (i = 1 to 2n). If X is a random variable taking values from the domain D and DU is the uniform
distribution over D, then the resulting distribution DR on R by a regular function mapping X to Y with Y
taking values on R is again the uniform distribution.

1.3 Some Conventions on the Modes of Operation:

The message M is parsed as m1‖m2‖ . . . ‖ml where |mi| = b for i = 1 to l − 1 and |ml| = z with z = (|M |
mod b). Let S be a salt value of length s bits. With Ci where |Ci| = c we denote a message bit counter value
representing the binary encoding of the integer variable accounting for the number of bits hashed up to the
i-th message block (including). The counter C is a multiple of the block size b when the message fills the
whole message block, and not otherwise. If a final extra (l + 1)st input block contains no message bits (e.g.
due to some padding rules), then the counter is Cl+1 = 0c (the concatenation of c 0 bits).

4

2 Counter-Based Merkle-Damg̊ard Hash Function with Output
Transformation (LANE)

The counter-based Merkle-Damg̊ard hash function with an output transformation (LANEF) is a Merkle-
Damg̊ard [8, 5] based hash function that borrows a lot of its design characteristics from the HAIFA design [3].

LANEF makes use of a finite-domain compression function F : {0, 1}n+b+c → {0, 1}n. Let φi = 〈i〉8 be
the binary encoding of i ≥ 0 in eight bits. For z = (|M | mod b) then let pad be a padding function that
takes as input the message M and returns the string M‖0b−z if z 6= 0 and M if z = 0.

Let 〈|M |〉64 is the 64-bit binary encoding of the message length (in bits). Let n be either 224, 256, 384
or 512 bits. The initial value IVn is given by IVn = F(0n, φ2‖〈n〉32‖0b−40, 0c) where φ2 = 〈2〉8.

In Figure 1 we describe the LANEF algorithm.

Algorithm 1 LANEF(M):
m1‖ . . . ‖m`−1 ← pad(M)
h0 = IVn; C` = 0c

for i = 1 to `− 1 do
hi = F(hi−1, mi, Ci)

end for
h` = F(h`−1, φ0‖〈|M |〉64‖0b−72, C`)
return h`

2.1 LANE Compared to Known Hash Functions

The main differences of the LANE scheme compared to the Merkle-Damg̊ard design [8, 5] are:

1. IVn derivation: Similarly to HAIFA [3], in LANE the initialization vector for distinct hash digest sizes
is derived as IVn = F(0n, φ2‖〈n〉32‖0b−40, 0c). Thus, hashing messages with different digest sizes requires
the use of distinct initialization vectors. This measure precludes attacks that try to find correlation on the
hash outputs of messages hashed to distinct digest sizes, e.g. hashing two identical messages to different
digest sizes results in uncorrelated digest values.

2. Hash function inputs:
(a) prefix-free inputs to LANE : If no input message M of length |M | < |M ′| is a prefix of a distinct input

message M ′ 6= M , such that M ′ = M‖S, then the inputs are prefix-free.
Now the hash function LANE processes a pad-padded message in a sequence of b blocks. Each block
mi is fed to the fixed-input length compression function F. But F also takes as inputs a chaining
variable hi and a counter Ci. For a computed and fixed IVn value, the counter inputs to all of the
compression functions used in the iteration are distinct. The inclusion of C` = 0c counter and flag
byte φ in the final block ensures the prefix-free property of the inputs to LANE .

(b) suffix-free inputs to LANE : If no input message M of length |M | < |M ′| is a suffix of a distinct input
message M ′ 6= M , such that M ′ = P‖M , then the inputs are suffix-free.
We use a standard technique of adding the message length encoding in bits to provide a suffix-free
property in the LANE hash function.

(c) distinct inputs to F (domain separation): A distinctive feature of the LANE hash function borrowed
from the HAIFA [3] design is the inclusion of a counter to every input of F. The counter values
together with the addition of the byte φ input to the first and final F applications provides a domain
separation to all compression functions in the iteration. More precisely, no two inputs to F in LANE
repeat.
Then, in some cases we make use of this fact and by LANEF0,...,F`

we explicitly indicate the distinct
calls to F needed for processing a padded message m1‖ . . . ‖m`−1 ← pad(M).

5

3. Output transformation: The input m` = (φ0‖〈λ〉64‖00b−72
) to the output transformation function in

LANE is fixed. This measure strengthens the security of the LANE hash function by foiling any attacks
that exploit differences on the last inputs blocks.

2.2 Collision Security of LANE.

We prove the LANE hash function Coll secure under the standard Coll assumption on the compression
function and derive a tight security bound. Rather than defining Coll security through the non-existence of
an algorithm A, we follow Rogaway’s human-ignorance approach [9] and use the Coll advantage function as a
metric to relate the advantage of an adversary A against the hash function LANEF to that of an adversary B
against the compression function F. The general proof follows the proof of the standard Merkle-Damg̊ard [8,
5] design.

Theorem 1. If there exists an explicitly given adversary A that (t, ε)-breaks the Coll security of LANEF,
then there exists an explicitly given adversary B that (t′, ε′)-breaks the Coll security of F for ε′ ≥ ε and
t′ ≤ t + 2` · τF. Here, τF is the time required for the evaluation of F and ` = dλ/be + 1 where λ is the
maximum message length of the two messages output by A.

Proof. Given a Coll adversary A against the iterated hash LANEF, we construct a Coll adversary B against
the compression function F. B runs A on no inputs and A outputs a colliding pair (M, M ′), such that
LANEF(M) = LANEF(M ′). We investigate the following two cases:

1. If |M | 6= |M ′|, then the inputs to the last compression function differ (due to the present message length
encoding in m`) and therefore a collision on the final F occurs, or m` 6= m′

`′ where F(h`−1,m`, C`) =
F(h′`′−1,m

′
`′ , C`′). B then outputs (h`−1, m`, C`) and (h′`′−1,m

′
`′ , C`′) as a valid colliding pair.

2. Else if |M | = |M ′|, then `′ = `, m′
`′ = m` and (h`−1,m`, C`) = (h′`′−1,m

′
`′ , C`′). Then h′`′ = h` and B

proceeds in the following way.
B parses the inputs to the (` − 1)st application of F as (h`−2,m`−1, C`−1) and (h′`−2,m

′
`−1, C`−1). If

these inputs differ, then they constitute a valid collision pair for B. Else, B goes one step back. Following
the iteration principle of LANEF B proceeds in the same manner backwards.
The inequality of the message inputs M and M ′ guarantees the existence of an index i > 0, such that
(hi−1, mi, Ci) 6= (h′i−1,m

′
i, Ci) where F(hi−1, mi, Ci) = F(h′i−1,m

′
i, Ci). B outputs then the colliding pair

(hi−1, mi, Ci) and (h′i−1,m
′
i, Ci) for the max(i) satisfying the former statement.

B succeeds with the same advantage as A. The time complexity of B is at most the time complexity of A
plus two evaluations of LANEF over messages M and M ′ taking time 2` · τF. ut

2.3 Preimage Security of LANE.

As mentioned in Section 2.1, the inclusion of counter C and φ values provides domain separation for every F
in LANEF. An alternative way to denote then LANEF is LANEF,G where we model the output transformation
compression function as an instantiation of a distinct function G with the same domain and range size as
F. Or LANEF,G(M) = G(LANE−1

F (M), φ0‖〈|M |〉64‖0b−72, 0c) where LANE−1
F is the iterative hash function

LANEF up to the final output transformation function (excluding).
Then we exhibit a Pre security proof for LANEF,G modeling the output transformation function G as

cpPre secure function and the iterative function LANE−1
F as either a random oracle, regular function or a

min entropy preserving function.

Theorem 2. If the compression function G is (t′, ε′) cpPre secure and LANE−1
F is either a random oracle,

a regular function or a min entropy preserving function, then the iterated function LANEF,G is (t, ε, qRO)
Pre[λ] secure for ε ≤ ε′ and t ≥ t′ − τLANE−1

F
. Here, qRO < 2n is the number of random oracle queries by the

adversary on LANEF,G and τLANE−1
F

is the time required for the evaluation of LANE−1
F .

6

Proof. Given a Pre[λ] adversary A on LANEF,G and LANE−1
F modeled as either a random oracle, a min

entropy preserving or a regular function, we build the cpPre adversary to the final compression function G
of LANEF,G.

On known λ then B computes m` (the final message input block to G) where m` = φ0‖〈λ〉64‖0b−72. B
outputs (m`, C`) where C` = 0c and gets as a challenge the target hash value Y where Y = G(h`−1,m`, C`).
Note that h`−1 is a random string of n bits.

Now, B sends Y to A. We argue that the distribution on Y induced by LANEF,G on input a message
M

$← {0, 1}λ chosen uniformly at random is identical to the distribution on Y induced by G on input
(h`−1,m`, C`). Note that A expects Y = G(LANE−1

F (M),m`, C`). But LANE−1
F is either a random oracle, a

regular or min entropy preserving function and therefore it always outputs a random string h`−1 on input
a random message M

$← {0, 1}λ. Thus, we can conclude that LANE−1
F (M) has the same distribution as the

original h`−1 (the hidden challenge for B). To generate a preimage message M ′, algorithm A makes queries
to the function LANEF,G. In the case when LANE−1

F is modeled as a random oracle, then B simulates the
random oracle responses by lazy sampling strings of n bits. If A succeeds and outputs a preimage M ′, then B
also succeeds in finding the preimage (h′`′−1,m

′
`′ , C`′) where h′`′−1 = LANE−1

F (M ′). The time complexity of B

is at most the time complexity of A plus one evaluation of LANE−1
F over message M ′ taking time τLANE−1

F
. ut

Notice that modeling only the (` − 1)st compression function F as a random oracle or min entropy
preserving function is sufficient to exhibit the same result.

2.4 Security Proofs of LANE in the Random Oracle Model.

If the compression function F is modeled as a random oracle, then the LANEF is Sec secure up to 2n queries
to F and Pre secure up to 2n+1 queries to F.
Our security claims in the random oracle model consider information theoretic adversaries. We give a lower
bound on the attack complexity in terms of the number of queries qRO made by the adversary to the random
oracle. In our model, we assume that the compression function F : {0, 1}b+n+c → {0, 1}n behaves as a
random oracle. That means F is a publicly computable function chosen uniformly at random from the set of
all functions with the respective domain and range space.

For the ease of exposition in our security proofs we will use the relevant domain separation notation for
F in LANEF as indicated in Section 2.1. Thus, for a message of ` blocks we denote LANEF by LANEF1,...,F`

.
Note that effectively there are (`+1) evaluations of F but we do not account for the evaluation of F0 because
the IVn value can be efficiently precomputed.

Theorem 3. If the compression functions Fi for all i = 1 to ` are instantiated as random oracles, then the
advantage of adversary A against the Sec[λ] security of LANEF1,...,F`

is AdvSec[λ]
LANEF1,...,F`

(A) ≤ qRO/2n where
qRO is the total number of queries to the random oracles Fi and ` = dλ/be+ 1.

Proof. Let A be a Sec[λ] adversary on the iterated hash function LANEF1,...,F`
. A is given a target message

M
$← {0, 1}λ. The goal of A is to find a second preimage message M ′ for M , such that LANEF1,...,F`

(M) =
LANEF1,...,F`′ (M

′). Here ` = dλ/be+ 1 and `′ = d|M ′|/be+ 1.
A is successful only when he makes consistent (with the iterative principle of LANEF1,...,F`

) queries to
the random oracles Fi. Then to bound the maximal success probability of A we assume that A makes only
such consistent queries to every Fi. Let us assume A outputs a valid second preimage message M ′. Then we
analyze the following cases:

1. If |M | 6= |M ′| then F`(h`−1,m`, C`) = F`′(h′`′−1,m
′
`′ , C`′) and m` 6= m′

`′ because these message blocks
contain the binary encoding of the message lengths. The probability of finding a second preimage for the
last input block (h`−1, m`, C`) is 1/2n because h`−1 is the random output of F`−1. However, to compute
sufficient values h′`′−1 under F`′ for the second preimage final block (h′`′−1,m

′
`′ , C`′) then A needs to

make additionally at least that many evaluations of F`′−1 on inputs (h′`′−2,m
′
`′−1, C`′−1). In this case

A makes the least number of queries to Fi when `′ = 2. Thus, the success probability of A in finding a
second preimage for the last message block in qRO queries to F1 and F`′=2 is upper bound by qRO/2n+1.

7

2. If |M | = |M ′| then we follow the argument of the standard collision security proof from Theorem 1.
In this case A computes h`−1 = F`−1(h`−2, m`−1, C`−1) which is the one but last chaining value of the
original target message. Now, the optimal strategy for A is to search for a second preimage message m′

1

of a single block length, or that is the case when ` = `′ = 2. Then, all that A needs to do is to find
m′

1, such that F1(IVn,m′
1, C1) = h1 where h1 is the one but last chaining value of the target message

(as already computed h`−1 with ` = 2). Here the success probability of A for finding a second preimage
colliding message is upper bound by qRO/2n.

Now we argue that the optimal attack strategy for A is to find a second preimage for a single message
block. The collision security preservation proof of the LANEF1,...,F`

hash function shows that if two distinct
messages M and M ′ hash to the same hash value, then a collision in at least one message block occurs.
A collision in the Sec setting translates to A finding a second preimage for some Fi with i ∈ {1, . . . , `}.
However, all chaining variables hi−1, but the first (which is treated as a constant for messages that hash to
the same digest size), are output by the random oracle Fi−1. Thus, all hi−1s are random strings of size n
bits not known to A prior to the evaluation of the target message M . In the case of the evaluation of F1

A gets a random message block m1 (ensured by the fact that M
$← {0, 1}λ). As mentioned the counter Ci

inclusion to every Fi provides random oracle domain separation. Or in order to find a single pair of colliding
blocks under a fixed counter Ci value A needs to make 2n random oracle queries to Fi. Then for a maximal
number of qRO queries the adversarial advantage is upper bound by qRO/2n. ut
Theorem 4. If the compression functions Fi for all i = 1 to ` are instantiated as random oracles, then
the advantage of adversary A against the Pre[λ] security of LANEF1,...,F`

is AdvPre[λ]
LANEF1,...,F`

(A) ≤ qRO/2n+1

where qRO is the total number of queries to the random oracles Fi and ` = dλ/be+ 1.

Proof. Let A be a Pre[λ] adversary on the iterated hash function LANEF1,...,F`
. Given a challenge hash value

Y , the goal of A is to invert Y . Remember that Y is computed as Y = LANEF1,...,F`
(M) for a message

M
$← {0, 1}λ chosen uniformly at random and i = 1 to ` = dλ/be+ 1.
Adversary A’s best strategy is to invert short messages to minimize the number of evaluations of Fi.

Therefore, we analyze the adversarial advantage when `′ = 2. In that case A first computes many values
of h1 which then would allow him verify if h2 = Y . (An alternative strategy of the same complexity for
A is to first invert Y to (h1,m2, C2) for arbitrary h1 and fixed (m2 = φ0‖〈|M ′|〉64‖0b−72, C2 = 0c), and
then to invert h1 to (IVn,m1, C1) for some arbitrary M ′ where m1 = M ′‖0b−|M ′| with |M ′| ≥ n.) For a
fixed precomputed initial vector A evaluates F1 under different values for m1 where m1 = M ′‖0b−|M ′| and
|M ′| ≥ n. Thus, A exhaustively queries the random oracle F1 on inputs (IVn,m1, C1) to obtain distinct
values for h1. This subsequently allows A to compute h2 = F(h1,m2, C2) with m2 = φ0‖〈M ′〉64‖0b−72 and
C2 = 0c. The probability that h2 equals the correct hash value Y in a single random oracle query to the
final compression function F2 is 1/2n. In total qRO random oracle queries to F1 and F2 A succeeds to invert
Y with probability qRO/2n+1. As in the Sec security proof of Theorem 3 the domain separation (ensured by
the counter inclusion) disallows A to reuse query/response under incorrect counter values. ut

Long Message Sec Attacks on LANE The long message second preimage attacks of [7, 1] do not apply to
LANE due to the counter inclusion. This result follows from Theorem 3. The problem for a second preimage
adversary occurs in the linking step (dominant term in the attack complexity) of the attacks where the
adversary does not know the correct counter value to connect to one of the chaining values of the original
target message. Moreover, in the [7] attack scenario the adversary needs to produce expandable message
which is not possible in the case of LANE due to the counter inclusion.

8

3 Randomized LANE

With sLANE we denote the randomized variant of the LANE hash function. sLANE also makes use of the
finite-domain compression function F : {0, 1}n+b+c → {0, 1}n. Let S be a salt value of length s = n and
φi = 〈i〉8 again be the binary encoding of the integer i in eight bits. For z = (|M | mod b) the padding
function pad (identically to LANE) takes as input the message M and returns the string M‖0b−z if z 6= 0
and M if z = 0.

Let n be either 224, 256, 384 or 512 bits. The initial value IVn is given by IVn = F(0n, φ3‖〈n〉32‖0b−s−40‖S, 0c).
In Figure 2 we describe the sLANE algorithm.

Algorithm 2 sLANEF(M):
m1‖ . . . ‖m`−1 ← pad(M)
h0 = IVn; C` = 0c

for i = 1 to `− 1 do
hi = F(hi−1, mi, Ci)

end for
h` = F(h`−1, φ1‖〈|M |〉64‖0b−s−72‖S, C`)
return h`

3.1 Collision security of sLANE.

The collision security proof is identical to the standard Merkle-Damg̊ard proof but for the purpose of com-
pleteness we provide a rigorous analysis. Note that we use the salted sColl security notion for the iterated
hash function and make a standard Coll security assumption on the compression function F. Though the first
and final blocks of the iterative hash function contain as input the salt value, these blocks are treated uni-
formly as a valid message input by F. Thus, it suffices to work with the non-salted standard Coll assumption
on the compression function F.

Theorem 5. If there exists an explicitly given adversary A that (t, ε)-breaks the sColl security of sLANEF,
then there exists an explicitly given adversary B that (t′, ε′)-breaks the Coll security of F for ε′ ≥ ε and
t′ ≤ t + 2` · τF. Here, τF is the time required for the evaluation of F and ` = dλ/be + 1 where λ is the
maximum message length of the two colliding messages output by A.

Proof. Given a sColl adversary A against the iterated hash sLANEF, we construct a Coll adversary B against
the compression function F. B runs A on no inputs and A outputs a colliding pair (S,M) and (S′,M ′), such
that sLANEF(S, M) = sLANEF(S′,M ′). We investigate the following two cases:

1. If |M | 6= |M ′| or S 6= S′, then the inputs to the last compression function differ and therefore a collision on
the final F occurs, or m` 6= m′

`′ where F(h`−1, m`, C`) = F(h′`′−1,m
′
`′ , C`′). B then outputs (h`−1,m`, C`)

and (h′`′−1,m
′
`′ , C`′) as a valid colliding pair.

2. Else if |M | = |M ′| and S = S′, then `′ = `. If (h`−1,m`, C`) 6= (h′`′−1,m
′
`′ , C`′) then a collision occurs

again in the last application of F. Note that if m` = m′
`′ then S = S′ and therefore IVn = IV ′

n. Thus,
when (h`−1,m`, C`) = (h′`′−1,m

′
`′ , C`′) then B proceeds in the following way.

B parses the inputs to the (` − 1)st application of F as (h`−2,m`−1, C`−1) and (h′`−2,m
′
`−1, C`−1). If

these inputs differ, then they constitute a valid collision pair for B. Else, B goes one step back. Following
the iteration principle B proceeds in the same manner backwards.
The inequality of the message inputs M and M ′ guarantees the existence of an index i > 0, such that
(hi−1, mi, Ci) 6= (h′i−1,m

′
i, Ci) where F(hi−1, mi, Ci) = F(h′i−1,m

′
i, Ci). B outputs then the colliding pair

(hi−1, mi, Ci) and (h′i−1,m
′
i, Ci) for the max(i) satisfying the former statement.

Whenever A succeeds, then B also succeeds with the same advantage. The time complexity of B is at most
the time complexity of A plus two evaluations of sLANEF over messages M and M ′ taking time 2` · τF. ut

9

3.2 swColl Security of sLANE

Theorem 6. If there exists an explicitly given adversary A that (t, ε)-breaks the swColl security of sLANEF,
then there exists an explicitly given adversary B that (t′, ε′)-breaks the Coll security of F for ε′ ≥ ε and
t′ ≤ t + 2` · τF. Here, τF is the time required for the evaluation of F and ` = dλ/be + 1 where λ is the
maximum message length of the two messages output by A.

Proof. The proof follows the analysis of the proof from Theorem 5. The only difference here is that the
Coll adversary B on F runs the swColl adversary of sLANE on input a random message string M where
M

$← {0, 1}λ. The rest of the proof follows from the proof of Theorem 5. ut

3.3 sLANE Security Proofs in the Random Oracle Model.

If the compression function is modeled as random oracle, then the sLANE is sSec secure in up to 2n random
oracle queries and sPre1 and sPre2 secure in up to 2n+1 random oracle queries. The latter results follow
from the proofs of Theorems 3 and 4, respectively.

Again we use the relevant domain separation notation outlined in section 2.1, which is also true in the
case of sLANEF. Thus, for a message of ` blocks we denote sLANEF by sLANEF0,...,F`

. Note that due to the
salt inclusion, here, as opposed to LANE , we need to evaluate F0 every time a new message is hashed.

Theorem 7. If the compression functions Fi are instantiated as random oracles for all i = 0 to `, then the
advantage of adversary A against the sSec[λ, s] security of sLANEF1,...,F`

is AdvsSec[λ,s]
sLANEF0,...,F`

(A) ≤ qRO/2n

where qRO is the total number of queries to the random oracles Fi and ` = dλ/be+ 1.

Proof. Let A be a sSec[λ, s] adversary on the iterated hash function sLANEF0,...,F`
. A is given target random

message M
$← {0, 1}λ and salt S

$← {0, 1}s. The goal of A is to find a second preimage pair (M ′, S′) for
(M, S) with M ′ 6= M , such that sLANEF0,...,F`

(M, S) = sLANEF0,...,F`′ (M
′, S′) = Y with `′ = d|M ′|/be+ 1.

A maximizes his advantage only when he makes consistent (with the iterative principle of sLANEF0,...,F`
)

queries to the random oracles Fi. Then to bound the maximal success probability of A we assume that A
makes only such consistent queries to Fi. Let A output a valid second preimage pair (M ′, S′).

We analyze the following cases:

1. If |M | 6= |M ′| or S 6= S′ then F`(h`−1,m`, C`) = F`′(h′`′−1,m
′
`′ , C`′) and m` 6= m′

`′ because these message
blocks contain the binary encoding of the message lengths and the salt values. The probability of finding
a second preimage for the last input block (h`−1, m`, C`) is 1/2n for a single evaluation of F`′ because
the h`−1 part of the target block is the random output of F`−1 and not known to A prior to obtaining
the message M . However, to compute a second preimage colliding block (h′`′−1,m`′ , C`′) under F`′ , then
B needs to make consistent query evaluations of F`′−1. The argument goes the same way backwards.
Thus, A minimizes its query complexity when `′ = 2.
Now if the the final message blocks m` (of M) and m′

2 (of M ′) collide because S 6= S′, then in that
case A evaluates F1 on inputs (IVn,m′

1, C1) for S′ 6= S to get sufficient values for h′1 which would then
would be used for the computation of h′2 = F2(h1,m2, C2). If h′2 = Y then A is successful. (Note that
the alternative strategy of computing new values for IVn under distinct S′ salts and then evaluating the
final compression function under these salts is less efficient for A than the one described here). Thus, in
this case the success probability of A in finding a second preimage block for the last message block in
qRO queries to F1 and F2 is upper bound by qRO/2n+1.
When S = S′ and |M | 6= |M ′| then A has a fixed salt value in which case we repeat the argument of the
proof of Theorem 3 for messages of distinct lengths where the adversarial advatage is also upper bound
by qRO/2n+1.

2. If |M | = |M ′| and S = S′ then we follow the argument of the standard collision security proof from
Theorem 5. That is, a collision in at least one message block of M and M ′ occurs in sLANEF because
M 6= M ′. Notice that here the IVn value is fixed for A (S′ = S) and the security argument follows the
proof of Theorem 3 (when |M | = |M ′|).

10

ut
Theorem 8. If the compression functions Fi are instantiated as random oracles for all i = 0 to ` = dλ/be+1,
then the advantage of adversary A against the eSec[λ, s] security of sLANEF0,...,F`

is AdveSec[λ,s]
sLANEF0,...,F`

(A) ≤
qRO/2n + 1/2n−t and qRO is the number of queries to the random oracles Fi and 2t < 2n. Here, we allow
the adversary precomputation efforts but bound them by 2n evaluations of Fi for all i ∈ {0, . . . , `}.
Proof. Let A be an eSec[λ, s] adversary on the iterated hash function sLANEF0,...,F`

. A outputs a target
message M . Then A gets a random target salt S

$← {0, 1}s. The goal of A is to find a second preimage pair
(M ′, S′) for M , such that sLANEF0,...,F`

(M, S) = sLANEF0,...,F`′ (M
′, S′). Again A can only be successful by

making consistent (with the iterative principle of sLANEF0,...,F`
) queries to the random oracle F. Then to

bound the maximal success probability of A we assume that A makes only such consistent queries to Fi. Let
us assume A outputs a valid second preimage pair (M ′, S′).

According to the collision security proof of sLANEF if the pair (M ′, S′) is a valid second preimage
for (M, S) then a collision occurs for at least one input block of the evaluation of sLANEF0,...,F`

and
sLANEF0,...,F`′ .

Note that A makes the minimum evaluations on Fis when both messages M and M ′ are of single block
length. Therefore, we investigate the case when M = m1 and M = m′

1 for which we get the tightest security
bound.

A follows different strategies to make use of precomputation:

1. Precomputation of the initial variable IVn under distinct salt values S′. Here A produces 2t collid-
ing messages under distinct salts S′ and S′′, such that F1(F0(0n, φ3‖〈n〉32‖0b−s−40‖S′, C0),m1, C1) =
F1(F0(φ3‖〈n〉32‖0b−s−40‖S′, C0),m′

1, C1) in approximately 2t/2+n/2 < 2n steps (evaluations of F0 and
F1). Note that with the exception of S′ and S′′ all the input values to F0 and F1 are fixed. Then A
outputs m1 and subsequently gets the target salt S value. A succeeds when S′ = S with probability
1/2n−t. If S 6= S′ then A proceeds as shown in Theorem 7. In total, here the advatage of A is bound by
1/2n−t + qRO/2n with t < n (by our precomputation bound).

2. A precomputes a collision leading to identical chaining value h1 under distinct message blocks m1 and m′
1.

Let us assume that A stores a table of queries and responses ((IV i
n,m1, C1), hi

2) and ((IV i
n,m′

1, C1), hi
2)

for i = 1 to 2t, such that F1(IV i
n,m1, C1) = F1(IV i

n,m′
1, C1). Note that to find such colliding pairs A

makes at least 2n/2+t < 2n evaluations of F1. In this case A outputs m1.
Now, A on input S has to compute IVn = F(0n, φ3‖〈n〉32‖0b−s−40‖S, 0c). If IVn ∈ {IV 1

n , . . . , IV 2t

n } then
A has found a second preimage message for m1 and outputs m′

1 and the same salt S′ = S. However,
if A has precomputed 2t colliding messages, the probability that IVn ∈ {IV 1

n , . . . , IV 2t

n } is 1/2n−t. If
IVn /∈ {IV 1

n , . . . , IV 2t

n } then A has to do either: (i). 2n evaluations of F1 under and a new valid m′
1 and 2n

evaluations of F2 under some S′ 6= S; (ii). 2n evaluations of F1 for a new valid m′
1 under the same S′ = S,

such that F1(IVn,m′
1, C1) = h1 where F2(h1, φ1‖〈|m′

1|〉64‖0b−s−70‖S, 0c) = sLANEF0,F1,F2
(m1, S).

Thus, in this case A succeeds either to find a second preimage message under a precomputed salt S′ = S
with probability 1/2n−t or succeeds under the same salt value S′ = S with probability qRO/2n. Using
this strategy A’s advantage is bound by (1/2n−t + qRO/2n) where 2t < 2n/2.

In case A does not do precomputations the best strategy for A is to act as described in (i). and (ii). subcases
of the latter case 2. and therefore A’s advantage is bound by qRO/2n.

Theorem 9. If the compression functions Fi are instantiated as random oracles for all i = 0 to `, then the
advantage of adversary A against the sPre1[λ, s] security of sLANEF0,...,F`

is AdvsPre1[λ,s]
sLANEF0,...,F`

(A) ≤ qRO/2n+1

where qRO is the number of queries to the random oracles Fi and ` = dλ/be+ 1.

Proof. Let A be a sPre1[λ, s] adversary on the iterated hash function sLANEF0,...,F`
. Given a challenge hash

value Y , the goal of A is to invert Y and output some valid preimage pair (M ′, S′) . Remember that Y is
computed as Y = sLANEF0,...,F`

(M, S) for randomly chosen message M
$← {0, 1}λ and salt S

$← {0, 1}s.

11

As in the proof Theorem 4 the best strategy for A is to first compute many h1 which then would allow
him to verify if h2 = Y . Note that A needs to always make at least two evaluations of F1 and F2 to verify
if h2 = Y (this is the case when the adversary tweaks only message m′

1 values and not salt values). Here, as
compared to the proof Theorem 4, A needs to make an evaluation of IVn for some randomly chosen S′. A
is most efficient if only a single random oracle query to F0 is made for the evaluation of IVn and this way
S′ and IVn are fixed. If, alternatively, A decides to arbitrarily choose and modify (tweak) the values of S′,
then he needs to make an additional evaluation F0 to compute IVn every time he needs new values for h2.
Thus, with a single query overhead compared to the proof of Theorem 4, A proceeds the same way as showed
already in the proof of Theorem 4.

For the computed initial vector IVn and fixed S′ A tries different values for m′
1 where m′

1 = M ′‖0b−|M ′|

and |M ′| ≥ n. A exhaustively queries the random oracle F1 on inputs (IVn,m′
1, C1) (modifying m′

1 every
time) to obtain new values for h1. This allows A to compute h2 = F(h1,m

′
2, C2) with fixed values m′

2 =
φ1‖〈M ′〉64‖0b−s−72‖S′ and C2 = 0c. The probability that h2 equals the correct hash value Y in a single
random oracle query to the final compression function F2 is 1/2n. In qRO random oracle queries to F1 and
F2 B succeeds to invert Y with probability qRO/2n+1.

Note that here the domain separation (ensured by the counter and φ value inclusion) of every compression
function does not allow A to reuse query/response pairs obtained by evaluations of distinct Fis (e.g. F1 and
F2). ut
Theorem 10. If the compression functions Fi are instantiated as random oracles for all i = 0 to `, then the
advantage of adversary A against the sPre2[λ, s] security of sLANEF0,...,F`

is AdvsPre2[λ,s]
sLANEF0,...,F`

(A) ≤ qRO/2n+1

where qRO is the number of queries to the random oracles Fi and ` = d(λ)/be+ 1.

Proof. Let A be a sPre2[λ, s] adversary on the iterated hash function sLANEF0,...,F`
for i = 0 to `. Given a

challenge hash value Y and a salt S, the goal of A is to invert Y and output some valid preimage pair (M ′, S′).
Remember that Y is computed as Y = sLANEF0,...,F`

(M, S) for randomly chosen message M
$← {0, 1}λ and

salt S
$← {0, 1}s.

In the case when S = S′ then the proof follows the proof of Theorem 4. When S 6= S′, in which case A
chooses arbitrarily S′, the proof follows from the proof of Theorem 9.

Long Message Sec Attacks on sLANE. Similarly to the basic underlying LANE hash function, the attacks
of [7, 1] do not apply on sLANE .

4 Prefix-free Guarantees and its Security Implications

Both LANE and sLANE hash designs ensure the prefix-free property on its inputs. Following the work of Coron
et al. [4], we conclude that LANE guarantees indifferentiability from a random oracle when the underlying
compression function is a publicly accessible random oracle. This result is an indication of the security of
LANE and sLANE against extension attacks and lack of structural design flaws.

If on the other hand, if the compression function is modeled as a pseudorandom function keyed through
the chaining values, then according to Bellare et al. [2], a prefix-free Merkle-Damg̊ard domain extender (in
this case LANE and sLANE) is also a provably secure pseudorandom function.

12

5 Parallelizable Mode of Operation

Much of the design characteristics of the parallel mode pMode are borrowed from the work of Damg̊ard [5]. Let
P1, . . . , P2t be T = 2t processors. The parallelizable mode of operation pMode makes use of a finite-domain
hash functions Hi : {0, 1}≤L → {0, 1}n for i = 1 to 2t+1. The number of processors available for computation
2t defines the degree(level) of parallelization of the pMode. We define a message padding function ppad that
on inputs the degree of free parallelism T = 2t and the message M = m1‖ . . . ‖ml−1‖ml with |mi| = b for
i = 1 to l− 1 and |ml| = (M mod b) returns the string M ′ = M1‖ . . . ‖M2t . Here we explicitly assume that
the interleave factor bint that determines the block size in which the message will be split is b bits. Thus,
for i = 1 to 2t then Mi = mi‖mi+2t‖mi+2t+1‖ . . . ‖mi+2t+x−1‖mi+2t+x where x = b(l/2t)c. In Figure 3 we
describe the pMode algorithm.

Algorithm 3 pMode
H1,...,H2t+1

(M, 2t):

M1‖ . . . ‖M2t ← ppad(M)
C ← ε
for i = 1 to 2t (each Pi computes) do

hi = Hi(Mi)
C ← C‖hi

end for
h2t+1 = H2t+1(C)
return h2t+1

Parallelism: The algorithm pMode has a 2t degree of parallelism when 2t processors are available. For
i = 1 to 2t each processor Pi processes the Mith chunk of the original message with the hash function Hi.
The parallelization degree 2t is an input parameter of the scheme in the preprocessing part to specify the
concrete message blocks that each processor needs to fetch in the computation. The hash values resulting
from the computation of each processor are parsed sequentially as a concatenation of strings and input to
the final hash function H2t+1.

Note that the pMode
H1,...,H2t+1

(when all Hi are Merkle-Damg̊ard iterative hash functions) has the addi-

tional overhead of processing up to 2t(b + n + 64) extra message bits compared to a single Merkle-Damg̊ard
hash function processing messages of the same size. This is due to the inclusion of the initial vectors and
standard MD padding in the computation of His over message parts Mis. This feature, on the positive side,
allows the standard use of any hash function on a single processor level. Moreover, the hash values resulting
from the computation of every processor are also processed by any chosen hashing method in the final phase.
For messages of length 2t+x + 1 the speedup of the parallel hashing compared to sequential processing is
with a factor of approximately 2x/x.

5.1 Collision Security of pMode

Theorem 11. If there exists an explicitly given adversary A that (t, ε)-breaks the Coll security of pMode
H1,...,H2t+1

,
then there exists an explicitly given adversary B that (t′, ε′)-breaks the Coll security of at least one of the Hi

underlying hash functions where i ∈ {1, . . . 2t + 1} and ε′ ≥ ε and t′ ≤ t + 2
∑

i=1...2t+1 τHi . Here, τHi is
the time required for the evaluation of Hi and 2t is the maximal parallelization degree of the two colliding
messages.

Proof. Given a Coll adversary A against the hash function pMode
H1,...,H2t+1

, we construct a Coll adversary

B against the hash function Hi for some i ∈ {1, . . . , 2t +1}. B runs A on no inputs and A outputs a colliding
pair (M,M ′) with respective parallelization degrees 2t and 2t′ , such that pMode

H1,...,H2t+1
(M, 2t) = Y and

13

pMode
H1,...,H

2t′+1
(M ′, 2t′) = Y . Let M1‖ . . . ‖M2t ← ppad(M, 2t) and M ′

1‖ . . . ‖M ′
2t′ ← ppad(M ′, 2t′). Then

let C = h1‖h2‖ . . . ‖h2t and C ′ = h′1‖h′2‖ . . . ‖h′
2t′ where hi = Hi(Mi) for i = 1 to 2t and h′j = Hj(M ′

j) for
j = 1 to 2t′ . Then we know that H2t+1(C) = H2t′+1(C

′).
If 2t 6= 2t′ , then |C| 6= |C ′| and therefore C 6= C ′. Thus, a collision occurs and B outputs C and C ′ as

a valid colliding pair. If 2t = 2t′ and C 6= C ′ then we repeat the latter argument. Else, if C = C ′ then a
collision has occurred in at least one Hi with i = 1 to 2t. Note that when C = C ′ then |C| = |C ′| and
2t′ = 2t. Then, we have that Hi(Mi) = Hi(M ′

i) for all i = 1 to 2t and since M 6= M ′ a collision occurs in
at least one of the applications of Hi. Whenever A succeeds, then B succeeds to find a collision for at least
one Hi with the same advantage. The time complexity of B is at most the time complexity of A plus two
evaluations of all Hi taking time 2

∑
i=1...2t+1 τHi

. ut

5.2 Second Preimage and Preimage Security of pMode

To exhibit Sec and Pre security proofs we build the respective Sec and Pre adversaries on the final hash
function H2t+1 in pMode

H1,...,H2t+1
. Note, however, that a Sec adversary on H2t+1 has to find a second

preimage for C = h1‖ . . . ‖h2t computed for a random input message M
$← {0, 1}λ and random parallelization

degree 2t $← {20, 21, . . . , 2L} (for practical reasons we upper bound the parallelization degree by 2L). Here
hi = Hi(Mi) for i = 1 to 2t and M1‖ . . . ‖M2t ← ppad(M, 2t). Now for an ideal hash function H2t+1 the
computational complexity of a second preimage search is of order 2n when

∑
i=1,...,2t(Hmin(hi)) ≥ n. Note

that the latter argument is valid only under the assumption that a second preimage adversary on H2t+1 gets
the message M chosen uniformly at random and computes its own target message C = h1‖ . . . ‖h2t . Thus, if
for i = 1 to 2t on average every Hi with input a random (and unpredictable to the adversary) message block
Mi outputs hi where Hmin(hi) ≥ n/2t, then we can assume that the second preimage complexity for the
adversary on H2t+1 is of order 2n. We call such instantiations of Hi n/2t min entropy preserving functions.
The same argument holds for the Pre adversary on H2t+1.

Theorem 12. If each hash function Hi is (t′i, ε
′
i) Sec secure (respectively) and n/2t min entropy preserving

for all i ∈ {1, . . . , 2t} and H2t+1 is also (t′′, ε′′) Sec secure, then the hash function pMode
H1,...,H2t+1

is (t, ε)
Sec secure (in the latter defined sense) for ε ≤ ∑

i=1,...,2t(ε′i) + ε′′ and t′ ≤ t + 3
∑

i=1...2t+1 τHi . Here, τHi

is the time required for the evaluation of Hi and 2t is the maximal parallelization degree of the two colliding
messages.

Proof. Given a Sec[λ, 2t] (note that here the security notion is parameterized also by the parallelization
degree) adversary A against the hash function pMode

H1,...,H2t+1
, we construct the following Sec adversaries:

B1 against the hash function H2t+1 and B2 against either hash function Hi for some i ∈ {1, . . . , 2t}.
B1 gets a random challenge message M

$← {0, 1}λ and 2t $← {20, 21, . . . , 2L}. B1 computes C = h1‖ . . . ‖h2t

and has to find a second preimage message C ′ for C. On the same inputs (M, 2t) B2’s goal is to find a second
preimage for at least one Mi under Hi where M1‖ . . . ‖M2t ← ppad(M, 2t). Now B1 and B2 run A on inputs
M and 2t. A outputs a second preimage message M ′ with respective parallelization degree 2t′ , such that
pMode

H1,...,H2t+1
(M, 2t) = Y and pMode

H1,...,H
2t′+1

(M ′, 2t′) = Y . Let M ′
1‖ . . . ‖M ′

2t′ ← ppad(M ′, 2t′). Then

let C ′ = h′1‖h′2‖ . . . ‖h′
2t′ where h′j = Hj(M ′

j) for j = 1 to 2t′ . Then we know that H2t+1(C) = H2t′+1(C
′).

Following the arguments from the collision security proof of pMode then we have the following scenarios:
1. a collision is present in either H2t+1 or else, 2. a collision is present for at least one application of Hi. A
collision in this setting translates to a valid second preimage message and therefore when A succeeds, then
either B1 or B2 win. ut
Theorem 13. If the hash function H2t+1 is (t′, ε′) Pre secure and each Hi hash function is 2t/n min entropy
preserving hash functions for all i ∈ {1, . . . , 2t}, then the hash function pMode

H1,...,H2t+1
is (t, ε) Pre secure

for ε ≤ ε′ and t′ ≤ t + 2
∑

i=1...2t τHi . Here, τHi is the time required for the evaluation of Hi and 2t is
maximal the parallelization degree of either preimage message(s) M and M ′.

14

Proof. Given a Pre[λ, 2t] (note that here the security notion is parameterized also by the parallelization
degree) adversary A against the hash function pMode

H1,...,H2t+1
, we construct the Pre adversary B against

the hash function H2t+1. B gets a challenge hash value Y computed on inputs random M
$← λ and 2t $←

{20, 21, . . . , 2L} as Y = H2t+1(C) where C = h1‖h2‖ . . . ‖h2t and hi = Hi(Mi) for i = 1 to 2t. The 2t/n min
entropy assumption on all Hi with i ∈ {1, . . . , 2t} ensures that B can not succeed in inverting Y faster than
exhaustive search.

Now B runs A on input Y . Note that the expected distribution of Y from A is identical. Then A outputs
a preimage message M ′ and the respective parallelization degree 2t′ . B computes C ′ = h′1‖ . . . ‖h′

2t′ where
h′j = Hj(M ′

j) for j = 1 to 2t′ . C ′ is a valid preimage for B. When A succeeds in finding a preimage, then B
also succeeds. ut

5.3 pMode Security Proofs in the Random Oracle Model.

If the hash functions H1, . . . ,H2t+1 are modeled as random oracles, then the pMode
H1,...,H2t+1

is Sec and Pre

secure in up to 2n−t and 2n, respectively, total number of queries to the random oracles (H1, . . . , H2t+1).

Theorem 14. If all the hash functions H1, . . . , H2t+1 are instantiated as random oracles, then the advantage
of adversary A against the Sec[λ, 2t] security of pMode

H1,...,H2t+1
is AdvSec[λ,2t]

pMode
H1,...,H2t+1

(A) ≤ qRO/2n and qRO

is the total number of queries to the random oracles (H1, . . . , H2t+1).

Proof. Let A be a Sec[λ, 2t] adversary on the hash function pMode
H1,...,H2t+1

. A is given a random target

message M
$← {0, 1}λ and 2t $← {20, 21, . . . , 2L}. The goal of A is to find a second preimage message M ′

for M . Note, however, that A can be successful only when he makes consistent (with the pMode iterative
principle) queries to the random oracles (H1, . . . , H2t+1). Then to bound the maximal success probability of
A we assume that A makes only this type of queries to (H1, . . . , H2t+1). Let us assume A outputs a valid
second preimage message M ′ with respective parallelization degree 2t′ . Then pMode

H1,...,H2t+1
(M, 2t) = Y

and also pMode
H1,...,H

2t′+1
(M ′, 2t′) = Y . Let M ′

1‖ . . . ‖M ′
2t′ ← ppad(M ′, 2t′). Then let C = h1‖h2‖ . . . ‖h2lt

where hi = Hi(Mi) for i = 1 to 2t and C ′ = h′1‖h′2‖ . . . ‖h′
2t′ where h′j = Hj(M ′

j) for j = 1 to 2t′ . Then we
know that H2t+1(C) = H2t′+1(C

′).
Now, according to the collision security proof when H2t+1(C) = H2t′+1(C

′) then a collision has occurred
for some Hi with i ∈ {1, . . . , 2t + 1}. Let us observe the type of RO queries A needs to make to cause such
collisions. To find a second preimage colliding message for C then A needs 2n evaluations of the hash function
H2t′+1. To find the second preimage C ′ under H2t′+1, however, A needs to make consistent queries. Thus, A

needs to evaluate 2n times some Hi for i ∈ {1, . . . , 2t′} (to obtain new values for C ′). Thus, A succeeds to find
second preimage C ′ for C under H2t′+1 in 2n queries to H2t′+1 and 2n queries to some Hi for i ∈ {1, . . . , 2t′}.

Another way for A to proceed is to find a second preimage M ′
j for some target message chunk Mi under

Hi where C ′ = h′1‖ . . . ‖h′`′ equals to C = h1‖ . . . ‖h`. In that case A uses as target points of either h1, . . . , h`

resulting from the hashing of the original message. In this case A needs to make 2n evaluations of Hi. Then
for distinct (domain separated) instantiations of (H1, . . . , H2t′+1) the success probability of A is upper bound
by qRO/2n. ut

Theorem 15. If the hash functions H1, . . . , H2t+1 are instantiated as random oracles, then the advantage
of adversary A against the Pre[λ, 2t] security of pMode

H1,...,H2t+1
is AdvSec[λ]

pMode
H1,...,H2t+1

(A) ≤ qRO/2n+1 and

qRO is the is the total number of queries to the random oracles (H1, . . . ,H2t+1).

Proof. Let A be a Pre[λ, 2t] adversary on the tree hash function pMode. Given a challenge hash value Y . The
goal of A is to invert Y , which is computed as Y = H2t(C) as specified in the pMode

H1,...,H2t+1
.

15

A queries the random oracles (H1, . . . ,H2t′) to get C ′ = h′1, . . . , h
′
2t′ . This costs in total 2t′ evaluations

of all His. Then A computes Y = H2t′+1(h
′
1‖h2‖ . . . ‖h′

2t′). Now after evaluating all (H1, . . . , H2t′+1) the
probability in a single query to H2t′+1 that H2t′+1(C

′) = Y is 1/2n.
A needs to do at most 2n oracle queries to H2t′+1. However, in order to make consistent queries to H2t′+1

then A needs to evaluate either of H1, . . . , H2t′ anew also 2n times. Then for distinct (domain separated)
instantiations of (H1, . . . ,H2t′+1) the success probability of A is upper bound by qRO/2n+1. ut

6 Summary of the Security Results

To assess the security of the LANE iteration we have used the reduction-based provable security approach.
More precisely, we state security claims on the LANE iteration under some concrete assumptions on the
underlying compression function. Following this approach we are able to show concrete security bounds
on the computational complexity of an adversary against the LANE iteration. We also exhibit information
theoretic results on the LANE iteration which indicate security against generic attacks under the assumption
that the compression function is an ideal primitive.

Similarly to the known Merkle-Damg̊ard iterative principle [8, 5], we show that both the non-salted and
salted versions of the LANE iteration are provably collision secure. We follow Rogaway’s human-ignorance
approach [9] and relate the advantage of an adversary against the LANE hash function to that of another
adversary against the LANE compression function to derive a tight security bound.

The upper bounds on the advantage of information theoretic adversaries against the second preimage
and preimage security, respectively, of the non-salted LANE hash function indicate that 2n evaluations of
the underlying ideal compression function need to be performed to break the respective security property.
Moreover, making a (variant of) preimage security assumption on the output transformation of LANE and
adopting some randomness extraction and regularity properties on the iterative portion of the non-salted
LANE hash function, we exhibit tight preimage security bound on the LANE iteration.

For the salted version of the LANE hash function we develop a broad set of security notions that capture
most of the important attack scenarios of randomized hashing. In addition, we also take into account the
possibility of attacks under equal or distinct and known or secret salt values. We obtain the same (as for the
non-salted LANE hash function) security against information theoretic adversaries in the second preimage
case and even stronger (with a factor of 2n) in the preimage case.

The latter information theoretic results show that no generic attacks on the second preimage and preimage
security on both salted and non-salted LANE hash function variants succeed with probability one in up to
2n number of evaluations of an ideal compression function.

Another important security feature of the LANE iterative design in both salted and non-salted versions
is the security against extension attacks and lack of structural flaws ensured by the prefix-free property of
the processed inputs. The latter design characteristic of LANE ensures its indifferentiability from a random
oracle according to the work of Coron et al. [4] and pseudorandom function behavior according to Bellare et
al. [2].

The suggested parallel processing method pMode is also shown to be collision secure when the underlying
hash functions are collision secure. Under the second preimage/preimage security and some mild assumptions
on the min entropy extraction properties of the hash functions we also show that the parallel mode of
operation is second preimage/preimage secure.

Acknowledgements

The author thanks Sebastiaan Indesteege, Orr Dunkelman, Sebastian Faust, Markulf Kohlweiss and Bart
Preneel for their valuable feedback. The author is supported by a Ph.D. Fellowship from the Flemish Research
Foundation (FWO - Vlaanderen) and in part by the IAP Programme P6/26 BCRYPT of the Belgian State
(Belgian Science Policy) and the Interdisciplinary Institute for BroadBand Technology (IBBT), and in part
by the European Commission through the IST Programme under Contract IST-2002-507932 ECRYPT.

16

References

1. E. Andreeva, C. Bouillaguet, P.-A. Fouque, J. J. Hoch, J. Kelsey, A. Shamir, and S. Zimmer. Second preimage
attacks on dithered hash functions. pages 270–288, 2008.

2. M. Bellare, R. Canetti, and H. Krawczyk. Pseudorandom functions revisited: The cascade construction and its
concrete security. pages 514–523, 1996.

3. E. Biham and O. Dunkelman. A framework for iterative hash functions – HAIFA. Second NIST Cryptographic
Hash Workshop, 2006.

4. J.-S. Coron, Y. Dodis, C. Malinaud, and P. Puniya. Merkle-Damg̊ard revisited: How to construct a hash function.
pages 430–448, 2005.

5. I. Damg̊ard. A design principle for hash functions. pages 416–427, 1990.
6. S. Halevi and H. Krawczyk. Strengthening digital signatures via randomized hashing. pages 41–59, 2006.
7. J. Kelsey and B. Schneier. Second preimages on n-bit hash functions for much less than 2n work. pages 474–490,

2005.
8. R. C. Merkle. A certified digital signature. pages 218–238, 1990.
9. P. Rogaway. Formalizing human ignorance: Collision-resistant hashing without the keys. In Vietcrypt 2006,

volume 4341, 2006.
10. P. Rogaway and T. Shrimpton. Cryptographic hash-function basics: Definitions, implications, and separations

for preimage resistance, second-preimage resistance, and collision resistance. pages 371–388, 2004.

17

