
From: hash-forum@nist.gov on behalf of Hirotaka Yoshida [hirotaka.yoshida.qv@hitachi.com] 
Sent: Friday, May 29, 2009 7:38 AM 
To: Multiple recipients of list 
Subject: OFFICIAL COMMENT:　Lesamnta 

Dear NIST, all, 

In round 1 technical evaluation, NIST intends to perform an efficiency analysis on Intel
Core 2 Duo Processor. 

Given the importance of Intel Processors, we think that it is reasonable to consider hash
algorithm performance using a new set of AES instructions to be introduced into the next
generation of Intel Processors. 

We would like to explain why AES instructions should be considered:
Based on our observation that Intel CPU performance figures of several SHA-3 candidates
are due to the use of instructions in SSE, we think that new version of SSE which employs
AES instructions should be considered as the same way as the current version of it. We
expect that Intel CPUs with AES instructions will be widely used by the end of the SHA-3
competition. 

If AES instructions are considered, we would suggest to use the following known methods
to evaluate performance with them:
a) Implement using certain compliers GAS assembler or Intel compiler

This depends on the language, assembly or C.

This method is described in an Intel website [1].


b) Confirm the correctness of test vectors using the Intel SDE simulator
which makes use of AES instructions
 This method is also described in [1].

c) Speed measurement of the implementation where the AESENC instruction
is replaced with the PMULUDQ instruction.
AESENC and PMULUDQ have the same throughput and same latency.
This method is proposed by the Vortex team. 

We evaluate the performance of Lesamnta using the above method.
The results are listed: 
http://www.sdl.hitachi.co.jp/crypto/lesamnta/ 

Reference 
[1]http://software.intel.com/en-us/blogs/2008/08/11/emulation-of-new-instructions/ 

Best regards,
Hirotaka Yoshida 

1 

http://www.sdl.hitachi.co.jp/crypto/lesamnta
http:hirotaka.yoshida.qv@hitachi.com
http:hash-forum@nist.gov


From: hash-forum@nist.gov on behalf of Hirotaka Yoshida [hirotaka.yoshida.qv@hitachi.com] 
Sent: Friday, May 29, 2009 9:33 AM 
To: Multiple recipients of list 
Subject: OFFICIAL COMMENT:　Lesamnta 

Dear NIST, dear all,
 

This is a response to NIST's statement that in round 1 technical evaluation, NIST invites

the public to compare results on additional platforms (e.g., 8-bit processors, etc.)
 

We compare the implementation costs of various SHA-3 candidates on low-cost 8-bit CPUs by

estimating RAM/ROM requirements of them.

The PDF of our work can be found on the following URL:

http://www.sdl.hitachi.co.jp/crypto/lesamnta/A_Study_on_RAM_Requirements.pdf

We would be grateful if this work is considered.
 

Hereafter, we would like to describe reasons why considering 8-bit CPUs is important for

hash algorithm implementations.

Firstly, 8-bit CPUs are really popular, which is based on a report [1] saying that about

55 % of all CPUs sold in the world are 8-bitmicrocontrollers and microprocessors.

Scondly, there is a important tradeoff which should be made between cryptographic

functionality and the cost of the device. Even some symmetric cryptographic algorithms

could be too expensive for some applications using low-end smart cards and RFID tags

which typically employ low-cost 8-bit CPU.

Thirdly, it is thinkable that in the near future, we will see a wide variety of security

applications using low-cost 8-bit CPUs such as wireless sensor network, which is based on

the report in [2] saying that passive RFID tag market is expected to hit $486M in 2013,
 

Considering all this above, we expect that RAM/ROM requirements on low-cost 8-bit CPUs

should be considered as an important factor in comparison of SHA-3 candidates.
 

References
 
[1]http://en.wikipedia.org/wiki/Microprocessor

[2]http://www.infoworld.com/t/networking/passive-rfid-tag-market-hit-486m-in-2013-102
 

Please note that the authors are involved with the submission of a SHA-3 candidate 

Lesamnta. This is a view from these people.
 

Best regards,

Hirotaka Yoshida
 

1 

http://www.sdl.hitachi.co.jp/crypto/lesamnta/A_Study_on_RAM_Requirements.pdf
http:hirotaka.yoshida.qv@hitachi.com
http:hash-forum@nist.gov


Caswell, Sara J. 

From: hash-forum@nist.gov on behalf of Colin B [mesadesign@colinb.cts.com] 
Sent: Monday, June 08, 2009 12:36 AM 
To: Multiple recipients of list 
Subject: Re: OFFICIAL COMMENT:　Lesamnta 

Your reasoning is good, but why study only a subset of the submissions and why that
particular subset? 

---- <hash-forum@nist.gov> wrote: 
> 
> 
> Dear NIST, dear all,
> 
> This is a response to NIST's statement that in round 1 technical
> evaluation, NIST invites the public to compare results on additional
> platforms (e.g., 8-bit processors, etc.)
> 
> We compare the implementation costs of various SHA-3 candidates on
> low-cost 8-bit CPUs by estimating RAM/ROM requirements of them.
> The PDF of our work can be found on the following URL:
> http://www.sdl.hitachi.co.jp/crypto/lesamnta/A_Study_on_RAM_Requiremen
> ts.pdf We would be grateful if this work is considered.
> 
> Hereafter, we would like to describe reasons why considering 8-bit
> CPUs is important for hash algorithm implementations.
> Firstly, 8-bit CPUs are really popular, which is based on a report [1]
> saying that about 55 % of all CPUs sold in the world are
> 8-bitmicrocontrollers and microprocessors.
> Scondly, there is a important tradeoff which should be made between
> cryptographic functionality and the cost of the device. Even some
> symmetric cryptographic algorithms could be too expensive for some 
> applications using low-end smart cards and RFID tags which typically
> employ low-cost 8-bit CPU.
> Thirdly, it is thinkable that in the near future, we will see a wide
> variety of security applications using low-cost 8-bit CPUs such as
> wireless sensor network, which is based on the report in [2] saying
> that passive RFID tag market is expected to hit $486M in 2013,
> 
> Considering all this above, we expect that RAM/ROM requirements on
> low-cost 8-bit CPUs should be considered as an important factor in 
> comparison of SHA-3 candidates.
> 
> References 
> [1]http://en.wikipedia.org/wiki/Microprocessor
> [2]http://www.infoworld.com/t/networking/passive-rfid-tag-market-hit-4
> 86m-in-2013-102 
> 
> Please note that the authors are involved with the submission of a 
> SHA-3 candidate Lesamnta. This is a view from these people.
> 
> Best regards,
> Hirotaka Yoshida 
> 
> 
> 

1 

http://www.sdl.hitachi.co.jp/crypto/lesamnta/A_Study_on_RAM_Requiremen
http:hash-forum@nist.gov
http:mesadesign@colinb.cts.com
http:hash-forum@nist.gov


Caswell, Sara J. 

From: hash-forum@nist.gov on behalf of Hirotaka Yoshida [hirotaka.yoshida.qv@hitachi.com] 
Sent: Monday, June 08, 2009 6:46 AM 
To: Multiple recipients of list 
Subject: Re: OFFICIAL COMMENT:　Lesamnta 

Thank you for your interest. 

This is simply because that we had limited resources and we did not
have time enough to study all the submissions by 1 st of June (The NIST deadline for

comment and analysis). We hope that other
research group would extend our study to a study on all submissions. 

Best regards,
Hirotaka Yoshida 

> Your reasoning is good, but why study only a subset of the submissions and why that
particular subset?
> 
> ---- <hash-forum@nist.gov> wrote: 
>> 
>> Dear NIST, dear all,
>> 
>> This is a response to NIST's statement that in round 1 technical
>> evaluation, NIST invites the public to compare results on additional
>> platforms (e.g., 8-bit processors, etc.)
>> 
>> We compare the implementation costs of various SHA-3 candidates on
>> low-cost 8-bit CPUs by estimating RAM/ROM requirements of them.
>> The PDF of our work can be found on the following URL:
>> http://www.sdl.hitachi.co.jp/crypto/lesamnta/A_Study_on_RAM_Requireme
>> nts.pdf We would be grateful if this work is considered.
>> 
>> Hereafter, we would like to describe reasons why considering 8-bit
>> CPUs is important for hash algorithm implementations.
>> Firstly, 8-bit CPUs are really popular, which is based on a report
>> [1] saying that about 55 % of all CPUs sold in the world are
>> 8-bitmicrocontrollers and microprocessors.
>> Scondly, there is a important tradeoff which should be made between
>> cryptographic functionality and the cost of the device. Even some
>> symmetric cryptographic algorithms could be too expensive for some 
>> applications using low-end smart cards and RFID tags which typically
>> employ low-cost 8-bit CPU.
>> Thirdly, it is thinkable that in the near future, we will see a wide
>> variety of security applications using low-cost 8-bit CPUs such as
>> wireless sensor network, which is based on the report in [2] saying
>> that passive RFID tag market is expected to hit $486M in 2013,
>> 
>> Considering all this above, we expect that RAM/ROM requirements on
>> low-cost 8-bit CPUs should be considered as an important factor in 
>> comparison of SHA-3 candidates.
>> 
>> References 
>> [1]http://en.wikipedia.org/wiki/Microprocessor
>> [2]http://www.infoworld.com/t/networking/passive-rfid-tag-market-hit-
>> 486m-in-2013-102 
>> 
>> Please note that the authors are involved with the submission of a 
>> SHA-3 candidate Lesamnta. This is a view from these people.
>> 

1 

http://www.sdl.hitachi.co.jp/crypto/lesamnta/A_Study_on_RAM_Requireme
http:hash-forum@nist.gov
http:hirotaka.yoshida.qv@hitachi.com
http:hash-forum@nist.gov


From: hash-forum@nist.gov on behalf of Hirotaka Yoshida [hirotaka.yoshida.qv@hitachi.com] 
Sent: Friday, June 26, 2009 9:24 AM 
To: Multiple recipients of list 
Subject: OFFICIAL COMMENT:　Lesamnta 

Attachments: Security_Analysis_Compression_Lesamnta.pdf 

Security_Analysis_ 
Compression_... 

Dear NIST, all, 

We send a report on a security analysis of the compression function of Lesamnta. In this
report, we have discussed the security analysis of the compression function of Lesamnta
that was pointed by Charles Bouillaguet, Orr Dunkelman, Gaetan Leurent, Pierre-Alain
Fouque. As the result of examining several attacking scenarios based on this analysis, we
conclude that the expected strength of Lesamnta described still remains the same despite
of the loss of proved security regarding preimage resistance, second preimage resistance,
and collision resistance. 
In order for Lesamnta to get back proved security on each of these security requirements,
we will make a minor change to the specification by changing round constants. 

Best regards,
Hirotaka Yoshida 

1 

http:hirotaka.yoshida.qv@hitachi.com
http:hash-forum@nist.gov


Security Analysis of the Compression Function
 
of Lesamnta and its Impact 

4Shoichi Hirose
1, Hidenori Kuwakado

2, Hirotaka Yoshida
3 , 

1 University of Fukui 
hrs shch@u-fukui.ac.jp
 

2 Kobe University 
kuwakado@kobe-u.ac.jp
 

3 Systems Development Laboratory, Hitachi, Ltd., 
hirotaka.yoshida.qv@hitachi.com
 

4 Katholieke Universiteit Leuven, Dept. ESAT/SCD-COSIC, 

1 Introduction 

Lesamnta is a new family of hash functions submitted to NIST for their crypto
graphic hash algorithm competition. 

A security analysis of the compression function of Lesamnta has been re
ported [1]. In this document, we give a short overview of how this analysis 
affects the security of the full Lesamnta hash function. We divide our arguments 
into three categories: 

– A security analysis of the Lesamnta compression function 
– The impact of the security analysis on the security of the full Lesamnta 
– A plan for a minor change to the specification 

2 A Security Analysis of the Compression Function 

2.1 Observation on Lesamnta’s Block Cipher 

This section describes a correlation among a key, a plaintext, and a ciphertext in 
Lesamnta’s block cipher. The correlation was discovered by Bouillaguet et al. [1]. 
We only describe the observation on Lesamnta-256, but we can obtain similar 
observation on Lesamnta-512; the difference is just word size. 

We follow symbols and notations of [2] and consider Lesamnta-256’s block 
cipher EncComp256. Let C[r][0] and C[r][1] be the left part and the right part of 
the r-th round constant in the key schedule function (see Figure 18 of [2]). For 
example, C[0][0] = 00000001 and C[0][1] = 00000000 according to p.14 of [2]. We 
define a difference Δr as 

Δr = C[r][0]⊕ C[r][1] (1) 

for r = 0, 1, . . . , 31. According to p.14 of [2], we see that the following equations 
hold. 

Δ0 = Δ4 = Δ8 = Δ12 = . . . = Δ24 = Δ28, 

http:of[2].We
mailto:hirotaka.yoshida.qv@hitachi.com
mailto:kuwakado@kobe-u.ac.jp
mailto:shch@u-fukui.ac.jp


2 

Δ1 = Δ5 = Δ9 = Δ13 = . . . = Δ25 = Δ29, (2)
 

Δ2 = Δ6 = Δ10 = Δ14 = . . . = Δ26 = Δ30,
 

Δ3 = Δ7 = Δ11 = Δ15 = . . . = Δ27.
 

Precisely speaking, we also see Δ0 = Δ1 = Δ2 = Δ3 = 00000001 and Δ3 = Δ31, 
but these properties are unnecessary for the following discussion. We will see 
that the relation of Eq. (2) allows an adversary to attack Lesamnta. 

A key chain, which corresponds to chain[8] in Figure 18 of [2], is denoted by 
chain[0] � chain[1] � . . . � chain[7] where chain[i] ∈ {0, 1}32. The key schedule 
function produces 32 round keys K[0][0]||K[0][1], . . . , K[31][0]||K[31][1] from the key. 

Proposition 1. Let chain0 be any key chain0[0] � chain0[1] � . . . � chain0[7]. 
Suppose that another key chain1 is determined as 

chain1 = (chain0[1]⊕ Δ2) � (chain0[0]⊕ Δ2) � (chain0[3]⊕ Δ1) � (chain0[2]⊕ Δ1) 

� (chain0[5]⊕ Δ0) � (chain0[4]⊕ Δ0) � (chain0[7]⊕ Δ3) � (chain0[6]⊕ Δ3). 

When round keys K0 generated from chain0 are denoted by 

K0[0][0]||K0[0][1], K0[1][0]||K0[1][1], . . . , K0[31][0]||K0[31][1], 

round keys K1 generated from chain1 are given by 

K1[4i][0] = K0[4i][1]⊕ Δ2, K1[4i][1] = K0[4i][0]⊕ Δ2,
 
K1[4i + 1][0] = K0[4i + 1][1] ⊕ Δ3, K1[4i + 1][1] = K0[4i + 1][0] ⊕ Δ3,
 
K1[4i + 2][0] = K0[4i + 2][1] ⊕ Δ0, K1[4i + 2][1] = K0[4i + 2][0] ⊕ Δ0,
 
K1[4i + 3][0] = K0[4i + 3][1] ⊕ Δ1, K1[4i + 3][1] = K0[4i + 3][0] ⊕ Δ1,
 

for i = 0, 1, . . . , 7. 

Next, consider the mixing function of the block cipher EncComp256 (see 
Figure 11 of [2]). A message block mb is denoted by mb[0] � mb[1] � . . . � mb[7] 
where mb[i] ∈ {0, 1}32. Let K[0][0]||K[0][1], . . . , K[31][0]||K[31][1] be 32 round keys 
generated by the key schedule function. The output x of EncComp256 (i.e., the 
ciphertext) is denoted by x[0] � x[1] � . . . � x[7]. 

Proposition 2. Let K0[0][0]||K0[0][1], . . . , K0[31][0]||K0[31][1] be 32 round keys K0, 
and let mb0[0] � mb0[1] � . . . � mb0[7] denote a message block mb0. Suppose that 
round keys K1 and a message block mb1 satisfy the following equations. 

K1[4i][0] = K0[4i][1]⊕ δ0, K1[4i][1] = K0[4i][0]⊕ δ0, 
K1[4i + 1][0] = K0[4i + 1][1] ⊕ δ1, K1[4i + 1][1] = K0[4i + 1][0] ⊕ δ1, 
K1[4i + 2][0] = K0[4i + 2][1] ⊕ δ2, K1[4i + 2][1] = K0[4i + 2][0] ⊕ δ2, 
K1[4i + 3][0] = K0[4i + 3][1] ⊕ δ3, K1[4i + 3][1] = K0[4i + 3][0] ⊕ δ3, 
mb1[0] = mb0[1]⊕ δ2, mb1[1] = mb0[0]⊕ δ2, 
mb1[2] = mb0[3]⊕ δ1, mb1[3] = mb0[2]⊕ δ1, 
mb1[4] = mb0[5]⊕ δ0, mb1[5] = mb0[4]⊕ δ0, 
mb1[6] = mb0[7]⊕ δ3, mb1[7] = mb0[6]⊕ δ3, 



3 

where i = 0, 1, . . . , 7 and δ0, . . . , δ3 are any 32-bit strings. Let x0[0] � x0[1] � 
. . . � x0[7] be the output x0 of EncComp256(K0, mb0). Then, the output x1 of 
EncComp256(K1, mb1) is given by 

x1[0] = x0[1]⊕ δ2, x1[1] = x0[0]⊕ δ2, 
x1[2] = x0[3]⊕ δ1, x1[3] = x0[2]⊕ δ1, 
x1[4] = x0[5]⊕ δ0, x1[5] = x0[4]⊕ δ0, 
x1[6] = x0[7]⊕ δ3, x1[7] = x0[6]⊕ δ3. 

Proposition 1 and Proposition 2 are proved by using properties of internal 
functions such as SubWord256. Assuming that 

δ0 = Δ2, δ1 = Δ3, δ2 = Δ0, δ3 = Δ1, 

we obtain the following proposition from Proposition 1 and Proposition 2. 

Proposition 3. Let chain0 and mb0 be a key and a message block, respectively. 

chain0 = chain0[0] � chain0[1] � chain0[2] � chain0[3] 

� chain0[4] � chain0[5] � chain0[6] � chain0[7], 

mb0 = mb0[0] � mb0[1] � mb0[2] � mb0[3] 

� mb0[4] � mb0[5] � mb0[6] � mb0[7]. 

Suppose that a key chain1 and a message block mb1 are given as 

chain1 = (chain0[1]⊕ Δ2) � (chain0[0]⊕ Δ2) 

� (chain0[3]⊕ Δ1) � (chain0[2]⊕ Δ1) (3) 

� (chain0[5]⊕ Δ0) � (chain0[4]⊕ Δ0) 

� (chain0[7]⊕ Δ3) � (chain0[6]⊕ Δ3), 

mb1 = (mb0[1]⊕ Δ0) � (mb0[0]⊕ Δ0) � (mb0[3]⊕ Δ3) � (mb0[2]⊕ Δ3) (4) 

� (mb0[5]⊕ Δ2) � (mb0[4]⊕ Δ2) � (mb0[7]⊕ Δ1) � (mb0[6]⊕ Δ1). 

When the output x0 of EncComp256(chain0, mb0) is denoted by x0[0] � x0[1] � 
. . . � x0[7], the output x1 of EncComp256(chain1, mb1) is given by 

x1 = (x0[1]⊕ Δ0) � (x0[0]⊕ Δ0) � (x0[3]⊕ Δ3) � (x0[2]⊕ Δ3) (5) 

� (x0[5]⊕ Δ2) � (x0[4]⊕ Δ2) � (x0[7]⊕ Δ1) � (x0[6]⊕ Δ1). 

2.2 Distinguisher for Lesamnta’s Block Cipher 

Proposition 3 immediately gives an efficient related-key adversary A for distin
guishing between Lesamnta-256’s block cipher EncComp256 and an ideal cipher 
IC. The basic idea of this distinguisher was shown in [1]. 

The algorithm of the adversary A is described below. Suppose that a block 
cipher BC to which A has access is promised to be either EncComp256 or IC 
and A is allowed to have access to the related-key oracle such as Eq. (3). Namely, 
A does not know keys chain0, chain1, but A can have access to BC(chain0, ·) 
and BC(chain1, ·). 



4 

1. Choose a message block mb0 at random and determine another message block 
mb1 as Eq. (4). 

2. Let xi be the output of BC(chaini, mbi) where i = 0, 1. If Eq. (5) holds, 
then output 1, otherwise output 0. 

We evaluate the probability that A outputs 1. If BC is EncComp256, then 
A always outputs 1 because of Proposition 3. If BC is IC, then the probability 
that A outputs 1 is 2−256. Thus, A can distinguish between Lesamnta-256’s block 
cipher and the ideal cipher by making only two queries. 

2.3 Pseudo-Collision of Lesamnta 

The sophisticate use of Proposition 3 allows an adversary to produce a pseudo-
collision of Lesamnta-256 with O(264) computations of the compression function. 
This attack was shown in [1]. 

Consider Lesamnta-256’s compression function Compression256 (Figure 11 
of [2]). The algorithm of an adversary A that finds a pseudo-collision is described 
below. 

1. Let a set U = ∅. 
2. For i = 1, 2, . . . , 264, do the following steps. 

2.1 Choose chaini[j], mbi[j] where j = 0, 2, 4, 6 at random. 
2.2 Determine chaini, mbi as follows: 

chaini = chaini[0] � (chaini[0]⊕ Δ2) 

� chaini[2] � (chaini[2]⊕ Δ1) (6) 

� chaini[4] � (chaini[4]⊕ Δ0) 

� chaini[6] � (chaini[6]⊕ Δ3) 

mbi = mbi[0] � (mbi[0]⊕ Δ0) � mbi[2] � (mbi[2]⊕ Δ3) (7) 

� mbi[4] � (mbi[4]⊕ Δ2) � mbi[6] � (mbi[6]⊕ Δ1) 

2.3 Compute Compression256(chaini, mbi). The output is denoted by zi. 
2.4 Let U ← U ∪ (chaini, mbi, zi). 

3. Find (chainι, mbι) and (chainν , mbν) such that zι = zν from U . (i.e., a 
pseudo-collision). 

Recall that Lesamnta’s compression functions is the MMO mode. The output 
zi of Compression256(chaini, mbi) always satisfies the following property due 
to Proposition 3. 

zi[0] = zi[1], zi[2] = zi[3], zi[4] = zi[5], zi[6] = zi[7]. 

Namely, the size of the output space of Compression256(chaini, mbi) is 2
128 . 

Since U has 264 elements, there exists a pair satisfying step 3 with probability 
1− 1/e due to the birthday paradox. 



5 

3	 The Impact of the Security Analysis of the Compression 
Function on the Full Lesamnta 

In this section, we discuss the impact of the security analysis described in 2 
on the security of the full Lesamnta by firstly reviewing the expected strength 
and security goals claimed in [2] and by secondly considering several attacking 
scenarios. 

3.1 Review of What Was Claimed in [2] 

In the section of “Expected Strength and Security Goals” in [2], we described as 
follows: 

Table 1 shows the expected strength of Lesamnta for each of the security re
quirements (i.e., the expected complexity of attacks). What values in Table 1 
mean is explained below. The row indicated by “HMAC” lists the approximate 
number of queries required by any distinguishing attack against HMAC using 
Lesamnta. The row indicated by “PRF” lists the approximate number of queries 
required by any distinguishing attack against the additional PRF modes described 
in Sec. 13.1. The row indicated by “Randomized hashing” lists the approximate 
complexity to find another pair of a message and a random value for a given pair 
of a 2k-bit message and a random value. The fourth row lists the approximate 
complexity of any collision attack. The fifth row lists the approximate complexity 
of any preimage attack. The sixth row lists the approximate complexity of the 
Kelsey-Schneier second-preimage attack with any first preimage shorter than 2k 

bits. The seventh row lists the approximate number of queries required by any 
length-extension attack against Lesamnta. A cryptanalytic attack may be a pro
found threat to Lesamnta if its complexity is much less than the complexity in 
Table 1. 

Table 1. Expected strength of Lesamnta 

Requirement Lesamnta 

224 256 384 512 

HMAC 2112 2128 2192 2256 

PRF 2112 2128 2192 2256 

Randomized hashing 2256−k 

Collision resistance 2112 

2256−k 

2128 

2512−k 

2192 

2512−k 

2256 

Preimage resistance 2224 2256 2384 2512 

Second-preimage resistance 2256−k 2256−k 2512−k 2512−k 

Length-extension attacks 2112 2128 2192 2256 



6 

Table 1 includes proof-based strength and attack-based strength. The security 
proof of Lesamnta is given as follows: 

Proved security 1: Lesamnta is indifferentiable from a random oracle under the 
assumption that block ciphers E,L are independent ideal ciphers. 
This proof partially ensures the security of randomized hashing, collision re
sistance, preimage resistance, second-preimage resistance, and length-extension 
attacks. 

Proved security 2: Lesamnta is collision resistant under the assumption that the 
compression function h and the output function g are collision resistant. 
This proof ensures the security of collision resistance, and in part, preimage 
resistance and second-preimage resistance. 

Proved security 3: Lesamnta is a pseudorandom function under the assumption 
that block ciphers E,L are independent pseudorandom permutations. 
This proof ensures the security of HMAC and PRF. 

We claim that the impact of the security analysis of the compression function 
on the security of Lesamnta described in 2 is limited to the following: 

–	 Each of the assumption made in Proved Security 1 and the one in Proved 
Security 2 no longer holds because the above attack means that Lesamnta’s 
block cipher is a poor instantiation of an ideal cipher. 

We claim that there is no problem regarding Proved Security 3 because their 
proofs only assume the pseudo-randomness of the underlying block ciphers, that 
is, the key is secret and chosen at random. 

3.2	 Collision Resistance, Second-preimage Resistance, and 
Preimage Resistance 

As for collision resistance, second-preimage resistance, and preimage resistance, 
Lesamnta does not have proof-based strength but we still claim that, regarding 
each of these security requirements, Lesamnta has attack-based strength which 
is estimated in security analysis described in [2] together with the arguments we 
describe below. 

As for collision resistance and second-preimage resistance, we think that it 
is difficult to transform the collision attack on the compression function given 
in Section 2 into an attack on the full Lesamnta hash function because it is 
not clear how to find the chaining variable Hi of the specific form described in 
Section 2 for the full Lesamnta. 

As for preimage resistance, we do not know any way to transform the pseudo
collision attack given in Section 2 into a preimage attack on the full Lesamnta. 

3.3	 Security against a Collision Attack on the Full Lesamnta 

Using Proposition 3, we can find a collision of Lesamnta hash function with the 
same complexity of a generic attack. 

Consider Lesamnta-256. The algorithm of an adversary that finds a collision 
is described below. 



7 

1. Let U (0) = ∅ and U (1) = ∅. 
(0) (1) (1) 

2. Choose message block blocks mb , mb at random. If mb satisfies the 
i i i 

(1) 
following equations (i.e., Eq. (7)), then choose mb again. 

i 

(1) (1) (1) (1) 
mb [1] = mb [0]⊕ Δ0, mb [3] = mb [2]⊕ Δ3,i i i i 

(1) (1) (1) (1) 
mb [5] = mb [4]⊕ Δ2, mb [7] = mb [6]⊕ Δ1,i i i i 

where Δi is given by Eq. (1). 
3. Compute 

(0) (0) 
chain = Compression256(IV, mb ),

i i 

(1) (0) (1) 
chain = Compression256(chain , mb ),

i i i 

where IV is the standard initial value (Section 5.2.3.2 of [2]). 
(0) (0) (1) (1) 

4. Let U (0) ← U (0) ∪ (chain , mb ) and U (1) ← U (1) ∪ (chain , mb ). 
i i i i 

5. If all the following conditions hold, then go to the next step, otherwise go 
back to step 2. 

– There is an element in U (0) satisfying Eq. (6), that is, for some i 

(0) (0) (0) (0) 
chain [1] = chain [0]⊕ Δ2, chain [3] = chain [2]⊕ Δ1,i i i i 

(0) (0) (0) (0) 
chain [5] = chain [4]⊕ Δ0, chain [7] = chain [6]⊕ Δ2.i i i i 

This index i is denoted by i0. 
– There is an element in U (1) such that for some i 

(1) (1) 
chain [j] = chain [j + 1] 

i i 

for j = 0, 2, 4, 6. This index i is denoted by i1. 
6. Choose a message block mb ′(1) at random such that 

mb ′(1)[1] = mb ′(1)[0]⊕ Δ0, mb ′(1)[3] = mb ′(1)[2]⊕ Δ3, 
mb ′(1)[5] = mb ′(1)[4]⊕ Δ2, mb ′(1)[7] = mb ′(1)[6]⊕ Δ1. 

7. Compute 
′(1) (0) ′(1)).chain = Compression256(chain

i0 
, mb 

(0) (1) (0) 
� mb ′(1) 8. If the following equations hold, then output mb � mb and mb

i1 i1 i0 

as a collision-message pair, that is, 

′(1)[j]
(1) 

chain = chain
i1 

[j], 

for j = 0, 1, . . . , 7. Otherwise go back to step 6. 

We evaluate the complexity of the above algorithm. In order to satisfy the 
conditions in step 5 and the condition in step 8, O(2128) computations of the 
compression function are required. As a result, we conclude that the above attack 
is not better than the generic collision attack. This means that this attack does 
not pose any threat on the full Lesamnta. 



8 

4 A Plan for a Minor Change 

We observe that the security analysis discussed here is based on some symmetry 
in Lesamnta. To destroy the symmetry, we plan to make a minor change to 
the specification of Lesamnta by changing the round constants. The important 
design goals for the new round constants are security and hardware efficiency. 

The possible ideas for new round constants are using the following techniques: 
LFSR, publicly known random-looking numbers, pseudo-random generators, etc. 
We also consider the possibility of using the on-the-fly technique and the adapt
ability to the extension of Lesamnta specified in [2]. 

5 Concluding Remarks 

In this paper, we have discussed the security analysis of the compression function 
of Lesamnta that was pointed by Bouillaguet et al. As the result of examining 
several attacking scenarios based on this analysis, we conclude that the expected 
strength of Lesamnta described still remains the same despite of the loss of 
proved security regarding preimage resistance, second preimage resistance, and 
collision resistance. 

In order for Lesamnta to get back proved security on each of these security 
requirements, we will make a minor change to the specification by changing 
round constants. 

Acknowledgments 

We would like to thank Charles Bouillaguet, Orr Dunkelman, Gaëtan Leurent, 
Pierre-Alain Fouque for their excellent analysis on Lesamnta. We also thank 
Kota Ideguchi, Yasuko Fukuzawa, and Toru Owada for fruitful discussions. This 
work was partially supported by the National Institute of Information and Com
munications Technology, Japan. 

References 

1.	 C. Bouillaguet, O. Dunkelman, G. Leurent, and P. A. Fouque, Private communica
tion, 2009. 

2.	 S. Hirose, H. Kuwakado, and H. Yoshida, “SHA-3 proposal: Lesamnta,” http:// 
csrc.nist.gov/groups/ST/hash/sha-3/Round1/documents/Lesamnta.zip%, Octo
ber 2008. latest version: http://www.sdl.hitachi.co.jp/crypto/lesamnta/. 

3.	 National Institute of Standards and Technology, “Announcing request for candidate 
algorithm nominations for a new cryptographic hash algorithm (SHA-3) family,” 
http://csrc.nist.gov/groups/ST/hash/documents/, November 2007. 

http://csrc.nist.gov/groups/ST/hash/documents
http://www.sdl.hitachi.co.jp/crypto/lesamnta


From: hash-forum@nist.gov on behalf of Gilles VAN ASSCHE [gilles.vanassche@st.com]
 
Sent: Monday, July 06, 2009 8:35 AM
 
To: Multiple recipients of list
 
Subject: RAM usage (Re: OFFICIAL COMMENT: Lesamnta)
 

Dear Hirotaka Yoshida, 

> We compare the implementation costs of various SHA-3 candidates on
> low-cost 8-bit CPUs by estimating RAM/ROM requirements of them. 

In your document, you assume that the message block is counted towards the memory usage of
the application. It is a valid assumption in several cases. However, there are also
applications for which the message is formatted on the fly or does not need to be kept
after being hashed.
There, constructions such as sponge functions or similar (e.g., CubeHash, LUX) can
directly XOR the message block into the state, relieving the application from dedicating a
memory area for it. This optimization also applies where the hashing API is composed of
functions such as Init, Update and Final. In general a message queue must be allocated,
which can be avoided for sponge functions or similar. 

About Keccak specifically, the designer of an application on a memory-constrained device
may also opt for a smaller state size by using an alternate set of parameters, such as
Keccak[r=288,c=512], which uses 100 bytes of RAM. And if 256 bits of capacity are enough
for such an application, Keccak[r=144,c=256] uses only 50 bytes. 

Kind regards,
The Keccak team 

1 

mailto:gilles.vanassche@st.com
mailto:hash-forum@nist.gov


From: hash-forum@NIST.GOV on behalf of Hirotaka Yoshida [hirotaka.yoshida.qv@hitachi.com]
 
Sent: Wednesday, July 15, 2009 6:18 AM
 
To: Multiple recipients of list
 
Subject: Re: RAM usage (Re: OFFICIAL COMMENT: Lesamnta)
 

Dear The Keccak team, 

Thank you very much for your interest and your comments on our document. 

We understand that the ways of counting the message block depend on
the applications. We agree with you that there are also applications for which the

message is formatted on the fly or does not need to be kept after being hashed.
 

Our document compares the implementation costs of candidates under a simple but valid

assumption as the first step in this kind of research.

However, we think that it is interesting to compare them under the assumption you

suggested as well. We hope that other groups investigate in this direction.
 

Best regards,

Hirotaka Yoshida
 

> Dear Hirotaka Yoshida,

> 

>> We compare the implementation costs of various SHA-3 candidates on

>> low-cost 8-bit CPUs by estimating RAM/ROM requirements of them.

> 

> In your document, you assume that the message block is counted towards

> the memory usage of the application. It is a valid assumption in

> several cases. However, there are also applications for which the

> message is formatted on the fly or does not need to be kept after being hashed.

> There, constructions such as sponge functions or similar (e.g.,

> CubeHash, LUX) can directly XOR the message block into the state,

> relieving the application from dedicating a memory area for it. This

> optimization also applies where the hashing API is composed of

> functions such as Init, Update and Final. In general a message queue

> must be allocated, which can be avoided for sponge functions or similar.

> 

> About Keccak specifically, the designer of an application on a

> memory-constrained device may also opt for a smaller state size by

> using an alternate set of parameters, such as Keccak[r=288,c=512],

> which uses 100 bytes of RAM. And if 256 bits of capacity are enough

> for such an application, Keccak[r=144,c=256] uses only 50 bytes.

> 

> Kind regards,

> The Keccak team
 
> 

> 


1 

mailto:hirotaka.yoshida.qv@hitachi.com
mailto:hash-forum@NIST.GOV


________________________________________ 

From: Nandi, Mridul [mridul.nandi@nist.gov] 
Sent: Wednesday, July 15, 2009 11:53 PM 
To: internal-hash@nist.gov 
Subject: FW: OFFICIAL COMMENT:　Lesamnta 

Hi All,

I forgot to attach a reply from Lesamnta Designer I received last week regarding my

observation on Lesamnta. 

-Mridul
 

From: Hirotaka Yoshida [hirotaka.yoshida.qv@hitachi.com]

Sent: Thursday, July 09, 2009 7:27 PM

To: Nandi, Mridul

Cc: hirotaka.yoshida.qv@hitachi.com; hrs_shch@u-fukui.ac.jp; kuwakado@kobe-u.ac.jp
 

Subject: RE: FW: OFFICIAL COMMENT:　Lesamnta
 

Dear Dr. Mridul Nandi,
 

Thank you for your comments on our paper on the security of Lesamnta.
 

> 1. Semi-free start collision in 2^{64} complexity. The same attack as

> described in the paper by Charles Bouillaguet, Orr Dunkelman, Gaetan

> Leurent, Pierre-Alain Fouque where the chaining value keeps fixed. I

> do not find any reason to vary chaining value. Moreover,

> E_{chain}(mb) + mb is not expected to be an one-one function. So we

> should get collision after 2^{64} tries of mb. Please point me if I'm

> wrong or missing something.
 

Your semi-free start attack works for Lesamnta in 2^{64} complexity.

Actually, we were trying to present the attack in as general form as possible. So, the

special (but important) attack, semi-free start attack, is not explicit in the

presentation.
 

> 2. Moreover, one can have preimage attack on Lesamnta-256 (without the

> length padding) in 2^{128} complexity for any targets of the form 

> z_0|| z_0 || z_2 || z_2 || z_4 || z_4 || z_6 || z_6. This can be done

> for two blocks. We first vary 1st message block to reach the

> intermediate chaining value of the same form as in the previous attack

> (mentioned in the paper) and then we choose the message in a

> particular form to get the specific preimage. However, the 10^{191}

> || length does not satisfy this specific pattern and this is why I

> do not know how it can be applied with the padding.
 

We agree with you that the preimage attack you described in the above can be applied to

the Lesamnta-256 without the length padding. We expect that this preimage attack cannot be

applied to the full Lesamnta.
 

As we described in the paper, we will make a minor change to the specification by changing

round constants.
 
This change of round constants prevents the above attacks.

We will send you (NIST ML) a report describing this change in weeks.
 

Sincerely,

Lesamnta Design Team
 

>Dear Lesamnta Designers,

>
 

1 

http:kuwakado@kobe-u.ac.jp
http:hrs_shch@u-fukui.ac.jp
http:hirotaka.yoshida.qv@hitachi.com
http:hirotaka.yoshida.qv@hitachi.com
http:internal-hash@nist.gov
http:mridul.nandi@nist.gov


>After going through the Proposition 3 of the attached paper, I can see the following
observations: 
> 
>1. Semi-free start collision in 2^{64} complexity. The same attack as
>described in the paper by Charles Bouillaguet, Orr Dunkelman, Gaetan Leurent, Pierre-
Alain Fouque where the chaining value keeps fixed. I do not find any reason to vary
chaining value. Moreover, E_{chain}(mb) + mb is not expected to be an one-one function. So
we should get collision after 2^{64} tries of mb. Please point me if I'm wrong or missing
something.
> 
> 
>2. Moreover, one can have preimage attack on Lesamnta-256 (without the
>length padding) in 2^{128} complexity for any targets of the form 
>z_0|| z_0 || z_2 || z_2 || z_4 || z_4 || z_6 || z_6. This can be done
>for two blocks. We first vary 1st message block to reach the
>intermediate chaining value of the same form as in the previous attack
>(mentioned in the paper) and then we choose the message in a particular
>form to get the specific preimage. However, the 10^{191} || length does
>not satisfy this specific p
attern and this is why I do not know how it can be applied with the padding.
> 
>Please feel free to share what you think on these attacks.
> 
>Thanks and regards,
>Mridul 
> 
> 
>-----Original Message-----
>From: hash-forum@nist.gov [mailto:hash-forum@nist.gov] On Behalf Of
>Hirotaka Yoshida 
>Sent: Friday, June 26, 2009 9:24 AM
>To: Multiple recipients of list 

>Subject: OFFICIAL COMMENT:　Lesamnta 
> 
>Dear NIST, all,
> 
>We send a report on a security analysis of the compression function of
>Lesamnta. In this report, we have discussed the security analysis of
>the compression function of Lesamnta that was pointed by Charles
>Bouillaguet, Orr Dunkelman, Gaetan Leurent, Pierre-Alain Fouque. As the
>result of examining several attacking scenarios based on this
>analysis, we conclude that the expected strength of Lesamnta described
>still remains the same despite of the loss of proved security regarding
>preimage resistance, second preimage resistance, and collision
>resistance. 
>In order for Lesamnta to get back proved security on each of these
>security requirements, we will make a minor change to the specification
>by changing round constants.
> 
>Best regards,
>Hirotaka Yoshida 
> 

2 

http:mailto:hash-forum@nist.gov
http:hash-forum@nist.gov


From: hash-forum@nist.gov on behalf of Hirotaka Yoshida [hirotaka.yoshida.qv@hitachi.com] 
Sent: Friday, July 17, 2009 1:33 PM 
To: Multiple recipients of list 
Subject: OFFICIAL COMMENT: Lesamnta 

Attachments: Minor_Change_Lesamnta.pdf 

Minor_Change_Les 
amnta.pdf (152... 

Dear NIST, all, 

We would like to send you a document where we propose to make a minor change to the
specification of Lesamnta by changing round constants.
The motivation of this change is to prevent the attacks
described in [1] and the newly-discovered attack described in this document.

We expect that all of these attacks do not work any more for Lesamnta with the new round
constants. We also expect that the change does not cause any significant impact on
resistance against the known attacks and on performance of Lesamnta. 

Reference: 
[1] S. Hirose, H. Kuwakado, H. Yoshida, "Security Analysis of the Compression Function of
Lesamnta and its Impact"
http://csrc.nist.gov/groups/ST/hash/sha-3/Round1/documents/LESAMNTA_Comments.pdf 

Best regards,

The Lesamnta design team
 

1 

http://csrc.nist.gov/groups/ST/hash/sha-3/Round1/documents/LESAMNTA_Comments.pdf
mailto:hirotaka.yoshida.qv@hitachi.com
mailto:hash-forum@nist.gov


A Minor Change to Lesamnta
 
— Change of Round Constants —
 

Shoichi Hirose1, Hidenori Kuwakado2, Hirotaka Yoshida3,4 

1 University of Fukui 
hrs shch@u-fukui.ac.jp 

2 Kobe University 
kuwakado@kobe-u.ac.jp 

3 Systems Development Laboratory, Hitachi, Ltd., 
hirotaka.yoshida.qv@hitachi.com 

4 Katholieke Universiteit Leuven, Dept. ESAT/SCD-COSIC 

1 Introduction 

Lesamnta is a new family of hash functions submitted to NIST for their crypto
graphic hash algorithm competition. 

In this document, we propose to make a minor change to the specification 
of Lesamnta by changing round constants. We give a short overview of the mi
nor change to the Lesamnta hash function. We divide our arguments into the 
following categories: 

– The minor change of the Lesamnta hash function 
– The motivation of the change 
– The design principle for the round constants 
– Security against potential attacks on Lesamnta with new round constants 
– The impact of the change 

Note that we mainly explain about the minor change in the case of Lesamnta
256 because the explanation could be easily adapted to the case of Lesamnta
224/384/512. 

2 The Minor Change 

We propose to make a minor change to the specification of Lesamnta [2]. The 
minor change is only the replacement of 32 round constats. No other parts of 
the specification is changed. 

mailto:hirotaka.yoshida.qv@hitachi.com
mailto:kuwakado@kobe-u.ac.jp
mailto:shch@u-fukui.ac.jp


2 

For Lesamnta-224/256, we replace the 32 round constants described in Sec
tion 5.1.1 (page 14) of [2] with the following constants. 

Round constants of [2] 
0000000100000000 0000000300000002 0000000500000004 0000000700000006 
0000000900000008 0000000b0000000a 0000000d0000000c 0000000f0000000e 
0000001100000010 0000001300000012 0000001500000014 0000001700000016 
0000001900000018 0000001b0000001a 0000001d0000001c 0000001f0000001e 
0000002100000020 0000002300000022 0000002500000024 0000002700000026 
0000002900000028 0000002b0000002a 0000002d0000002c 0000002f0000002e 
0000003100000030 0000003300000032 0000003500000034 0000003700000036 
0000003900000038 0000003b0000003a 0000003d0000003c 0000003f0000003e 

New round constants 
9e754700889cfedb 2db4ad503bbd6f80 02db4ad503bbd6f8 e1a70c522758bc4b 
2a4989e511412ba9 1e95cf81bff8729e a8c416470af5c6d6 422bb32416c61cb6 
4c85497227052110 04c8549722705211 fdf76aa9eba86421 f264994a0735e742 
3744e7ab7dab9e3d 6f80451ae2875955 8b86b7ce8c169407 bda476dc1727489b 
2f89be4df246d4e4 723dc79b6495eddc 966c38f97a9bdf6b 2d353aafa49d1d9b 
2680aa8ac97d71b4 72ad56d717265789 1b1b82729f9e055c 90fe5ca7e52b61e3 
ccd6a4153a051757 b9d177e1ac4670ae a2b05dc10bce26f5 8755b643328203fd 
648150046675c089 1a79421fa88b3c2c 90e870a1365a3274 79cbdb75a8d423b5 

For Lesamnta-384/512, we replace the 32 round constants described in Sec
tion 5.1.2 (page 15) of [2] with the following constants. 

Round constants of [2] 
00000000000000010000000000000000 00000000000000030000000000000002 
00000000000000050000000000000004 00000000000000070000000000000006 
00000000000000090000000000000008 000000000000000b000000000000000a 
000000000000000d000000000000000c 000000000000000f000000000000000e 
00000000000000110000000000000010 00000000000000130000000000000012 
00000000000000150000000000000014 00000000000000170000000000000016 
00000000000000190000000000000018 000000000000001b000000000000001a 
000000000000001d000000000000001c 000000000000001f000000000000001e 
00000000000000210000000000000020 00000000000000230000000000000022 
00000000000000250000000000000024 00000000000000270000000000000026 
00000000000000290000000000000028 000000000000002b000000000000002a 
000000000000002d000000000000002c 000000000000002f000000000000002e 
00000000000000310000000000000030 00000000000000330000000000000032 
00000000000000350000000000000034 00000000000000370000000000000036 
00000000000000390000000000000038 000000000000003b000000000000003a 
000000000000003d000000000000003c 000000000000003f000000000000003e 



3 

New round constants 
f6251864809494cd35cb7fa305acbe7f 78b114d45c0c003757aa6c4b9d98f1bf 
b508148e2c0e460802e6cd2af27a24b0 ba220a9a4170d2de29fdd68d717f83f4 
fa8e84753153428a0c9d29ba4c07bc9f 97fc92f852b9c3860d30da783d3f6b9d 
95b68b70b22784abca19a58a8ca71e4c 48abbc03a30a7ff77422b58cdfd2a9ca 
c7c5fa0d1976cfcbbfd178c3b7e94af7 f9c7bdd4fd083fedb7b7be15c8dcc1d3 
dfc1d14920cdc088b5635cc6c7e5be34 37dcf3f822ec2133f52f774280cbc7e2 
ed519add8adb45eae57e1d138887b7e1 eebfc9e5f47009f492d2f77813921014 
159b340651e246363b85e6fe008b602c 2eb05b97b586d5603e4449f6e8e3f514 
155b3b9423a3b0eaaf2970408e7011c9 c4acd4dbd5f51d7e0cb6c807b1a503ca 
c749fd65c10030a936a9ecbe3c873d5d 58d1aa49ef6ae3f34a0cfccecddc475a 
5f343b7343bca903289d46dd90e26da9 a27d71f052fa6d3232a61c086f06e116 
17f09d2029b961fe360d4014031eb9db d7b2481063efc7658a41ae3d098b4854 
514f4a4a1bc06c61cf87358938b8d9b4 be889af85ebc47add66113773567db05 
05e3ea69155b31c85e13ac1129135b54 519d1be862b6d8976253678b149841a7 
ac87ca0bc82b2705d736ec2f621c7828 2a47905563e447589bf95efede53f800 
002a47905563e447589bf95efede53f8 f6e7f57d574abc562f1ea392b7ffb35b 

The minor change of Lesamnata is only the above replcement. We will describe 
how to produce the new round constants in Sect. 4.2. 

3 The Motivation for the Minor Change 

The motivation why we propose to make a minor change to the specification of 
Lesamnta by changing round constants is to prevent the attacks described in 
[3] and one newly-discovered attack which will be described in Appendix A.1. 
These attacks are summarized in the following: 

–	 Distinguishing attack on Lesamnta’s block cipher [3] 
– An adversary can distinguish between Lesamnta-256’s block cipher and 
the ideal cipher by making only two queries. 

–	 Pseudo-collision attack on Lesamnta [3] 
– An adversary can produce a pseudo-collision of Lesamnta-256 with O(264) 
computations of the compression function. 

–	 Semi-free start collision attack on Lesamnta [4] 
– An adversary can produce a semi-free start collision of Lesamnta-256 with 
O(264) computations of the compression function. It is a kind of pseudo-
collision attack mentioned above. 

–	 Attack using weak messages on Lesamnta 
– An adversary can find a kind of second preimage of Lesamnta-256 with 
O(2128) computations of the compression function if the target message sat
isfies a certain property. 

We observe that all the above attacks are based on some symmetry in the key 
scheduling function and the message mixing function of Lesamnta. To destroy 
the symmetry, we have chosen the new round constants. We expect that all the 
above attacks do not work any more for Lesamnta with the new round constants. 

http:constants.We
http:replcement.We


4 

4 Design Principle for the New Round Constants 

4.1 Condition for New Round Constants 

We here show the condition allowing attacks described in Sect. 3. Since all the 
attacks uses it, they fail if it does not hold. We have confirmed that the new round 
constants do not satisfy the condition. The relationship between conditions and 
attacks are described in Appendix. 

Let C[r][0] and C[r][1] be the left part and the right part of the r-th round 
constant in the key scheduling function of EncComp 256 or EncComp 512 (see 
Figs. 18, 28 of [2]). Note that C[r][i] is a 32-bit string for EncComp256 and it is 
a 64-bit string for EncComp 512. We define a difference Δr as 

Δr = C[r][0] ⊕ C[r][1] (1) 

for r = 0, 1, . . . , 31. The condition is to satisfy all the following equations: 

Δ0 = Δ4 = Δ8 = Δ12 = · · · = Δ24 = Δ28, 

Δ1 = Δ5 = Δ9 = Δ13 = · · · = Δ25 = Δ29, (2) 
Δ2 = Δ6 = Δ10 = Δ14 = · · · = Δ26 = Δ30, 

Δ3 = Δ7 = Δ11 = Δ15 = · · · = Δ27. 

The condition is used for distinguishing Lesamnta’s block ciphers from ideal 
ciphers. Furthermore, the distinguishing attack can be extended to the pseudo-
collision attack and the weak-message attack. 

4.2 Generators of New Round Constants 

To be free of suspicion of a trapdoor, round constants must be determined in a 
transparent way. The new round constants for Lesamnta-256 were determined 
by the algorihtm of Fig. 1. The algorihtm of Fig. 1 is based on the linear feedback 
shift register (LFSR) of the following primitive polynomial g(x). 

64 + 61 + 58 + 55 + 47 + 46 + 42 + 41 + 39 + 38 g(x) = x x x x x x x x x x 
37 + 35 + 34 + 33 + 31 + 30 + 29 + 28 + 27 + 26+ x x x x x x x x x x 
25 + 24 + 20 + 19 + 18 + 16 + 14 + 12 + 7+ x x x x x x x x x 8 + x 

+ x 2 + x 1 + 1. 

Due to 33 non-zero coefficients, almost half of bits of the internal state may be 
changed by one operation. Since there are many 33-term primitive polynomials, 
we adopted the first 33-term primitive polynomial obtained from the decimation 

64 + 63 + 61 +of the M sequence produced by the LFSR of x x x x60 + 1 with the 
all-one initial state. 

Since the round constants C[r] can be considered as elements of GF(264), the 
above algorithm is equivalent to 

C[r] = C[r − 1] ∗ αJ over GF(264) for r = 1, 2, . . . , 31 



5 

ConstantGenerator256 (word C [ Nr comp256 ] ) /∗ Nr comp256=32 ∗/ 
begin
 

word c = ffffffffffffffff /∗ in hexadecimal ∗/
 
f o r i = 0 to Nr comp256∗J−1 /∗ J = 4 ∗/
 
/∗ Galois−type LFSR ∗/
 
i f c ∧ 0000000000000001 = 0000000000000001
 

c = ( c >> 1) ⊕ e18ab8ff77630124
 
e l s e
 

c = c >> 1
 
end i f
 
i f i mod J = 0
 
C [ i /J ] = c
 

end i f
 
end f o r
 

end
 

Fig. 1. Pseudocode for generating round constants of Lesamna-224/256. 

where α is a root of g(x). We chose J = 4. If J ≤ 3, then there exists an initial 
state such that almost all C[r]’s satisfy Condition 1. 

The new round constants for Lesamnta-384/512 were determined in a similar 
manner. Specifically, the following 65-term primitive polynomial g(x) and J = 8 
were used. 

128 + 124 + 121 + 120 + 119 + 117 + 116 + 114 + 112 g(x) = x x x x x x x x x 
111 + 110 + 107 + 106 + 105 + 104 + 101 + 100 + 98+ x x x x x x x x x 
97 + 95 + 94 + 93 + 92 + 91 + 90 + 89 + 87 + 86+ x x x x x x x x x x 
84 + 82 + 81 + 79 + 78 + 76 + 74 + 73 + 70 + 69+ x x x x x x x x x x 
66 + 64 + 63 + 60 + 58 + 54 + 53 + 51 + 48 + 39+ x x x x x x x x x x 
37 + 36 + 35 + 32 + 31 + 30 + 29 + 28 + 26 + 23+ x x x x x x x x x x 
21 + 18 + 17 + 15 + 9 ++ x x x x x x 8 + 1 

The pseudocode for generating the round constants is shown in Fig. 2. Since 
there are many 65-term primitive polynomials, we adopted the first 65-term 
primitive polynomial obtained from the decimation of the M sequence produced 

128 + 127 + 126 +by the LFSR of x x x x121 + 1 with the all-one initial state. 

5	 Security against Potential Attacks on Lesamnta with 
New Round Constants 

We here consider a hash function family D-Lesamnta which is the same as Lesam
nta expept that the round constants C[r] are replaced by some D[r]. We here 
present two potential distinguishing attacks on this Lesamnta-like hash function 
family. These two attacks can not work for Lesamnta with new round constants. 



6 

ConstantGenerator512 (word C [ Nr comp512 ] ) /∗ Nr comp512=32 ∗/ 
begin 

word c = ffffffffffffffffffffffffffffffff 
f o r i = 0 to Nr comp512∗J−1 /∗ J = 8 ∗/ 
/∗ Galois−type LFSR ∗/
 
i f c ∧ 00...01 = 00...01
 

c = ( c >> 1) ⊕ 89dae79b7f6b6b32ca34805cfa534180
 
e l s e
 

c = c >> 1 
end i f 
i f i mod J = 0 
C [ i /J ] = c 

end i f 
end f o r 

end 

Fig. 2. Pseudocode for generating round constants of Lesamna-384/512. 

Condition 1 Let a = a0la1l . . . la7 and b = b0lb1l . . . lb7, where ai, bi ∈ {0, 1}8 . 
Let tp£(a) = b be a byte-transposition such that bi = ai+2£ mod 8 for 0 ≤ g ≤ 3. 
Let rv(a) = b be a byte-transposition such that bi = a7−i. 

We have a distinguishing attack on the underlying block cipher of the D
Lesamnta-256 output function if D satisfies the following condition. 

Let D[r] be the 64-bit r-th round constant in the key scheduling function of 
EncOut 256. D[r] is considered as an 8-byte data, that is, 

D[r] = D[r](0) l D[r](1) l . . . l D[r](7), 

where D[r](i) ∈ {0, 1}8. We define a 64-bit difference Λr as 

Λr = D[r]⊕ Π(D[r]) 

for r = 0, 1, . . . , 31, where Π is any composition of tp£ and rv but Π  tp0.=
 
The condition is to satisfy the following equations:
 

Λk = Λk+4 for 0 ≤ k ≤ 26 . 

Notice that round constants of EncOut 256 are identical to those of EncComp 256 
(see Fig. 20 of [2]). 

Since the new round constants for Lesamnta-256 do not satisfy the above 
condition, Lesamnta-256 is secure against the above attack. 

Condition 2 Let s = (si,j) and t = (ti,j), where si,j , ti,j ∈ {0, 1}8 and 0 ≤ 
i, j ≤ 3. Let π£(s) = = £ mod 4,j fort be a byte-transposition such that ti,j si+

0 ≤ g ≤ 3. Let w£(s) = t be a byte-transposition such that ti,j = si,j+ mod 4 for£

0 ≤ g ≤ 3. 

http:D[r](i)�{0,1}8.We


7 

We have a distinguishing attack on the underlying block cipher of the D
Lesamnta-512 output function if D satisfies the following condition. 

Let D[r] be the 128-bit r-th round constant in the key scheduling function of 
EncOut 512. D[r] is considered as a 16-byte data, that is, 

D[r] = D[r](0) l D[r](1) l . . . l D[r](15), 

where D[r](i) ∈ {0, 1}8. We see D[r] = (D[r]i,j ), where D[r]i,j = D[r](i + 4j) for 
0 ≤ i, j ≤ 3. We define a 128-bit difference Ξr as 

Ξr = D[r]⊕ Π(D[r]) 

for r = 0, 1, . . . , 31, where Π is any composition of π£ and w£� but Π is not an 
identity transposition. The condition is to satisfy the following equations: 

Ξk = Ξk+4 for 0 ≤ k ≤ 26 . 

Notice that round constants of EncOut 512 are identical to those of EncComp 512 
(see Fig. 28 of [2]). 

Since the new round constants for Lesamnta-512 do not satisfy the above 
condition, Lesamnta-512 is secure against the above attack. 

6 The Impact of the Change on Lesamnta 

6.1 Impact on the Security of Lesamnta 

We observe that the change does not cause any impact on resistance against the 
known attacks on Lesamnta described in [2]. 

We expect that Lesamnta with the new round constants prevents the attacks 
described in Sect. 3 which violated the assumptions of the security proofs in 
the ideal cipher model in [2]. Therefore we believe that these security proofs for 
Lesamnta would become more meaningful if the round constants are changed to 
the new ones. 

6.2 Impact on the Performance of Lesamnta 

For speed-optimized implementations of Lesamnta, the change does not cause 
any impact on its performance because the round constants are stored in a table. 

For area-optimized implementations of Lesamnta, the change may slightly 
increase the required memory size because on-the-fly generation of round con
stants may be less useful than storing them in a table, due to the relatively large 
number of terms in the feedback polynomial used in the LFSR generating them. 
However, based on our estimation, we expect that storing them in a table does 
not cause any problem in real applications. 



8 

7 Concluding Remarks 

We propose to make a minor change to the specification of Lesamnta by chang
ing round constants. The motivation of this change is to prevent the attacks 
described in [3] and the newly-discovered attack described in this document. 

We expect that all of these attacks do not work any more for Lesamnta with 
the new round constants. We also expect that the change does not cause any 
significant impact on resistance against the known attacks and on performance 
of Lesamnta. 

Acknowledgments 

We would like to thank Charles Bouillaguet, Orr Dunkelman, Gaëtan Leurent, 
Pierre-Alain Fouque for their excellent analysis on Lesamnta. We would like 
to thank Mridul Nandi for improving the analysis. We would like to mention 
the people who gave us feedback and important comments on this work: Kota 
Ideguchi, Yasuko Fukuzawa, Toru Owada, Bart Preneel. This work was par
tially supported by the National Institute of Information and Communications 
Technology, Japan. 

References 

1. C. Bouillaguet, O. Dunkelman, G. Leurent, and P. A. Fouque, Private communica
tion, 2009. 

2. S. Hirose,	 H. Kuwakado, and H. Yoshida, “SHA-3 proposal: Lesamnta,” http:// 
csrc.nist.gov/groups/ST/hash/sha-3/Round1/documents/Lesamnta.zip% , Octo
ber 2008. latest version: http://www.sdl.hitachi.co.jp/crypto/lesamnta/ . 

3. S. Hirose,	 H. Kuwakado, and H. Yoshida, “Security Analysis of the Compression 
Function of Lesamnta and its Impact,” http://csrc.nist.gov/groups/ST/hash/ 
sha-3/Round1/documents/LESAMNTA_Comments.pdf, June 2009. 

4. M. Nandi, Private communication, 2009. 
5. National Institute of Standards and Technology, “Announcing request for candidate 

algorithm nominations for a new cryptographic hash algorithm (SHA-3) family,” 
http://csrc.nist.gov/groups/ST/hash/documents/ , November 2007. 

8 List of Annexes 

A The Attack Methods 

A.1 Attack Using Weak Messages on Lesamnta 

The pseudo-collision-finding attack might be applicable to an attack using weak 
messages. The primary idea of this attack was shown in [1]. 

Consider Lesamnta-256. The algorithm of an adversary that finds a second 
preimage is described below. 

http://csrc.nist.gov/groups/ST/hash/documents
http://csrc.nist.gov/groups/ST/hash
http://www.sdl.hitachi.co.jp/crypto/lesamnta


9 

1. Suppose that a t block message and its digest are given. The t-block message 
is denoted by mb(0) l mb(1) l . . . l mb(t−1) where mb(i) is a 256-bit message 
block. 

2. For i = 0, 1, . . . , t − 1, compute chain(i) as 

chain(i) = Compression256(chain(i−1), mb(i)), 

where chain(−1) is the standard initial value. 
3. If there is an index i1 such that 

chain(i1)[j] = chain(i1)[j + 1] 

for j = 0, 2, 4, 6, go to the next step. Otherwise output fail. 
4. Find mb�(i1−1) and mb�(i1) such that 

chain�(i1−1) = Compression256(chain(i1−2), mb�(i1−1)), 
chain(i1) = Compression256(chain�(i1−1), mb�(i1)), 

by using the attack described in [3]. 

The probability that the condition in step 3 is satisfied is t/2128 . Since 
Lesamnta-256 accepts a (264 − 1)-bit message at most, the probability is less 
than 2−72. We call a message satisfying the condition in step 3 a weak message. 
We notice that this attack is effective only when a given message is a weak 
message. 

http:than2�72.We

