The LANE hash function

Department of Electrical Engineering ESAT/SCD-COSIC,
Katholieke Universiteit Leuven.
Kasteelpark Arenberg 10-2446, B-3001 Heverlee, Belgium.
{sebastiaan.indesteege,bart.prenecel }@esat.kuleuven.be

Designer: Sebastiaan Indesteege
Submitters: Sebastiaan Indesteege, Bart Preneel

Contributors: Elena Andreeva, Christophe De Canniere,
Orr Dunkelman, Emilia Kasper, Svetla
Nikova, Bart Preneel, Elmar Tischhauser

SHA-3 Proposal

Acknowledgements

I would like to thank Elena Andreeva, Christophe De Canniere, Orr Dunkelman,
Emilia Kasper, Svetla Nikova, Bart Preneel, Vincent Rijmen and Elmar
Tischhauser for many interesting discussions concerning the design of LANE
and its predecessors, and for their continued effort on the cryptanalysis of both
older and the final version of LANE. Their findings, comments and suggestions
for improvements were invaluable in the design process.

I extend my gratitude to Antoon Bosselaers, Emilia Késper, Miroslav
Knezevi¢, Nicky Mouha and Vesselin Velichkov for their work on several im-
plementations of LANE, and for giving useful feedback from the implementor’s
point of view.

Additional thanks go to all of the people mentioned above, for their contri-
butions to the writing and proofreading of this document. Finally, thanks to
everyone in the COSIC research group for their support.

Sebastiaan Indesteege
October 2008

Sebastiaan Indesteege is supported by the Fund for Scientific Research Flanders
(Aspirant F.W.O. Vlaanderen). This work was also supported in part by the
IAP Programme P6/26 BCRYPT of the Belgian State (Belgian Science Policy),
and in part by the Interdisciplinary Institute for BroadBand Technology (IBBT),
and in part by the European Commission through the IST Programme under
Contract IST-2002-507932 ECRYPT.

ii

Contents

‘1 Introduction

2 Specification

2.1 Introduction
2.2 Preliminaries
2.2.1 Bit strings, bytes and states . . .
2.2.2 The finite field GF(28)
2.3 Building blocks
2.3.1 SubBytes
2.3.2 ShiftRows
2.3.3 MixColumns
2.3.4 AddConstants
235 AddCounter
2.3.6 SW&pColumns‘
2.4 Preprocessingﬁ
2.4.1 Message padding
2.4.2 _Setting the initial chaining value
2.5 The LANE compression function
251 The message expansion
2.5.2 The permutations
2.6 The output transformation

3 Design rationale

3.1 The iteration mode
3.1.1 The message padding
3.1.2 The use of a counter
3.1.3 The output transformation . . .
3.1.4 The use of a salt value
3.1.5 A parallel iteration mode

3.2 The compression function
3.2.1 The message expansion
3.2.2 The permutations
3.2.3 The constants

3.3 Advantages and limitations of LANE . .
3.3.1 Advantages
3.3.2 Limitationd

il

B~ W W

O 00 O O O = &

10
10
12
12
12
14
15
15
16

CONTENTS

4.1 Reduced versions of LANE for cryptanalysis

4.2.1 Active lanes in the first layer .
4.2.2 Active S-boxes per lane
4.2.3 Breaking reduced versions . . .
4.2.4 Maximum probability of a trail

4.3.1 Truncated differentials

4.3.2 Identifying the optimal truncated differential

4.3.3 Using truncated differentials for collision searchingﬁ

4.4.1 A fourth order differential distinguisher

4.4.2 Square attacks on the compression function

4.4.3 Multiset distinguisher§

4.7 Attacks based on reduced query complexity

4.71 General comments
4.7.2 Results on LANlj
4.7.3 Bounds for query complexitﬂ .

iv

4 Security analysis\
4.2 Standard differential cryptanalysis . .
4.3 Truncated differential cryptanalysis . .
4.4 Higher order differential cryptanalysﬁ
4.5 Cryptanalysis of wide-block Rijndael .
4.6 Algebraic attacks
4.8 Wagner’s generalised birthday attack .
4.9 Meet-in-the-middle attacks
4.10 Long message second-preimage attacks
4.11 Length-extension attacks.
4.12 Multicollision attacks
4.13 On the mode of operation
4.14 Expected strength of LANE

5 Implementation aspects‘

5.1 General purpose CPUY
5.1.1 Bitsliced implementationj s
5.1.2 Intel AES-NI instruction sefl . .

5.2 FEmbedded systems with an 8-bit CPU
5.3 Hardware implementation

‘A The constants used in LANEJ

27
27
28
28
30
30
32
32
33
35
35
36
36
37
38
38
39
39
39
40
41
43
43
44
45
45
46
47

49
49
50
52
93
o4

63

List of Figures

2.1 The SubBytes transformation in LANE-224 and LANE-256)
2.2 The ShiftRows transformation in LANE-224 and LANE-256. .
2.3 The MixColumns transformation in LANE-224 and LANE-256. . .
2.4 Pseudocode for generating the LANE constants.
2.5 The AddConstants transformation in LANE-224 and LLANE-256. .
2.6 The AddCounter transformation in LANE-224 and LANE-256. . .
2.7 The SwapColumns transformation in LANE-224 and LANE-256. .
2.8 The SwapColumns transformation in LANE-384 and LANE-512. .
2.9 The LANE compression function.
2.10 Pseudocode for the LANE permutation rounds.
2.11 Pseudocode for the permutations in LANE-224 and LANE-256. . .
2.12 Pseudocode for the permutations in LANE-384 and LANE-512. . .

4.1 A collision differential for LANE.
4.2 Truncated differentials in one lane of LANE-256
4.3 Truncated differentials in one lane of LANE-512

List of Tables

2.1 Parameters of the LANE hash functions. 5
2.2 The notation used in the specification of LANE. 5
2.3 The AES S-box, in hexadecimal format. 7
2.4 The Hag BYEe e o v v oo e e 13
2.5 The LANE initial values IV, if no salt is used.) 13
2.6 Number of rounds in the LANE permutations. 17
2.7 The full round number ». oL 17
4.1 Lower bounds on the number of active S-boxes 30
4.2 Expected strength of LANE against cryptanalytic attacks, 48
5.1 Test platform for the software implementations of LANE. 50
5.2 Performance measurement results of our LANE implementations. 51
5.3 Number of XMM instructions in one LANE round. 52
5.4 Hardware evaluation of the LANE hash function) 54
A.1 The constants used in LANE . . « « « o v v v vo oo 63

vi

Chapter 1

Introduction

In this document, we propose the cryptographic hash function LANE as a can-
didate for the SHA-3 competition organised by NIST [50]. LANE is an iterated
hash function supporting multiple digest sizes. Components of the AES block
cipher [21, (48] are reused as building blocks. LANE aims to be secure, easy to
understand, elegant and flexible in implementation.

The structure of this document is as follows. In Chapter 2] we give a full
specification of the LANE hash function. The design rationale, including moti-
vations for all important design choices, is discussed in Chapter (3l Chapter [4
contains an extensive security analysis, investigating the resistance of LANE
against a variety of attacks. Finally, implementation aspects of LANE form the
subject of Chapter/5.

CHAPTER 1. INTRODUCTION

Chapter 2

Specification

2.1 Introduction

LANE is an iterated cryptographic hash function, supporting digest sizes of 224,
256, 384 and 512 bits. These four variants of LANE are referred to as LANE-
224, LANE-256, LANE-384 and LANE-512, respectively. The LANE hash function
reuses components from the AES block cipher [21,[48]. After introducing some
preliminaries and conventions in Sect. 2.2, the building blocks are described in
Sect.

Optionally, a salt value S, can be used while computing the digest. When
used, the size of this salt is 256 bits for LANE-224 and LANE-256, and 512 bits for
LANE-384 and LANE-512. Refer to Table[2.1 for a comparison of the parameters
of the various LANE variants.

Hashing a message is performed in three steps. In the first step, which is
described in Sect. the message is padded and split into message blocks of
equal length. Also, the initial chaining value H_; is set to the initial value
IV, s, which depends on the digest size n and the (optional) salt value S.

In the second step, a compression function f(-,-,) is applied iteratively:

H; = f(H;i—1,M;,C;) . (2.1)

Each compression function call uses a message block M; to update the chaining
value H; 1 to H;. A counter C;, which indicates the number of message bits
processed so far, including the message bits in the block M; which is currently
being processed, is also input into the compression function. The compression
function of LANE is described in Sect.

The third and final step is the output transformation, described in Sect.
In this step, the digest is derived from the final chaining value, using the mes-
sage length [and the (optional) salt value S as additional inputs. It consists
of a single compression function call and, depending on the digest length, a
truncation of the result.

Note that LANE supports hashing in ‘one-pass’ streaming mode. There is
no need to buffer the entire message, and one can start hashing as soon as the
first complete message block has been received. This property is similar to the
hash functions of the SHA-family [49].

4 CHAPTER 2. SPECIFICATION

2.2 Preliminaries

This section introduces the preliminaries and conventions that will be used in
this specification. For reference, the notations used in this chapter are sum-
marised in Table[2.2.

2.2.1 Bit strings, bytes and states

Definition 1. A bit string is an ordered sequence of binary digits of arbitrary
length. A bit string is written from left to right, i.e., the leftmost bit is the first
bit of the sequence.

Definition 2. A byte is a bit string consisting of eight bits. A byte can represent
an integer in the range from 0 to 28 — 1. The big-endian convention is used, i.e.,
the first (leftmost) bit of a byte is the most significant bit.

Definition 3. An AES state is a 4 x 4 array of bytes, corresponding to an
internal state of the AES block cipher [21,/48]. A sequence of 16 bytes can be
mapped to an AES state, and vice versa. The sequence of 16 bytes yo || - || y15
is mapped to the AES state

Yo Ya Ys Y12
Y Ys Yo Y13) (2.2)
Y2 Ys¢ Y10 Y4
Ys Y7 Y Yis

Definition 4. A LANE state is the state used inside the LANE compression
function. In LANE-224 and LANE-256, a state of 256 bits is used, which corre-
sponds to two AES states. In LANE-384 and LANE-512, the state is 512 bits in
size, corresponding to four AES states.

A sequence of 32 or 64 bytes can be mapped to two or four AES states,
depending on the LANE variant. The sequence is split into 16-byte parts, each
of which is mapped to an AES state as described above. The AES states are
ordered in the same way as the 16-byte parts in the original byte sequence, i.e.,
the leftmost AES state contains the first 16 bytes of the sequence.

2.2.2 The finite field GF(2?)

As LANE is based on components of the AES block cipher, it also uses arith-
metic operations in the finite field GF(2%). Elements of the finite field GF(2%)
can be represented in several ways, but all representations are isomorphic, i.e.,
they are simply different ways of representing the same finite field with 2% ele-
ments [40]. In this document, we adopt the same representation as commonly
used to describe the AES block cipher [21] 48].

A byte is used to represent an element of the finite field GF(2%). It is
useful to view the byte, consisting of bits bybybabsbsbsbsbr as a polynomial with
coefficients 0 or 1:

boXT 4 b1 X6 + 0o X5 + b3 X + b, X3 4+ b5 X2 + b X + by . (2.3)

The addition of two elements of GF(28), represented as polynomials, is de-
fined as component-wise addition modulo two. On the byte level, this corre-
sponds to exclusive or (XOR). The neutral element with respect to addition is
the byte 00,, and every element is its own additive inverse.

2.2. PRELIMINARIES

Table 2.1: Parameters of the LANE hash functions.

LANE-224 LANE-256 LANE-384 LANE-512

Digest length n
Blocksize b

Size of chaining value

Salt length |S|

224 bits 256 bits 384 bits 512 bits
512 bits 512 bits 1024 bits 1024 bits
256 bits 256 bits 512 bits 512 bits
256 bits 256 bits 512 bits 512 bits

Table 2.2: The notation used in the specification of LANE.

0*
®
|

T3>0

bingg(‘) or bin64(~)

Ci

f(Hi—1, M;,Cy)
H;
1V, s or IV,

ki
M
M

n

P, Q;

l

<

,
S
Wo,. .., Ws

i

A number of zero bits, required to pad a bit
string to a given length.

Exclusive or (XOR).

Concatenation of bit strings.

Bitwise right-shift of the word z over 4 bits.
Big-endian representation of a number in 32 or
64 bits, respectively.

A number in hexadecimal notation.

The flag byte used in the output transformation
and the derivation of IV}, s.

The blocksize.

Counter indicating the number of message bits
(excluding padding) in message blocks 0 up to
and including .

The LANE compression function.

Chaining value after processing message block i.
The initial value for digest length n and salt S
(if applicable).

Message length in bits.

A 32-bit LANE constant.

A message.

Padded message block 1.

Digest length, i.e., 224, 256, 384 or 512 bits.
The permutations (lanes) used in LANE in the
first and second layer, respectively.

The full round number.

Salt value.

Expanded message blocks.

A column of an AES state, consisting of four
bytes.

6 CHAPTER 2. SPECIFICATION

The multiplication of two elements of GF(2®) is defined as the the multipli-
cation of polynomials, reduced modulo an irreducible polynomial m(X),

mX) =X+ X'+ X34+ X +1 . (2.4)

The byte 01, is the neutral element with respect to multiplication. Every
nonzero byte has a multiplicative inverse, which can be computed using the
extended Euclidean algorithm.

2.3 Building blocks

The LANE hash functions reuse several components from the AES block ci-
pher [21,(48]. In particular, the SubBytes, ShiftRows and MixColumns trans-
formations are also part of LANE. In LANE, however, they are used several times
in parallel, due to the larger state size.

2.3.1 SubBytes

The SubBytes transformation in LANE is identical to the corresponding compo-
nent of the AES block cipher, except that it operates on a larger state. Figure[2.1]
illustrates this for LANE-224 and LANE-256. The same non-linear substitution
(S-box) is applied to each of the state bytes independently. This substitution
consists of the composition of the following operations:

1. The inverse operation in the finite field GF(2®), defined by the irreducible
polynomial m(X), given in (2.4). The zero element is mapped to itself.

2. An affine mapping over GF(2), defined by

; 10001111 by 1
b, 11000111 be 1
b, 11100011 bs 0
A 1111000 1 by 0
1 T11 111100 0 bs | T |0 (25)
; 01111100 by 1
o, 001111710 by 1
b looo 1111 1] k]| [0

Here, by,...,b; denote the bits of a byte representing an element of GF(2%),
where by is the most significant bit. This is the same S-box as the one used in
the AES block cipher [21,[48]. It is given in Table[2.3]

2.3.2 ShiftRows

The ShiftRows transformation cyclically shifts the bytes of the rows of each of
the AES states that comprise the LANE state. The first, i.e., topmost row is
not shifted. The second, third and fourth row are cyclically shifted to the left
over one, two and three byte positions, respectively. This is identical to the
ShiftRows transformation in the AES block cipher, except that it is applied two
or four times in parallel, depending on the LANE variant. Figure[2.2 illustrates
ShiftRows for LANE-224 and LANE-256.

2.3. BUILDING BLOCKS

Table 2.3: The AES S-box, in hexadecimal format.
L0 L1 L2 03 24 05 L6 L7 .8 L9 La b e od e _f

0.1|63 7c 77 7b 2 6b 6f c¢5 30 01 67 2b fe d7 ab 76
1. |ca 8 ¢9 7d fa 59 47 f0 ad d4 a2 af 9c a4 72 c0
2. | b7 fd 93 26 36 3f f7 cc 34 ab e5 fl 71 d8 31 15
3. 104 ¢7 23 ¢3 18 96 05 9a 07 12 80 e2 eb 27 b2 75
4. 109 8 2c la 1b 6e 5a a0 52 3b d6 b3 29 e3 2f 84
5. 153 dl 00 ed 20 fc bl 5b 6a cb be 39 4a 4c 58 cf
6. |d0 ef aa fb 43 4d 33 85 45 f9 02 7f 50 3c 9f a8
7. 151 a3 40 8f 92 9d 38 f5 bc b6 da 21 10 ff {3 d2
8. |cd Oc 13 ec 5f 97 44 17 c4 a7 7e 3d 64 5d 19 73
9. | 60 81 4f dc 22 2a 90 88 46 ee b8 14 de 5e 0b db
a_ | ed 32 3a 0a 49 06 24 5¢c c2 d3 ac 62 91 95 ed 79
b.|e7 ¢8 37 6d 8d d5 4e a9 6c 56 f4 ea 65 7a ae 08
c. | ba 78 25 2 1lc a6 b4 c¢6 e’ dd 74 1f 4b bd 8b &a
d_. |70 3e bb 66 48 03 f6 Oe 61 35 57 b9 86 cl 1d 9e
e. | el f8 98 11 69 d9 8e 94 9b le 87 €9 ce 55 28 df
fo | 8 al 89 0d bf e6 42 68 41 99 2d 0f b0 54 bb 16

// jY:Vl\

S-box
S-box

is o

Figure 2.1: The SubBytes transformation in LANE-224 and LANE-256.

8 CHAPTER 2. SPECIFICATION

2.3.3 MixColumns

The MixColumns transformation operates on the columns of the state. Each
column is viewed as a polynomial over GF(2%), i.e., a polynomial of degree three
with coefficients in GF(28):

— y3~Y3+y2-Y2+y1~Y+y0. (26)

Then, this polynomial is multiplied modulo Y* + 1 with the fixed polynomial
c(Y),
c(Y) =03Y® 4+ 01Y? +01Y +02 . (2.7)

Even though Y% +1 is not an irreducible polynomial over GF(2%), implying that
multiplication with a fixed polynomial is not necessarily invertible, the polyno-
mial ¢(Y") is such that MixColumns is an invertible operation. Equivalently, this
operation can be written as a matrix multiplication

vh 02, 03, 01, 01, i

yi _ 0196 0290 0396 0190 . Y1 (2 8)
vy | | 01, 01, 02, 03, ya | :
b 03, 01, 01, 02, s

Again, this is identical to the MixColumns transformation used in the AES
block cipher. Figure 2.3 illustrates MixColumns for LANE-224 and LANE-256.

2.3.4 AddConstants

The AddConstants transformation adds a 32-bit constant k; to each column
of the state. These constants k; are generated using a linear feedback shift
register (LFSR), which is described in pseudocode in Figure Table[A.1 in
Appendix[A contains the values of the constants used in LANE, found using this
algorithm.

Which constants are added to the state depends on the full round number r,
which is given as a parameter to AddConstants. For LANE-224 and LANE-256,
AddConstants is defined as

AddConstants (r,zo [|z1]| -+ || 27) =
xo@kSTHZEI@kSr—i—lH "'||£E7€Bkg7n+7 . (29)

For LANE-384 and LANE-512, AddConstants is similarly defined as

AddConstants (r,zo ||z1 || -+ || z15) =
xo ® ki6r || 21 @ Kier41 || -+ || 215 ® Krer415 - (2.10)

Figure[2.5/shows the AddConstants transformation for LANE-224 and LANE-256.

2.3. BUILDING BLOCKS

rotate
left rotate
0 bytes rotate left
loft 1 byte rotate
left
2 bytes
3 bytes

Figure 2.2: The ShiftRows transformation in LANE-224 and LANE-256.

Figure 2.3: The MixColumns transformation in LANE-224 and LANE-256.

1: ko <+ 07£c703d,

2: for i = 1 to 272 (resp. 768 for LANE-384 and LANE-512) do
3: ki=ki_1>1

4 if k;_1 A 00000001, then
5 k; = k; © d0000001,,

6: end if

7: end for

Figure 2.4: Pseudocode for generating the LANE constants.

10 CHAPTER 2. SPECIFICATION

2.3.5 AddCounter

The AddCounter transformation adds part of the counter to the state. The
64-bit counter C' is split into two 32-bit words ¢y and ¢y, where ¢g is the most
significant and c¢; the least significant word, i.e., following the big endian con-
vention.

Depending on the round parameter r, AddCounter adds one of these words
to the fourth column of the first AES state. More formally, for LANE-224 and
LANE-256 it is given by

AddCounter (r,zq || z1 || -+« ||z]| -+ ||z7) =

$0||‘T1H"'||$3@0rm0d2”"'||$7. (211)

Figure[2.6 shows the AddCounter transformation for LANE-224 and LANE-256.
For LANE-384 and LANE-512, AddCounter is defined by

AddCounter (r,zo || 21 || -+ ||2s]|] -+ || z15) =

IOHle"'||‘T3€Bcrmod2”"'||f£15 . (212)

2.3.6 SwapColumns

The SwapColumns transformation takes a LANE state, and reorders the columns.
It ensures that the AES states that comprise the LANE state are mixed among
themselves. For LANE-224 and LANE-256 it is given by

SwapColumns (zo || z1 || - || z7) =

wo ||z || za || w5 [| 22 || 23 || 26 [| 27 . (2.13)

Figure 2.7 shows the SwapColumns transformation for LANE-224 and LANE-
256. It can be viewed as a matrix transposition of a 2 x 2 matrix, where the
elements are formed by pairs of state columns. For LANE-384 and LANE-512,
SwapColumns is defined by

SwapColumns (xq || z1 || -+ || z15) =

wo || za |z || 212 || 21 || 25 || 2o || 213 || 22 || 26 || 10 || 14 || 23 [| 27 | 211 [215 -

(2.14)

Figure 2.8 shows the SwapColumns transformation for LANE-384 and LANE-
512. Similar to LANE-256 and LANE-224, SwapColumns can be seen as a matrix
transposition, now of a 4 X 4 matrix, where the elements are the columns of the
state.

2.3. BUILDING BLOCKS 11

ks 4&) ksita 4(5
ksiv1 — ksiys —()

kgito ksive
kgits +) kgiyr +

)
1\
)
1\

Figure 2.5: The AddConstants transformation in LANE-224 and LANE-256.

Ci mod 2

)
I\

Figure 2.6: The AddCounter transformation in LANE-224 and LANE-256.

Figure 2.7: The SwapColumns transformation in LANE-224 and LANE-256.

12 CHAPTER 2. SPECIFICATION

2.4 Preprocessing

Before hashing a message using LANE, two preprocessing steps are carried out:
message padding, and setting the initial chaining value.

2.4.1 Message padding

LANE processes a message in blocks of a fixed size, the blocksize. For LANE-
224 and LANE-256, the blocksize is 512 bits, and for LANE-384 and LANE-512,
the blocksize is 1024 bits. To support any message length up to 254 — 1 bits
(included), zero bits are appended to the message until its length is an integer
multiple of the blocksize.

More formally, a message M of length [is padded as follows. Let b be the
blocksize and let x be the smallest positive integer, 0 < k < b, such that

l+xk=0 (modbd) . (2.15)
Now, the padded message is computed as
pad (M) =M ||0" . (2.16)

This padding rule ensures that the padded message can be split into an integer
number of blocks of b bits. Note that, if the message length [already is an
integer multiple of the blocksize b, no padding bits are added. The empty
string is a particular example of this; no padding bits are added to it. Thus,
when hashing the empty string, no message blocks are to be processed, and one
proceeds immediately with the output transformation.

2.4.2 Setting the initial chaining value

Every digest size supported by LANE uses a different initial value IV}, g, which
also depends on the (optional) salt. These are defined using the LANE compres-
sion function f(H, M, C) itself, which will be defined in detail in Sect. 2.5

Let n be the digest size in bits, i.e., n is 224, 256, 384 or 512. Let S be the
salt value, or zero if no salt is used. The initial value I'V;, g is then given by the
output of the following compression function call using a zero input chaining
value and a zero counter value:

Here, binsa(n) is the digest length n in bits, represented as a 32-bit big-endian
integer. The flag byte ¢ indicates whether or not a salt value is used; see
Table2.4. If a salt value is not used, ¢ = 02, and the salt S is filled with zero
bits. If a salt value is used, ¢ = 03,. The size of the salt S is 256 bits for LANE-
224 and LANE-256, and 512 bits for LANE-384 and LANE-512, as indicated in
Table 2.1. Note that generalisations of LANE to other digest lengths can be
defined in a similar way, if desired.

If no salt is being used, the initial values can also be precomputed for each
digest size. Table [2.5]lists the initial values for supported digest sizes.

2.4. PREPROCESSING

—~

\V/
J/A\Y

13

Figure 2.8: The SwapColumns transformation in LANE-384 and LANE-512.

Table 2.4: The flag byte ¢.

No salt used Salt used

Output transformation 00, 01,
Derivation of IV, g 02, 03,

Table 2.5: The LANE initial values IV,,, in big-endian notation, if no salt is

used.

LANE-224 | c8245a868d733102314ddcb9f60a7ef4,
57b8c917eefeaec2ff4fc3be87c4728e,
LANE-256 | be292e17bb541ff2fe54b6£730b1c96a,

7b2592688539bdf£397c4bdd649763£fb8,

LANE-384 | 148922ce548c300176978bc8266e008c,,
3dc60765d85b09d94cb1c8d8e2cab952,
db72be8e685£0783fa436c3d4b9acb90,,
5088dd47932£55a9a0c415c6db6dd795,

LANE-512 | 9b6034811d52931b69c4e6e0975e2681,,

b863ba538d1bel11b77340080d42c48a5,
3a3ald611cf3al1c4f0a303477e56a44a,
9530ee60dadb05b63ae3ac7cd732acba,

14

CHAPTER 2. SPECIFICATION

Message Expansion

! ! ! | | !

- A
T T
Qo Q1

o)

Figure 2.9: The LANE compression function.

2.5 The LANE compression function

This section describes the LANE compression function f(H;_1, M;,C;). This
function takes the following three inputs:

e The input chaining value H;_; is equal to the output of the previous

compression function call, or, for the first compression function call, the
initial value IV, s. In LANE-224 and LANE-256, the size of the chaining
value is 256 bits. In LANE-384 and LANE-512, a 512-bit chaining value is
used.

The message block M; holds part of the padded message. Each message
block is of a fixed size, the blocksize, which is indicated in Table [2.1.
In LANE-224 and LANE-256, the blocksize is 512 bits. In LANE-384 and
LANE-512, the blocksize is 1024 bits.

The counter C; holds the number of message bits hashed so far, including
the message bits in the current message block M;. The counter C; is
represented as a 64-bit unsigned integer in big-endian notation.

The structure of the LANE compression function is shown in Figure It

consists of a message expansion, eight permutation lanes, arranged in two layers,
and three XOR combiners. Section|2.5.1/describes the message expansion. The
permutation lanes are discussed in Sect.[2.5.2.

2.5. THE LANE COMPRESSION FUNCTION 15

2.5.1 The message expansion

The message expansion of LANE takes the message block M; and the input
chaining value H; 1, and expands them into six expanded message blocks,
Wo, ey W5.

In LANE-224 and LANE-256, the six expanded message words, Wy, ..., W5,
are all 256 bits long. They are computed as follows. Split the 512-bit message
block M; into four 128-bit parts, my, ..., ms:

mo || my || mz||ms — M; . (2.18)

Similarly, split the 256-bit input chaining value H;_; into two 128-bit parts, hg
and hi:

ho || hl — Hi—l . (219)

Then, compute the six expanded message words, Wy, ..., W5 as

WO = ho@mo@ml@mg@mg || h1®mo@m2

Wi = hog@hi®@mo@ma®ms || ho®mi®ma

Wy = ho®hi®mg®mqgDdms || ho & mgo ® ms (220)

Ws = hg Il .

Wy = mg | ma

Ws = ma || ms

The message expansion in LANE-384 and LANE-512 is completely analogous.
The only difference is that all sizes are doubled, i.e., the 1024-bit message block
M; is split into four 256-bit parts, my,...,ms and the 512-bit input chaining
value H;_1 is split into two 256-bit parts. Then, (2.20) is used to compute the
six 512-bit expanded message words Wy, ..., W5s.

2.5.2 The permutations

The LANE compression function contains eight permutations, arranged in two
layers. Each permutation consists of a number of rounds, where the number of
rounds is different for the two layers: the permutations in the first layer have
twice as many rounds as those in the second layer. In the rest of the document,
we use “lane” as a synonym for a single LANE permutation.

The rounds of the permutations use the building blocks described in Sect.|2.3|
More in detail, a full permutation round consists of the following sequence
of transformations: SubBytes, ShiftRows, MixColumns, AddConstants, Add-
Counter and SwapColumns. The last round of each permutation omits Add-
Constants and AddCounter. Figure gives a pseudocode description of the
LANE permutation rounds.

Note that a permutation round can be seen as two, for LANE-224 and LANE-
256, or four, for LANE-384 and LANE-512, parallel invocations of a round of the
AES block cipher [21} 48], where the appropriate constants and counter word
are used as a round key, followed by SwapColumns.

In LANE-224 and LANE-256, the first layer permutations, Py until Ps, consist
of six rounds each. The second layer permutations, Q9 and @1, have three
rounds each. In LANE-384 and LANE-512, the number of rounds in increased
to eight rounds for the P;’s and four rounds for the @);’s. Table[2.6] summarises
the number of rounds in the permutations.

16 CHAPTER 2. SPECIFICATION

A round number 7 is assigned to each of the full rounds across all permuta-
tions, to specify the constants and counter to use in each round. The permu-
tations are taken in the order Py, Py, ..., Ps, Qo, @1 and only the full rounds
are counted, i.e., the last round of each permutation is ignored. Table|2.7]lists
the round numbers 7 in each of the permutations. Each full round is given its
round number r as an extra parameter, as indicated in Figure/2.10. This param-
eter is then passed on to the AddConstants and AddCounter transformations,
described in Sect. and Sect.[2.3.5, respectively.

A pseudocode description of the permutations used in LANE-224 and LANE-
256 is given in Figure[2.11] including an exact expression to compute the full
round number 7 for each round. Figure[2.12 describes the permutations used in
LANE-384 and LANE-512.

2.6 The output transformation

The output transformation of LANE takes as input the chaining value after all
padded message blocks have been processed, and returns the message digest. It
also includes the message length [, and the (optional) salt S, if one was used.
The transformation consists of two parts. First, a single additional compres-
sion function call is done. The counter C' is set to zero, and the message input
is set to
¢ || binga (1) [[0™[| S (2.21)

Here, bing,(1) is the (unpadded) message length [in bits, represented as a 64-
bit big-endian integer. The flag byte ¢ indicates whether or not a salt value
is used; see Table[2.4. If a salt value is not used, ¢ = 00, and the salt S is
filled with zero bits. If a salt value is used, ¢ = 01,. The size of the salt S is
256 bits for LANE-224 and LANE-256, and 512 bits for LANE-384 and LANE-512,
as indicated in Table[2.1.

In the second part of the output transformation, a truncation is applied to
compute the final message digest. No output truncation is required for LANE-
256 and LANE-512, as the size of the chaining value is equal to the required
digest size. In LANE-224 and LANE-384, however, this is not the case. The
digest of LANE-224 is found by taking only the first, i.e., leftmost 224 bits of
the last 256-bit chaining value. Similarly, in LANE-384, only the first 384 bits
of the last 512-bit chaining value are used.

More formally, the truncation operation for LANE-224 is given by

Truncazy (zo || 21 || -+ |[we |[27) = 2o [|| -+ [| w6 - (2.22)
For LANE-384, the truncation is defined similarly as
Truncsss (wo |21 || -« [lzwn || - [lews) =@o |21 | -+ [[211 - (2.23)

Note that generalisations of LANE to other digest lengths can be defined using
a similar truncation, if desired.

2.6. THE OUTPUT TRANSFORMATION

function Round(r, X) function LastRound(X)
1: X « SubBytes(X) 1: X < SubBytes(X)

2: X « ShiftRows(X) 2: X « ShiftRows(X)

3: X « MixColumns(X) 3: X « MixColumns(X)
4: X «— AddConstants(r, X) 4: X «— SwapColumns(X)
5: X «— AddCounter(r, X) 5: return X

6: X «— SwapColumns(X)

7: return X

Figure 2.10: Pseudocode for the LANE permutation rounds.

Table 2.6: Number of rounds in the LANE permutations.
LANE-224 LANE-256 LANE-384 LANE-512

Py, Ps 6 6 8 8
Qo, Q1 3 3 4 4

Table 2.7: The full round number 7.
LANE-224 LANE-256 LANE-384 LANE-512
P,y 0—4 0—4 0—6 0—6
P 5—9 5—9 7—13 7—13
P 10—14 10—14 14—20 14—20
P3 15—19 15—19 21—27 21—27
Py 20—24 20—24 28—34 28—34
Ps 25—29 25—29 35—41 35—41

Qo 30—31 30—31 42—44 42—44
Q1 32—33 32—33 45—47 45—47

function P;(X) function Q;(X)

1: for it =0to 4 do 1: fori=0to 1do

2: r«—>5j+1 22 r<—30+25+:

3: X < Round (r, X) 3: X < Round (r, X)
4: end for 4: end for

5: X « LastRound(X) 5: X « LastRound(X)
6: return X 6: return X

Figure 2.11: Pseudocode for the permutations in LANE-224 and LANE-256.

function P;(X) function Q;(X)
1: for i =0 to 6 do 1: for ¢ =0 to 2 do
2: r—Tj+1 2: r«—A42+35+1
3: X « Round (r, X) 3: X <« Round (r, X)
4: end for 4: end for
5: X « LastRound(X) 5: X < LastRound(X)
6: return X 6: return X

Figure 2.12: Pseudocode for the permutations in LANE-384 and LANE-512.

18

CHAPTER 2. SPECIFICATION

Chapter 3

Design rationale

This chapter discusses the rationale behind the design of LANE. All of the
important design decisions are explained. The discussion of the rationale is
structured by components of the LANE hash function. The advantages and
disadvantages of LANE are also discussed in this chapter.

3.1 The iteration mode

The iteration mode used in LANE was designed to be easy to understand and
implement. It is based on the well-known Merkle-Damgérd construction [22,
46]. For this construction, it can be proven that if the compression function is
collision resistant, so is the iterated hash function built on it.

The same iteration mode supports multiple digest lengths. One simply needs
to compute the initial chaining value, which depends on the digest length, and
after the iteration apply a suitable truncation to the message digest. The deriva-
tion of the initial chaining value is based on the LANE compression function, for
ease of implementation.

3.1.1 The message padding

The message padding is simplified when compared to plain Merkle-Damgard,
as used in the SHA family of hash functions [49]. As LANE uses an output
transformation, which is simply an additional compression function call, it is
natural to include the message length, i.e., the Merkle-Damgard strengthening,
in this extra block.

Because of this extra block, one can now simply pad a message with zero
bits until the next block boundary. It no longer depends on the exact message
length whether or not an extra padding block has to be introduced. This greatly
simplifies implementation, and still results in an efficient iteration mode. If no
salt is used, the initial chaining value can be precomputed, and the total number
of compression function calls, including the output transformation, is

#calls to f = H-‘ +1. (3.1)

19

20 CHAPTER 3. DESIGN RATIONALE

For plain Merkle-Damgard, assuming that the representation of the message
length in the padding uses 64 bits, this is

#calls to f = {H&—)—‘

- (3.2)

This means that the LANE iteration mode uses at most one additional compres-
sion function call compared to plain Merkle-Damgard, but has the advantage
that there is always one extra compression function call, i.e., the LANE output
transformation, whose ‘message’ input is not under the control of the adversary,
except very limited influence via choosing the message length. In plain Merkle-
Damgard, an adversary could choose the message length such that almost all of
the padded message bits in the last block can be chosen freely.

3.1.2 The use of a counter

Additionally, the LANE mode of iteration borrows the idea of including a bit
counter in every compression function call from the ‘HAsh Iterative FrAme-
work’ (HAIFA) of Biham and Dunkelman [10]. This stops several attacks on
the iteration, at only a very modest cost. If no counter is used, a fixed point
of the compression function, if found, can be concatenated to itself to form an
expandable message [23,/35], i.e., a set of message patterns of different lengths,
all leading to the same internal hash state. Such an expandable message can
for instance be used to construct efficient second preimage attacks on long mes-
sages [35]. Due to the use of a bit counter, however, it is no longer possible to
concatenate a fixed point to itself, as it will only be a fixed point for a specific
counter value [10].

3.1.3 The output transformation

An output transformation is used to offer an additional layer of protection
against (first) preimage attacks. For simplicity, this output transformation is
constructed based on the LANE compression function, with a message block of
a fixed structure. It is straightforward to see that this structure imposed on the
message block used in the output transformation drastically limits the freedom
of an adversary seeking a preimage.

The output transformation also serves to protect against length-extension
attacks, as it is impossible to simulate the effect of the output transformation
using a regular message block. Indeed, the output transformation takes a zero
counter as input, which according to the specification is not possible in a normal
message block.

The output transformation also offers additional protection against distin-
guishing attacks, as any potential bias in the compression function is expected
to be destroyed by the output transformation.

3.1.4 The use of a salt value

LANE supports the use of a salt value, if this is desirable for the application. A
well-known example of such an application is password hashing. If a different
salt is used for every stored password, it is no longer possible to attack multiple

3.1. THE ITERATION MODE 21

targets in parallel in a dictionary attack or an exhaustive search. Digital signa-
tures are another application where a salt provides a benefit. This is referred to
as randomised hashing, after the work of Halevi and Krawczyk [31]. Consider
the scenario where an attacker constructs two colliding messages, and asks the
victim to sign the first message. Because the second message has the same mes-
sage digest as the first, the signature is also valid for the second message. If the
victim chooses a random salt before signing the message, however, the collision
that was carefully crafted by the attacker is destroyed with an overwhelming
probability.

When a salt is used in LANE, this salt value is included in the derivation of
the initial chaining value as well as in the output transformation. Both of these
operations are simply LANE compression function calls with a specific message
block and a zero counter input. Apart from the salt value, this message block
also includes a flag byte ¢. The purpose of this byte is to provide domain
separation. More specifically, the only compression function calls in LANE that
use a zero counter C' occur exactly in the derivation of the initial chaining value
and in the output transformation. Hence, it is impossible to simulate these calls
using a normal message block. In order to provide a similar separation for the
four cases that do have a zero counter C, i.e., initial value derivation with or
without salt, and output transformation with or without salt, the flag byte ¢ is
used.

3.1.5 A parallel iteration mode

The iteration mode used by LANE is inherently sequential. Hence, it is not
possible to benefit from having multiple CPU cores to accelerate the hashing
of a single, long message. There is small-scale parallelism available inside the
compression function, which can be used by a single CPU, as will be explained
in Sect.[3.2. But this parallelism is too fine-grained to offset the synchronisation
overhead required when using multiple independent CPU cores.

In many high-performance applications, this is not a problem. Indeed, often
there are many smaller messages that need to be hashed. Consider for example
a web server using TLS with HMAC-LANE for data authentication. The server
needs to hash every packet it sends to and receives from the network. A ma-
chine with multiple CPU cores can process all of these independent messages in
parallel.

For applications that do require parallelisable hashing of a single, long mes-
sage, it is beneficial to use a separate parallel iteration mode. We propose a
simple and easy to implement parallel mode that is built on top of the normal,
sequential LANE. This mode is based on the seminal work of Damgard [22].

Let T be the desired level of parallelism, i.e., up to 17" CPU cores can be
utilised. Let b;,¢ be the interleave factor, which defines the size of the blocks
in which the message will be split. It is logical to choose b;,t to be a multiple
of the blocksize b of the underlying hash function, although this is not strictly
required. Parse the message M into blocks of b, bits:

mol|mi|| ... — M . (3.3)

22 CHAPTER 3. DESIGN RATIONALE

Then assign the blocks in turn to T streams My,... Mp_1:

Mo = mol|mg||mar] ...
Mz‘ = my || mryq H ma.7+q || ce . (34)
Mr_1 = mp_i||meyr—1||morir—1l| ...

Finally, compute the digest of the message M as
LANE(LANE (Mp) ||LANE (M) || --- || LANE (MT,1)> . (3.5)

There are T inner hash functions, all of which are independent and can thus be
evaluated in parallel. When the message M is long, the cost of the final hash
function, which combines the results from the T streams, is negligible.

Note that this mode is not interoperable with the ‘normal’ mode of LANE, as
the computed message digest is different. Also, different values for the interleave
factor byt and the parallelisation degree T result in a different message digest.

3.2 The compression function

The LANE compression function was designed to be simple to understand and
easy to analyse. This aim for simplicity can be found in virtually every aspect
of the design.

The use of permutations ensures that internal collisions can only occur in
certain places, i.e., at the XOR combiners. Establishing such an internal col-
lision is equivalent to satisfying a linear condition on the outputs of several
permutations. Similarly, the message expansion imposes linear relations on the
inputs of the permutations. The rationale is that, while such conditions are
very simple, it is hard to maintain or even track them through the rounds of
the permutations.

A similar rationale applies to the problem of finding (second) preimages for
the compression function. Straightforward inversion attempts fail, as one has to
ensure that the linear conditions imposed by the message expansion hold. This
is again considered to be very difficult.

As described in detail in Sect. [4.4.1, having only a single layer of permu-
tations would allow for a class of distinguishers for the compression function,
based on limiting the permutation inputs to a small set. The second layer of
permutations not only prevents that, but also has a beneficial effect on the resis-
tance to differential cryptanalysis. Indeed, in a collision differential, either the
entire second layer must be activated, or an internal collision must be reached
simultaneously on both of the XOR combiners after the first layer, i.e., on a
value twice the size of the chaining value.

The ample parallelism provided by the LANE compression function allows for
flexibility in implementation. In software implementations, LANE offers many
opportunities for instruction level parallelism (ILP), which can be used by mod-
ern pipelined and superscalar CPU’s. Also, as the same operations are carried
out on many independent data values in parallel, it is possible to use vector
instructions, i.e., Single Instruction Multiple Data (SIMD) instructions. On

3.2. THE COMPRESSION FUNCTION 23

the other end of the spectrum, it is equally possible to implement LANE in
a completely serial way. In such implementations, the memory requirements
are kept minimal. Hardware designers implementing LANE are offered an area-
speed tradeoff, making LANE suitable for both resource-constrained and very
high-speed applications.

3.2.1 The message expansion

Even more so than other components of LANE, the message expansion was
chosen to be very simple and light. Its main purpose is to introduce dependencies
between the inputs of the various permutation lanes, such that they cannot be
chosen independently. It also precludes straightforward inversion attempts, as
it is conjectured that, however simple the linear conditions imposed by the
message expansion, it is not feasible to satisfy them when only having direct
control over the permutation outputs.

A similar structure, with four parallel branches, is found in the Rumba20
compression function [8]. In Rumba20, constants are used at the input to pre-
vent finding preimages by inverting individual branches. The (linear) relations
between the inputs of the various lanes of the first layer serve a similar purpose
in LANE.

The message expansion is based on a (6,3,4) linear code over GF(4). The
minimum distance property of this code ensures that, in a differential attack,
at least four out of the six lanes in the first layer will be active, i.e., have a
difference at the input as well as output. This property is described in more
detail in Sect.

Provable resistance is offered against meet-in-the-middle preimage attacks,
as detailed in Sect. In short, it is not possible to construct two indepen-
dent sets of permutation lanes to use in such an attack. This follows from the
minimum distance property of the linear code on which the message expansion
is based.

Also for implementors, the message expansion has several interesting prop-
erties. Each output of the message expansion can be computed independently
of the others, and read-only access to the current message block suffices. This
implies that the message buffer can be shared with another application, elimi-
nating the need for extra memory and costly data copying.

Finally, note that the inputs of the permutation lanes P, and Ps only depend
on the message block input, and not on the chaining value. This implies that
those lanes can already be computed while the previous chaining value is not
yet known, e.g., in parallel with the second layer of the previous compression
function call. This implementation approach is described in more detail in
Sect. 5.1.1. If two (or more) CPU cores are available, it is also possible to
let one CPU core precompute Py (Mh) @ Ps (Ml)7 while the second CPU core
takes care of the rest of the lanes. In this setting the synchronisation overhead
between the CPU cores is manageable.

3.2.2 The permutations

The permutations used in LANE are built using components of the AES block
cipher [21,48]. One motivation for this choice is that these components and

24 CHAPTER 3. DESIGN RATIONALE

their properties are well studied and hence well understood. This allows to build
on existing work on the security of these components to analyse LANE.

Reusing AES components also has several practical benefits. Much effort has
already been spent on efficient implementations of the AES on a wide variety
of platforms. Since LANE is based on the AES, these techniques can equally
be applied to LANE. Another benefit lies in resource constrained environments,
requiring both a hash function and a block cipher. Using LANE together with the
AES allows large parts of the implementation to be shared, yielding a substantial
overall improvement.

For simplicity and ease of (parallel) implementation, all permutations in
LANE are built in the same way. Different constants are thus required in each
permutation lane, to ensure that any attack based on maintaining symmetry
across several permutation rounds is avoided.

The permutations are keyed using the bit counter input to the compres-
sion function. This is a natural way of including the bit counter, as it is very
simple and lightweight, but achieves the goal of making the whole compression
function dependent on this counter. Even though scenarios where the compres-
sion function is attacked by introducing differences via the bit counter are of
no immediate concern, the method by which the counter is included provides
resistance against such attacks. The rationale is that the bit counter can only
influence a small part of the state in each round, and those influences cannot be
cancelled out immediately in the next round, but instead diffuse to affect the
whole state. The fact that the same counter value is used many times in the
compression function serves to further complicate such cryptanalytic attempts.

The number of rounds in the permutations in the first layer was chosen to
be six rounds for LANE-224 and LANE-256, and eight rounds for LANE-384 and
LANE-512. The rationale behind this choice is to use as few rounds as possible,
for performance reasons, but still enough rounds to offer an adequate security
margin. We refer to the discussion of truncated differential analysis in Sect.
for a more detailed analysis concerning the required number of rounds in the
first layer.

Concerning the number of rounds in the second layer of permutations, recall
that the main purpose of the second layer is to preclude higher order differen-
tial distinguishers, such as the distinguishers described in Sect.[4.4. Such distin-
guishers are based on detecting the balancedness of the intermediate values after
the first layer, which is a very fragile property. Almost any non-invertible and
non-linear second layer would suffice to this end, but it is reasonable to ensure
that every input bit influences every output bit, i.e., to achieve full diffusion.
It is also a logical choice to use the same type of permutations as in the first
layer. Achieving full diffusion requires a minimum of three rounds. Hence, the
second layer permutations are defined to have half as many rounds as the first
layer permutations.

Unlike in the AES block cipher, the linear diffusion layer is not omitted in the
last rounds of the permutations, even though its impact on the security of LANE
is limited. Doing these extra operations simply makes many implementations
faster and easier, both in high-performance software and hardware. Namely, we
avoid handling a special case which would otherwise require multiplexers on the
critical path in hardware, or extra tables or masking instructions in software.
Only in applications where the MixColumns operation has to be computed
explicitly, for instance in embedded software implementations, would omitting

3.3. ADVANTAGES AND LIMITATIONS OF LANE 25

MixColumns offer a performance benefit. In the AES, another reason to omit
these operations, besides a performance gain in embedded implementations, is
to achieve a similar structure for the inverse cipher. But as the permutations in
LANE are only ever evaluated in the forward direction, this argument does not
apply to LANE.

3.2.3 The constants

The constants serve to diversify the permutations, in order to avoid any at-
tack based on the similarity of the parallel permutation lanes. An important
design goal is that it should be possible to generate the constants on-the-fly
in an inexpensive way. This avoids the need for large tables of constants in
implementations where memory is limited.

A linear feedback shift register (LFSR) is a natural choice for generating
constants. It is simple, and can be implemented using only very limited re-
sources. Even though its output stream does not possess any strength in the
cryptographic sense, the statistical properties are sufficiently good for the pur-
poses of LANE. A 32-bit LFSR was chosen to match the size of the columns.
The feedback polynomial is a primitive polynomial, ensuring a cycle length of
232 1.

The only security-related requirement on the constants is that the constants
used in different permutation lanes should be different. The first constant, used
to initialise the LFSR, was chosen such that no two constant bytes used in the
same position of two different lanes are equal. Additionally, the number of times
that two constant bytes, used in the same position in a different lane, are the
one’s complement of each other was minimised. An exhaustive search resulted
in the conclusion that this complement property cannot be avoided. There exist
ten starting states for which this happens in only a single byte. Of these ten,
we picked the starting state with the lowest numerical value. The source code
for this search is included in the submission package.

3.3 Advantages and limitations of LANE

3.3.1 Advantages

e LANE design is simple. This makes LANE easy to understand and im-
plement. Also, simplicity is an important advantage for cryptanalysis.
Complex designs are often hard, or even impossible to analyse in a struc-
tured way. The design of LANE, on the other hand, allows for a relatively
easy analysis of its security.

e LANE incorporates several features that can greatly improve its security,
at only a modest cost in performance. In particular, LANE offers the
possibility of using a salt value, uses a counter and has an output trans-
formation.

e Components from the AES block cipher [21][48] are reused as building
blocks in LANE. As discussed above, this allows existing cryptanalytic
results on the AES to be used in the security analysis of LANE. Also,

26

CHAPTER 3. DESIGN RATIONALE

implementations of LANE can benefit from existing work on the imple-
mentation of the AES on a wide variety of platforms. In particular, LANE
can benefit from dedicated hardware support intended to accelerate the
AES, like for instance the Intel AES-NI instruction set [17].

One of the design goals of LANE was to provide a high degree of parallelism
in the compression function. At the same time, care was taken to keep
the memory requirements modest for a serialised implementation. Thus,
LANE is flexible in implementation and scales well across a wide range of
platforms and applications.

LANE can easily be extended to support any digest length up to 512 bits.
One simply needs to derive the initial chaining value for the desired digest
length, and apply a suitable truncation at the end.

There is a clear and detailed rationale, which was presented in this chapter,
supporting every design decision.

3.3.2 Limitations

e The iteration mode is not parallelisable. For most applications, this is

not a problem. For applications where a parallelisable iteration mode is
important, we suggest to use the parallel mode described in Sect.

e Because the size of the intermediate chaining values was chosen to be

equal to the digest length, Joux’ multicollision attack [32] can be applied to
LANE. Refer to Sect.[4.12 for a more in-depth treatment of multicollisions.

Chapter 4

Security analysis

In this chapter, we discuss the security of the LANE construction in general, as
well as of the hash functions LANE-256 and LANE-512 in particular. We list
known bounds on security and present attacks on reduced versions of the hash
functions.

In Sect.[4.1] we suggest ways in which LANE could be reduced, to perform
cryptanalysis. Sections and address differential attacks and their
applicability to weakened versions of LANE. As the LANE compression function
shares a certain similarity with wide-block Rijndael, Sect.[4.5 summarises crypt-
analytic results on Rijndael, and their relevance to LANE. Sect.[4.6is dedicated
to algebraic attacks.

Sections [4.814.12 discuss the resistance of LANE to various generic attacks.
Sect.[4.13]summarises security arguments on the mode of operation; a technical
report detailing these results is included as a separate document [1|. Sect.[4.14
concludes with a statement on the expected security of the LANE hash functions.

4.1 Reduced versions of LANE for cryptanalysis

This section discusses various ways in which LANE could be reduced, in order
to construct weakened variants. Such variants can be useful in cryptanalysis,
as they allow one to understand the margin offered by the full LANE against a
particular type of attack.

A first, obvious way to reduce LANE is to vary the number of rounds used
in the permutations. For example, lowering the number of rounds increases the
probability of (truncated) differentials. The number of rounds in the first layer
(P;) and second layer (Q;) can be varied independently.

Another option is to reduce the number of lanes in the first layer. A vari-
ant where a single lane is removed from the first layer, for instance, would be
based on a (5,3,3) linear code, which is simply a shortening of the original code.
The number of lanes can be reduced further, but then the property that in a
differential attack, always more than half of the lanes are active, is lost.

Finally, LANE could be reduced by omitting the entire second layer, 7.e., the
Q; permutations. The compression function output would then be found as the
XOR of all six lanes, Py to Ps.

27

28 CHAPTER 4. SECURITY ANALYSIS

4.2 Standard differential cryptanalysis

Differential cryptanalysis was originally introduced by Biham and Shamir [11]
as a means to cryptanalyse symmetric encryption primitives (block ciphers). It
has also been used with success to break hash functions, e.g. [14] 24].

In a differential attack, collisions are determined by considering pairs of
messages, which have a fixed difference, i.e., the input difference of the charac-
teristic. This condition strongly reduces the search space in which the attacker
looks for collisions. It is hoped that the fraction of the collisions that lies within
this reduced search space is larger and/or easier to find than in the unrestricted
search space.

An important difference between differential cryptanalysis of hash functions
and differential cryptanalysis of block ciphers is stated in the following fact.

Fact 1. The absence of secret keys in hash functions can be exploited by the
cryptanalyst in order to reduce the complexity of a differential attack.

For instance, instead of choosing inputs (‘plaintexts’), the cryptanalyst can
choose any intermediate state, and compute backwards to determine the inputs.
The effect is that a number of active S-boxes can be ‘bypassed’, resulting in a
decrease of the complexity of a differential attack.

We consider differential attacks with nonzero differences in the message only.
Since each individual lane of LANE implements a permutation in the space of
n-bit message inputs, collisions can be obtained only in the XOR combiners. In
order to obtain a collision at the output of the compression function, either a
collision must be obtained in both of the XOR combiners at the input of the
second layer, or both of the lanes in the second layer will be active.

We discuss only the resistance against differential attacks provided by the
first layer of lanes. If the lanes of the second layer are active, then they will
increase the security against differential attacks.

4.2.1 Active lanes in the first layer

This section describes a property of the LANE message expansion which ensures
that, in a differential attack, at least four lanes in the first layer will be active,
i.e., have a difference. To this end, we first introduce an alternative description
of the LANE message expansion, based on a linear code over GF(4).

We adopt the standard polynomial representation of GF(4) using X2+ X +1
as a primitive polynomial to define the multiplication of field elements. A string
of two bits byby, where by is the most significant bit, can now be mapped to an
element in GF(4), and vice versa

bObl < bo - X + bl . (41)

4.2.1.1 An alternative description of the LANE message expansion

The message expansion of LANE is based on a linear (6,3,4)-code over GF(4)
which is known as the hexacode. Its generator matrix is given by

100
G=|X 1 X 01 0] . (4.2)
1 00 1

4.2. STANDARD DIFFERENTIAL CRYPTANALYSIS 29

This code has length 6, dimension 3 and minimum distance 4. The minimum
distance property can be easily verified by exhaustively listing all 64 codewords.

We now describe the construction of the LANE message expansion. The
input chaining value H and the message block M = M" || M' are mapped to
elements of GF(4) as follows, where 0 <i < n/2:

ny < (H)i- X 4 (H)iyns2
noo< (M"); - X+ (M")isnya - (4.3)
ny e (MY X 4+ (MY

Here, (H);, (M"); and (M"); denote the i-th bit of H, M" and M, respectively,
where bit 0 is the most significant bit. Now, for each i, encode [nj n} 75]
using the linear code described in (4.2):

[wh wh o phy pboph ophl=1[nh ni ni]-G. (4.4)

Finally, the elements of GF(4) pf,. . .,u% are mapped back to the n-bit expanded
message words Wy,. .. , W5 in the same way:

py = (Wo)i- X 4 (Wo)itny2

z (4.5)
ps e (Ws)i- X+ (Ws)ign/2
This entire procedure can be written as a simple partitioned matrix multiplica-
tion over GF(2), where I denotes the n/2 x n/2 unity matrix:

I0OITIII00000
0II0I00I0000
III0II001I000
1007110000700
II11710000010
101001000001

(Wo l| Wil ... [|[Ws] = [H||M"|| M'] - (4.6)

It is easy to see that this is equivalent to (2.20), which was used to define the
message expansion in Sect.[2.5.1!

4.2.1.2 Minimum distance and active lanes

The LANE message expansion can thus be seen as a parallel application of a
linear (6,3,4)-code over GF(4) to n/2 ‘slices’. The values in each such slice must
form a valid codeword. Note that the six elements of GF(4) that comprise a
codeword are each input to a different first-layer lane.

Consider two different inputs to the message expansion, which yield two
different sets of expanded message words, (Wy,--- ,Ws) and (W[, - ,Wi). In
differential cryptanalysis terminology, we say that there is at least one active
‘slice’, i.e., at least one ‘slice’ has a difference.

As the minimum distance of the message expansion code is four, the Ham-
ming distance between the two codewords in any active ‘slice’ must be at least
four. This implies that at least four expanded words must have a difference.
Hence, in a differential attack, there are always at least four active lanes. This
property always holds, even when the difference is only in the chaining value.

30 CHAPTER 4. SECURITY ANALYSIS

Table 4.1: Lower bounds on the number of active S-boxes in one lane for LANE-
256 and LANE-512.

Rounds | LANE-256 LANE-512
1 1 1
2 5 5
3 9 9
4 25 25
5 34 41
6 45 60
7 (52) 64
8 (65) 80

4.2.2 Active S-boxes per lane

Next we determine the minimum number of active S-boxes in an active lane.
Each active S-box decreases the probability by a factor of at least 26. The input
to one lane can be seen as two AES states for LANE-256, or four for LANE-512.
If these states were processed independently by six, resp. eight rounds of the
AES, then the minimum number of active S-boxes in one lane would be 30 resp.
50. This is the minimum for six resp. eight rounds of the AES block cipher, and
could thus be achieved by only activating a single AES state.

But as the SwapColumns operation, see Sect. mixes the AES states
together, the minimum number of active S-boxes is in fact higher. There appears
to be no elegant formula to compute the minimum number of active S-boxes.
A computer search for LANE-256 and LANE-512 resulted in the lower bounds
given in Table[4.1. The figures for 7 and 8 rounds in LANE-256 are of theoretical
interest only, since we use 6 rounds only.

4.2.3 Breaking reduced versions

We describe a structure for a hypothetical differential collision attack that tar-
gets a collision at the XOR, combiners after the first layer and hence will apply
to LANE up to a certain number of rounds per first-layer permutations P;, but
with an arbitrary number of rounds per second-layer permutations Q;. It is
intended to demonstrate Fact.[1, i.e., that the absence of a secret key in a hash
function, allows an attacker to reduce the complexity of a differential attack.

Let A = (Ag|| A1) be any n-bit difference, where n is the digest length.
Introducing the difference (0,A,A) at the inputs (H, M", M') of the LANE
compression function yields the differences (0, A’,; A’;0, A, A) at the inputs to
the six lanes, where A’ = (Ag® A1) || Ag. Given two suitable single-lane charac-
teristics Cp, Cy transforming A’ into A/ with probability p and A into A, with
probability ¢, the differences at the two XOR’s after the first layer cancel, caus-
ing the output difference of the compression function to be zero, see Figure[4.1.
Not that this can be extend to a larger number of compatible characteristics,
i.e., characteristics that have the same input and output difference, but differ
in the intermediate differences. In this more general case, the probabilities of
all such characteristics should be added together. For the sake of simplicity, we
will describe the case where only a single characteristic is used.

4.2. STANDARD DIFFERENTIAL CRYPTANALYSIS 31

Figure 4.1: A collision differential for LANE.

A randomly chosen pair of compression function inputs simultaneously fol-
lows all four active parallel branches of such a differential with probability p?-¢2.
Assume for now that this probability is large enough for a right pair to exist
amongst the set of all possible inputs (see Sect.[4.2.4 for further discussion on the
satisfiability of differential characteristics in LANE). Fact [1then suggests that
the complexity p~2¢~2 of finding the right pair could be reduced by imposing
control over the intermediate state of some lanes.

More specifically, any choice of inputs to some three lanes determines a
valid input to the message expansion. For instance, the attacker can fix an
intermediate state in lanes P4 and Ps and, calculating backwards and forwards,
find M" and M! in such a way that the layer of S-boxes at the round where the
attacker fixes the intermediate state is passed with probability 1. If the round
with the greatest number of active S-boxes within the characteristic is chosen
as the starting point, this can considerably reduce the complexity of finding a
right pair. Also note that the attacker can deal with P, and Ps independently.
For fixed M", M!, P, becomes invertible with respect to the chaining value H,
allowing exactly the same approach for finding a right pair for this lane. If this
procedure for P», Py, P5 is repeated k times, and k right pairs are found for
each of these three lanes, the attacker can generate k> input pairs by forming
all combinations of the independently obtained values for H, M" and M!. As
soon as k> exceeds p~!, one can expect to find a right pair for P, which is then
simultaneously a right pair for all four active lanes by construction.

As outlined in section the probability of a single-lane characteristic is
upper bounded by 275¢, where a is the minimum number of active S-boxes for
the number of rounds per lane. During the process of finding a right pair for
Py, Ps and Ps, a certain number of active S-boxes can be disregarded. However,
the attacker has no further control over the input to the fourth active lane P,

32 CHAPTER 4. SECURITY ANALYSIS

implying that the complexity of this attack is lower bounded by the expected
complexity 26¢ of finding a right pair for P, amongst the set of k3 > 262 available
inputs.

For the six rounds employed in LANE-256, the complexity of such an attack
is at least 2645 = 2270: for LANE-512 with eight rounds, the work factor is at
least 20662 = 2372 Both values are well above the respective birthday bounds of
9128 1] 9256

This attack, however, breaks LANE variants faster than a standard birthday
approach in case of up to 3 rounds per P-lane for the digest size n = 256 bits
and up to 5 rounds per P-lane for the 512-bit digest version.

4.2.4 Maximum probability of a trail

In Section we described an efficient method to determine right pairs for
characteristics over reduced versions of LANE. This method works, provided
that such right pairs exist. In this section, we show that for the full versions of
LANE, the overwhelming majority of the characteristics does not exhibit a right
pair.

We adopt the usual hypotheses of independence and stochastic to bound the
probability of characteristics equivalence [39]. The message expansion ensures
that there are always at least 4 active lanes, see Sect.[4.2.1. Each active lane
has at least 45 active S-boxes for LANE-256, or at least 80 active S-boxes for
LANE-512. Each active S-box has probability at most 27¢. This results in the
following bounds for the probability of a characteristic Q:

LANE-256: Pr(Q) < (276)"*" = 27100

LANE-512: Pr(Q)

IN

; (4.7)
(276)"%0 = 91920 (4.8)

IN

Since the LANE-256 and LANE-512 compression functions take only 512+ 256 +
64, respectively 1024 + 512 + 64, bits as input, the probability that, for a given
characteristic), a right pair ezists, is upper bounded by

LANE-256: ~ 2710809832 _ 9=248 (4.9)
LANE-512; 27148891600 _ 9=320 (4.10)

This suggests that for the full versions of LANE-256 and LANE-512, even with
the best possible message modification techniques, it is not feasible to find a
right pair, simply because with very high probability, there exists no right pair.

4.3 Truncated differential cryptanalysis

In the previous section, we have analysed the probability that a pair of message
blocks with a fixed difference follows a single predefined characteristic. How-
ever, due to the fact that the operations used in LANE are all byte-oriented, we
are likely to find a very large number of different characteristics with a com-
parable probability and the same or similar input and output differences. In a
typical attack, each of these characteristics will be equally useful, and hence it
makes sense to analyse the probability that a message pair satisfies any of them.
Truncated differential cryptanalysis [36] is a technique which does exactly that.

4.3. TRUNCATED DIFFERENTIAL CRYPTANALYSIS 33

kL
[]

—
—
—

264

oo
u

«—

il e S 5 5l s M 1

[\
[\

w

A L) B L

EEESER P9 PR PR

S

FEE OO0 B0

S

mNn
EEN

—
&
~—
—~
o
~—

Figure 4.2: Truncated differentials in one lane of LANE-256

4.3.1 Truncated differentials

Instead of imposing specific differences in every round, a truncated differential
only specifies where these differences should be zero. An example of a truncated
differential for a single lane of LANE-256 is shown in Fig.[4.2(a). For each round,
except the last one, the figure depicts the differences in the AES states before
the ShiftRows transformation, after the ShiftRows transformation, and after the
MixColumns transformation. Byte positions where differences are allowed are
marked in grey. Since byte-equalities are preserved by all operations, except
for the MixColumns transformation, this is the only stage where a reduction in
probability can take place. In our example, we end up with a total probability
of 279, Note that the MixColumns transformation in the last round can be
moved behind the XOR’s which combine the lanes, and is therefore irrelevant
if we intend to force collisions in those XOR’s. This is why the last round is
omitted.

CHAPTER 4. SECURITY ANALYSIS

34

L]
L]
L]
EEEAEEERE |

L]
L]
L]
EEEAEEERE |

L
L
L
L

L
L
L
L

0 OO
0 O
0 OO
iz i A
0 OO
0 OO
0 OO
S0 OO0

L]
L]
L]
EEEAEEERE |

L]
L]
L]
EEE3EERE |

OO0 OO0
uwunlinnn
OO0 OO0
O EEE
OO0 OO0
uunlinnnj
OO OO0
D EEE

of LANE-512

lane

ated differentials in one

Figure 4.3: Trunc

4.3. TRUNCATED DIFFERENTIAL CRYPTANALYSIS 35

4.3.2 Identifying the optimal truncated differential

The probability of a truncated differential is, on its own, not a very good measure
for its usefulness. As a trivial example, consider a truncated differential without
any zero differences, which, despite its probability of 1, is clearly useless. To
be of any use, a truncated differential should demonstrate that a pair satisfying
the input difference is significantly more likely to result in the desired output
difference than a random pair. In Fig.[4.2(a), for instance, a consistent input
pair is expected to result in 16 equal bytes at the output with a probability of
2796 versus 27'2% for a random pair. In fact, it can be shown by computer
search that this factor of 232 is the highest attainable gain for a single lane of
LANE-256.

Another property that influences the usefulness of a truncated differential is
the number of degrees of freedom that are left at the input. Without any addi-
tional restrictions, these degrees of freedom could be used to reduce the effort
of finding right pairs. Consider for instance the set of all 264 input states which
are constant (say, zero) in all but the 8 grey bytes at the input of Fig.[4.2(a).
By sorting the 204 corresponding output states and returning all pairs which
have equal values in the rightmost AES state, we would in effect have checked
in the order of 2!2® pairs. Hence, we expect to find about 232 right ones, and
this with an effort of only 264.

An additional optimisation which can be applied if the attacker is free to
choose parts of the input state is depicted in Fig. [4.2(b). The approach is
similar to the one described above, but this time the attacker starts after the
first MixColumns, which saves a factor 232 in probability, and therefore results
in 254 right pairs. For each of these pairs the attacker then reverses the first
round in order to find the corresponding input pairs, each of which will be equal
in the rightmost AES state.

The same reasoning can be applied to the two truncated differentials of
LANE-512 shown in Fig.[4.3. However, if we start with a set of 2!2% input states
in Fig.[4.3(a), then we do not expect to find any right pair at all, since

22~128 . 2—3~96 — 2—32

In order to find a single right pair, we will therefore have to repeat this procedure
232 times, resulting in a total workload of 2'0. Alternatively, we could start
with a set of 232 states after the first MixColumns, as shown in Fig.[4.3(b). This
will have to be repeated 2'?® times in order to compensate for the fact that
92:32 9—2:96 _ 9—128
leading to the same total effort of 2'° as before. Note however that the first

approach requires 2'2® of memory, whereas a table of 232 would suffice for the
second one.

4.3.3 Using truncated differentials for collision searching

An attack using truncated differentials to construct a collision pair would then
proceed as follows. First, we ensure that only 4 lanes are active, which is optimal
as shown in Sect.[4.2.1l This can be achieved by choosing Amg = Ams. Then,

36 CHAPTER 4. SECURITY ANALYSIS

the probability that a colliding right pair exists for a given chaining input is
given by

)

2
LANE-256: 2049912 [(2796) . gm128)" o4
LANE-512: 9128 91024 [(273-96)2) 27128}2 — 9256

Note that, especially for LANE-256, even if such a pair exists, we do not expect
to be able to determine this with an effort less than 254, after which the pair
would need to be recovered in less than 2128,

4.4 Higher order differential cryptanalysis

Higher order differentials where introduced as an extension of differential crypt-
analysis, using higher order derivatives [36]. The i’th order derivative of a
function f at the point aq,...,q; is defined as follows [38]:

Auf(@) = f(a+a) - f()
AL @)= A, (A4, f@), P>

Standard differential cryptanalysis used first-order derivatives.
The following property of the LANE message expansion is important.

Property 1. Let (W), 0 <t <5, 0<1i<mn, denote the 6n output bits of the
message expansion, and let (H);, (M");, (M");, 0 <1i < n denote the 3n input
bits. Then for each t there exists a set of 12 binary constants agt, ai¢, ast, ast,
@4¢, ast, bog, big, bag, b3y, bag, bsy such that

aot(H)i + a1y (M™); + ag(M");

N . for 0 <i<n/2
+ a3t (H)igns2 + aat(M")iyns2 + ast (M) ign /2,

(W) = \ z
bot (H)i—ny2 +b16(M")iz + bt (M")i_p /2

forn/2 <i<n.
+ b3e(H)i + bag (M"); + bsy (M");,

4.4.1 A fourth order differential distinguisher

Property [1 implies the existence of 4th order differentials that have probability
1 over the message expansion and the first layer of lanes.

Corollary 1. Let F(H,M" M") denote the function that consists of the mes-
sage expansion, the first layer of lanes and the two XOR combiners following it.
Let § be an arbitrary (n/2)-bit difference and let

ap = (0,0;0,0;0,0)
bo = (0,0;0,0;4,0)
a1 = (0,0;0,0;0,0)
b1 = (0,0;4,0:0,0)
as = (0,0;0,0;0,0)
by = (4,0;0,0;0,0).

4.4. HIGHER ORDER DIFFERENTIAL CRYPTANALYSIS 37

Then
Aa; bisay b, F(H, M", M") = 0 with probability 1,

for alli,j € {0,1,2}.

Proof. Property [1 implies that over the 16 inputs defined by the 4th order
differential, each lane input W; will take 1, 2 or 4 different values, and each
value a multiple of 4 times. Consequently, each lane output will occur an even
number of times. Hence for each of the XOR combiners it holds that the XOR
of the 16 outputs equals zero. O

We could not determine a way to extend this property through the second
layer of permutations.

4.4.2 Square attacks on the compression function

The structure of LANE is byte oriented, suggesting a possible square attack
might be applicable [20} [37] [41]. The attack is made slightly more complex by
the message expansion and the need to track the square property over six lanes,
but it is essentially the same.

For example, in LANE-256, consider 256 message blocks, for which one byte
of mg (e.g., the first one) accepts all possible values, while all the other bytes
are set to the same value. This ensures that the first byte in both halves of W)
is active (i.e., accepts all values), the first byte of the left half of W7 is active,
as well as the first byte of both halves of W5, and the left of Wjy.

In lanes where there is only one active byte, we have after two full rounds
sixteen bytes which are active (columns 0,1,4,5). Looking at the third round, we
learn that all bytes are balanced (i.e., the sum of all values in these bytes is zero).
In lanes where there are two active bytes (one in each half), after the second
round all the bytes are active, and after three rounds, all bytes are balanced.
Thus, if we reduce the length of the P; permutations to three rounds, we know
that the XOR of the outputs of these permutations is balanced. Without the
Q; permutations, we could at this point find that all the bytes are balanced.
Thus, given the output values of 255 messages out of the set, we could predict
the output of the missing message. This could also be used as a distinguisher
to distinguish the output of the compression function from random.

We can extend the attack by one round, by considering structures of 232
messages, chosen such that after one round they generate 224 sets of 256 mes-
sages each, where in each such set, the first byte of the state (or the first byte of
each 128-bit half of the state) obtains all possible values, while the other bytes
are fixed. Similarly, we can extend the square property one more round, by
taking structures of 2128 values. A possible structure would use

mo=m; =mo=ms=1i forall 0<i<2'2® . (4.11)

We conclude that the best square property of LANE-256 is of 5 rounds,
and thus, after the additional round, the inputs to the @);’s permutations have
no structural property. And even if somehow the attacker succeeded in finding
such a structure after 6 rounds, the @);’s would destroy the remaining structural
properties.

For LANE-512 the analysis is similar, but with an extra round. Starting
from only one active byte, after four rounds we expect that all the bytes of the

38 CHAPTER 4. SECURITY ANALYSIS

internal state are balanced. Hence, for LANE-512 the best square property is
for 6 rounds, making LANE-512 immune to this attack as well.

4.4.3 Multiset distinguishers

As a further generalisation, one can consider distinguishers based on (much)
larger sets of inputs. As an example, consider the following case. Keep hg, h1,
mg and m constant and saturate mo and mg, i.e. assign every possible value
to them. The size of this set of messages is 2"/2. Then, we know that every
expanded message word also gets assigned every possible value, except for W3
and Wy, which are constant. Now, after the first layer, the outputs of Py, Py,
P, and Ps are saturated. After the XOR combiners, we see that the input to
Qo sums to zero, i.e. it is balanced, and the input to ()1 is still saturated. This
implies that also the output of @)y is saturated, but nothing useful can be said
about the output of)y or the output of the compression function.

4.5 Cryptanalysis of wide-block Rijndael

Nakahara et al. investigated the security of wide-block Rijndael [33,34]. Since
a permutation in LANE has certain similarities with Rijndael-256 we summarise
these attacks. Recall that a full permutation round in LANE consists of the
following sequence of transformations: SubBytes, ShiftRows, MixColumns, Ad-
dConstants, AddCounter and SwapColumns, while a round in wide (large block)
Rijndael consists of AddRoundKey, SubBytes, ShiftRows and MixColumns.
Note that ShiftRows differs in Rijndael-128 (i.e. AES and LANE) and Rijndael-
256. In fact, the combination of the SwapColumns and ShiftRows operations in
LANE-256 can be viewed as the equivalent of the (redefined) ShiftRows operation
in Rijndael-256.

There exist higher-order multiset (differential and linear) distinguishers for
up to 7 rounds of Rijndael-256 [33]. These distinguishers trace the status of
128-bit words, and thus require sets of 2!2® chosen plaintexts at a time. The
rationale behind the multiset technique is to use balanced sets of bits to attack
permutation mappings (cipher rounds).

Similar distinguishers can be constructed for the first layer of LANE, see
for example Sect. However, the second layer of permutations completely
stops these distinguishers.

Impossible-differential (ID) attacks on 7-round Rijndael-256 are shown in [34].
Typical ID distinguishers follow the miss-in-the-middle technique. Two trun-
cated differentials, one in the encryption direction and one in the decryption
direction, are combined to form an impossible truncated differential. A key re-
covery attack can be built upon an ID distinguisher, as subkey guesses for which
the impossible differential would be followed, can be eliminated with certainty.

In order to construct a distinguisher for the LANE compression function
based on impossible differentials, it is not sufficient to have an impossible dif-
ferential for a single LANE permutation. Assuming that the unknown keying
material enters the compression function via the chaining value, four lanes in
the first layer will be affected. Hence, an impossible differential needs to cover
these four lanes in the first layer, as well as both lanes in the second layer. It
seems very unlikely that such an impossible differential can be found.

4.6. ALGEBRAIC ATTACKS 39

4.6 Algebraic attacks

In algebraic attacks, the operation of a symmetric cryptographic primitive is
represented as a system of polynomial equations over GF'(2) or GF(2"), which
is then attempted to be solved using various techniques and expression manip-
ulations. Since LANE is based on the AES, its security with regard to algebraic
attacks is closely related to that of the AES. As a single state of LANE en-
compasses multiple AES states, the resulting equation systems for LANE are
expected to have comparable degree, but higher dimension.

There has been an extensive analysis of the equation systems corresponding
to the AES, however, all techniques have so far only been successful against very
small scaled variants. The approaches that are theoretically best understood
are methods based on Grébner bases [5]. Improving over Buchberger’s classical
algorithm [13], Faugere’s F4 and F5 algorithms [25, 26] are the best known
methods to compute Grobner bases. Extensive experiments indicate that those
algorithms are only successful for very small AES variants, such as ten rounds
of an 1 x 1 state or four rounds of a 2 x 1 state [15].

An alternative approach to solving nonlinear polynomial equations is to lin-
earise the system by introducing new independent variables for each occurring
nonlinear monomial term. Since this method can only be effective if the num-
ber of linearly independent polynomials approximately equals the number of
monomials, the Extended Linearisation (XL) algorithm [18] extends the origi-
nal equation system before linearisation by multiplying it with all monomials up
to some degree in order to generate enough linearly independent equations. Ex-
perimental evidence indicates that the XL algorithm offers little to no advantage
compared to Grobner basis techniques [4].

Finally, the Extended Sparse Linearisation (XSL) method [19] aims at im-
proving on the XL technique by multiplying the polynomials only by products
of monomials that occur in the original system. So far, also this method has
been unsuccessful in realistically-sized AES equation systems [15].

We conclude that it seems highly unlikely that algebraic attacks can be
successfully applied to LANE.

4.7 Attacks based on reduced query complexity

4.7.1 General comments

Since LANE is a permutation-based hash function, it can be studied in the ideal
permutation model [55], which is very similar to the ideal cipher model and the
random oracle model. Theorem 1 of [55] states that for a compression function
f:{0,1}*™ — {0,1}"™ using k calls to n-bit permutations, collisions can be
found with certainty using approximately

k. on(l=(s=7)/k) (4.12)

permutation queries (at most). Instantiating this with the parameters for LANE
(s = 3,7 = 1,k = 8) yields query complexities of 219 and 2387 for LANE-256
and LANE-512, respectively.

An interesting discussion of the merits and limitations of the ideal/random
models can be found in [28]. An important observation is that there are two

40 CHAPTER 4. SECURITY ANALYSIS

ways to measure the complexity of an attack. On the one hand, there is the
practical complezity, which measures the (expected value of the) time complexity
of the adversary. This is the most natural complexity measure and also the
most relevant measure. On the other hand, there is the query complexity, which
measures the number of queries that are made to the oracle. This complexity
is often used in security proofs, mostly because it is easier to bound.

Since the practical complexity of an adversary is always larger than its query
complexity, the ideal oracle model can be used to prove bounds on the security
of hash function designs.

There are two important criticisms on this model. Firstly, the distinction
between oracle queries and computations made by the adversary is artificial.
A cryptographic hash function uses an instantiation of the permutation (block
cipher), which is public. Hence, it can be argued that any cryptographic hash
function can be broken without making a single query to the oracle. Secondly,
the model ignores the practical complexity of the adversary. It is well-known
that an information theoretic adversary who is given a full description of a hash
function can always find collisions and preimages. On the other hand, returning
to the case of hash function with the same dimensions as LANE-256 or LANE-
512, the adversary has to find the actual collision in sets of at least 22°6 or 2512
values, so that an acceleration in constructing these sets, such as the one given
by (4.12), does not reduce the practical complexity of the attack.

Summarising, results on the query complexity of attacks on hash function
designs do not always have a big impact on the actual security of the design.
Nevertheless, they can be first steps in the development of better attacks. There-
fore, we list here our results.

4.7.2 Results on LANE

The message expansion of LANE expands three inputs to six outputs which are
then independently fed into the permutations of the first layer. We call a partic-
ular combination of chaining value and message block an input to the message
expansion. If some value occurs more than once at a permutation input when
hashing a set of messages, the corresponding permutation output has to be com-
puted only once. More precisely, whenever the sum of the numbers of distinct
values at each of the six outputs is lower than the number of different message
expansion inputs, the output of the first layer can be computed with reduced
effort, resulting in some speedup of the evaluation of the entire compression
function for this set of inputs.

Property [1 leads to two corollaries which can be used to reduce the query
complexity of LANE adversaries. The first corollary looks at LANE without the
second layer of lanes.

Corollary 2. It is possible to compute the inputs of the second layer of lanes
for 257 different inputs to the compression function, using only 6-22P queries to
the P-lanes (exactly 2°P queries to each of the 6 P-lanes).

Proof. Choose p indices j; with 0 < j; < n/2. Consider the 27 inputs where
the bits hj,, hj,1nj2, My, My, 102, M3, m;ftJrn 5 take all possible values and
the remaining bits are constant. Property/[1limplies that the words w; will differ
in the bits at the 2p positions ji, j: + n/2 only. Hence each lane needs to be
queried for at most 227 different values. O

4.7. ATTACKS BASED ON REDUCED QUERY COMPLEXITY 41

Adding the queries to the lanes of the second layer, and assuming that the
lanes in the second layer are twice as fast as the lanes of the first layer, we obtain
an acceleration factor given by

7.26p

S T (4.13)

which very rapidly converges to 7 as p approaches infinity. This simply means
that hashing many messages chosen in this way can be done up to 7 times faster
than the straightforward approach. This is not considered to be an issue, as it
is merely a constant factor. Similar optimisations to speed up the hashing of
many messages can be applied to virtually any hash function.

The following corollary will improve upon this number.

Corollary 3. It is possible to compute the outputs of the compression function
for 219P=2n different inputs, using only 22P*3 queries to the lanes.

Proof. We start by applying Property [1 twice. First, we apply it on the first
layer, with p varying bits. We compute and store the 2°7 outputs of the first
layer in list L;. Next, we apply it on the second layer, with ¢ varying bits. We
store the 249 inputs for which we can compute the output in list L.

We have then made 6 - 227 queries to the lanes of the first layer, and 2 - 224
queries to the lanes of the second layer. The number of inputs for which we can
compute the output of the compression function, equals the number of entries
that appear in both lists. This number can be approximated by 26P+44=27,

If we choose p = ¢ > (2n + 3)/8 then

#queries = 22P+3 = 210=(8p=3) 910P=2n _ Loutputs (4.14)

O

For n = 256, the number of queries drops below the number of outputs when
p = q = 65. For n = 512, this happens when p = ¢ = 129.

We are not aware of any method to exploit these properties to reduce the
practical complexity of any attack against LANE.

4.7.3 Bounds for query complexity
4.7.3.1 A lower bound for the query complexity of LANE

Consider any message expansion mapping three inputs to six outputs, with the
only requirement to have a minimum distance greater than half the number of
lanes in order to prevent the meet-in-the-middle attack outlined in section
Assume that N different values (each comprising chaining value and message
block) are input into the message expansion and denote the number of distinct
values that occur at each of the six outputs by Lo, ..., Ls. The outputs of the
first layer of parallel lanes for the entire set of N inputs can then be computed
with Z?:o L; permutation queries.

A minimum distance of four implies that any mapping from the input to
some three outputs is invertible. This in turn shows that for each i # j # k,

42 CHAPTER 4. SECURITY ANALYSIS

the product L;L;L; must be at least equal to N. As the latter holds for any
3
three outputs, we also know that (% Z?:o Li) > N, and hence

5
> Li>6VN. (4.15)
1=0

Therefore, the number of permutation queries needed to compute the first layer
of permutations for N inputs is lower bounded by 64/N, independent of the
linearity of the message expansion (only imposing the minimum distance re-
quirement). This lower bound is tight for the message expansion of LANE and
we conclude that the query strategy of Corollary 2/ with L; = 2P and N = 267
is in fact optimal.

4.7.3.2 Alternative linear message expansions

Finally, we discuss the relative merits of alternative linear message expansions.
For the sake of clarity, we restrict the treatment to LANE-256 (and hence LANE-
224). The wider variants can be handled completely analogously by considering
GF(2512) instead of GF(2256).

In order to construct a message expansion that does not exhibit Property 1,
a linear (6,3,4) code over GF(22°%) could be used. The systematic form of the
generator matrix of such a code would be

1 00 a g v
010 ¢ ¢ (|, (4.16)
001 n 6 .

where the Greek letters denote elements of GF(22°°). Since the attacker can
apply invertible transformations at both input and output, this generator matrix
can always be transformed to:

Q=

(4.17)

(e 3]
<

1 0 01 1
01 0 1 &
001 1 +

Over GF'(2), this is a 768 x 1536 matrix. We show now that a weakened form
of Property [Tlholds also in this case.

We start by choosing an arbitrary 2p-dimensional vector space V' (2p < n)
and require that the inputs of each lane are in this vector space. This imposes
conditions on the inputs of the message expansion. The requirements on the first
3 lanes are equivalent to: H, M, M! € V. This ensures that H +M"+M' € V,
which implies that also the condition on the input of the fourth lane is satisfied.
The requirements on the last two lanes restrict the number of permissible M-
and M'-values to smaller vector spaces. We denote the dimensions of these
vector spaces by ki, ks < 2p. In this scenario, the output of the first layer for
22ptkitk2 inputs can be computed with 6 - 227 permutation queries.

A sufficient condition on 2p to have both k; > 0 and k2 > 0 can be obtained
as follows. The conditions on the last two lanes are H + o/ M" +~'M' € V and
H + /M"Y + §M' € V, respectively. If we require that, besides M" M! € V,
also the products o/ M", 3'M" ~'M' and §M' are elements of V, then both

4.8. WAGNER’S GENERALISED BIRTHDAY ATTACK 43

conditions trivially hold. The three conditions on M" form a set of 3 - (n — 2p)
equations in n unknowns, so k1 > 0 if n — 3 (n — 2p) > 0. Hence, 2p > 2n is a
sufficient condition for having k; > 0. Analogously, 2p > %n implies k2 > 0. In
case of a linear message expansion for LANE-256, this corresponds to 6 - 21797
permutation queries.

4.8 Wagner’s generalised birthday attack

Wagner [60] describes a sub-exponential algorithm for the generalised birthday
problem where one is given k lists of n-bit values and wants to select one value
from each list such that the selected values sum to zero. For k = 2 and XOR as
summation operation, this is the well-known birthday problem. Provided that
the lists are long enough and the list elements are independently and uniformly
selected at random, it can be solved with good probability in O(2"/2) time.
Under the same assumptions, Wagner’s generalised algorithm has a running time
of O(k - 27/ +Mog2 k1)) " which in particular implies that the birthday problem
with four lists can be solved in O(2"/3) time.

LANE has one XOR combiner with two inputs and two XOR combiners
involving 3 inputs each. For the 3-sum problem, no algorithm faster than the
birthday complexity is known. Since Wagner’s algorithm assumes that &k is a
power of two, the best we can do is to emulate the case k = 2 by solving the
problem xq @ x1 = ¢, where ¢ is a fixed, randomly selected value from the third
list. Moreover, the assumption that the list entries are independent is invalid for
LANE, since are linearly dependent according to the message expansion. Indeed,
even though h,m, m* can be chosen independently for the second 3-XOR, their
choice immediately fixes the inputs for the first 3-XOR.

Consider now LANE without the message expansion, so that the indepen-
dence assumption holds. Since selecting k£ = 3 yields no advantage compared
to the birthday bound, an attacker can consider the XOR of all six P; outputs.
In this case, Wagner’s algorithm would be applied with k = 4 (in on/3 time),
searching for a solution to xg @ x1 P x2 D T3 = ¢4 P ¢5, where ¢y, c; are ran-
dom choices from the lists corresponding to P, and P5. Once such a solution
X4y ..., z5 is found, we know that z{, @ --- @ xf = 0, which is equivalent to
L @) ®xh = f @ xy @ xk. Hence, the attacker can use this to obtain a value
x such that H; = Qo(x) ® Q1(z) and is then left with the task of attacking a
smaller number of AES-like rounds with identical input but different keys (the
constants). Alternatively, he can apply the birthday attack on differences in-
stead of values. In this scenario, the effect of the different constants cancels, so
that any pair following this differential would immediately yield a collision for
the entire compression function.

Summarising, both the message expansion and the second layer of permu-
tations contribute to making attacks based upon Wagner’s algorithm for the
generalised birthday problem inapplicable to LANE.

4.9 Meet-in-the-middle attacks

A meet-in-the-middle attack can be used to construct collisions or (second)
preimages by simultaneously modifying two consecutive message blocks. A ba-

44 CHAPTER 4. SECURITY ANALYSIS

sic version of the attack can be described as follows. In order to reach a certain
target value for H;,q from a given H;_;, the attacker will determine an inter-
mediate result V and define two maps g, g* such that

g(Hi—1,M) =V = g*(Hij11,M"), (4.18)

with g, g* efficiently computable functions and M, M* two independent parts
of the message input. Subsequently, the unknown V is eliminated from the
equations and a solution for M and M™* is searched by constructing two lists.
The first list contains output values for g; the second list contains output values
for g*. A match between both lists means that a message has been found
which takes H;_; to H;41. For example, if the compression function f(H, M)
is invertible, then the adversary can choose ¢ = f and ¢* = f~ L.

In the case of LANE, the compression function is not invertible, but a crypt-
analyst could try to construct a similar attack within one application of the
compression function. This can be done only if the adversary is able to par-
tition the lanes into two disjunct sets, whose inputs can be restricted to be
independent of the other set. The message expansion prevents this attack, as
its minimum distance of 4 ensures that each of these sets need to comprise at
least four lanes. Since there are only six lanes in total, it is not possible to find
two non-overlapping, independent sets of lanes.

4.10 Long message second-preimage attacks

The standard Merkle-Damgard iteration of a compression function guarantees
collision resistance of the overall construction if the compression function itself
is collision-resistant. However, as discovered by Dean [23], this does not hold in
the case of second preimages, if fixed points of the compression function can be
found.

Definition 5. A fized point of a compression function f(-,-) is a chaining value h
and message block m for which it holds that

h = f(h,m) . (4.19)

Fixed points of a compression function can be concatenated to form an ex-
pandable message. This is a set of message patterns of different lengths which
all lead to the same output chaining value. In a long-message second preimage
attack [23,[35], an expandable message allows an adversary to target simulta-
neously any intermediate chaining value instead of just a single one, reducing
the expected work factor of a second preimage attack from O(2") to O(2"~F),
where 2% is the length of the message.

For hash functions based on the Davies-Meyer construction, it is very easy
to find fixed points [47,[52]. Let Ex(-) be a block cipher with key K. Then the
Davies-Meyer construction is

F(hym) = Em(h) + 1 . (4.20)

Constructing a fixed point can be done by choosing an arbitrary message block m,

and computing
h=E;;0) . (4.21)

4.11. LENGTH-EXTENSION ATTACKS 45

Now, it follows from (4.20) that this yields a fixed point.

For the LANE compression function, constructing fixed points in such a
straightforward way does not seem to be possible. Even though the permu-
tations in LANE are invertible, the structure of the compression function does
not allow for the construction of fixed points, as the linear conditions on the
expanded message words can only be satisfied probabilistically. Hence, finding
a fixed point for the compression function of LANE should be no easier than
constructing a preimage for the compression function.

Even more so, if a fixed point for the compression function of LANE could
be found in an efficient way, it would still not allow for the construction of
an expandable message. As discussed in [10], the inclusion of the counter in
LANE prohibits the concatenation of fixed points. Also Kelsey and Schneier’s
multicollision-based method for constructing an expandable message [35] is not
applicable thanks to the counter. Finally, the attacks on dithered hash functions
by Andreeva et al. [2] are also foiled by the inclusion of the counter.

Thus, we conclude that the second preimage resistance of LANE does not
degrade when the challenge message is long, and hence the iteration mode of
LANE offers full n-bit security for second preimages (see also [1]).

4.11 Length-extension attacks

Given the hash value of a (partially) unknown message m (including padding
etc.), length-extension attacks aim to infer the hash value of some message m || z,
where the suffix may be chosen freely by the adversary. This is an impor-
tant consideration for message authentication codes (MAC’s) based on hash
functions, as a successful length-extension attack would lead to a forgery.

In the plain Merkle-Damgard construction, the mere knowledge of the mes-
sage length [and the hash value h(m) of a (partially) unknown message m en-
ables an attacker to calculate the hash value of messages of the form pad;(m) || z,
where z is an arbitrary suffix. Indeed, the intermediate chaining value after
processing pad;(m), which always aligns to a block boundary, is precisely equal
to h(m), which is known to the attacker.

In LANE, the output transformation, which can be regarded as another com-
pression function call on a special padding block, is processed using the special
counter value zero, which cannot occur in any regular message block. This
makes it impossible for an attacker to emulate the output transformation using
a regular message block. Therefore, length extension attacks are not applicable
to LANE.

4.12 Multicollision attacks

In a multicollision setting, the attacker wants to find k£ > 2 messages all hash-
ing to the same value. Ideally, finding a k-way multicollision should require
a computational effort of (9(2”'(’“’1)/ k). However, the multicollision attack by
Joux [32] allows to find a 2!-way multicollision for an n-bit hash function using
the Merkle-Damgard iteration impressively faster than that. It requires an ef-
fort of only I - C(n), where C(n) is the complexity of finding a single collision,
which will be at most 27/2 by the birthday paradox. Joux’s attack works by

46 CHAPTER 4. SECURITY ANALYSIS

concatenating a chain of internal collisions: For ¢ = 1,... [, the attacker com-
putes colliding pairs (M;, M!) such that h(H;—1, M;) = h(H;—1, M}), where Hy
is the initial value and H; := h(H;_1, M;) = h(H;_1, M]). Now, after appro-
priate padding, the 2! messages X1 || -+ || X;, where X; € {M, M/}, all hash to
the same value, yielding a 2'-way multicollision.

If the compression function allows for efficient calculation of fixed points, the
method of Kelsey and Schneier [35] gives multicollisions of arbitrary size with
O(2"/2) effort. As outlined in section [4.10, this improvement does not apply
to LANE. Joux’ approach, however, is applicable. In order to preclude it, a
chaining value of at least 2n bits would be required.

Since Joux’ attack combines single collisions, its complexity directly depends
on the best possible single-collision attack against the hash function. Naturally,
the effort of applying the multicollision attack can never be lower than that of
finding a single collision. Since we require that it should be already computa-
tionally infeasible to construct a single collision, multicollisions do not present
a bigger threat than collisions. In particular, LANE’s security level against sin-
gle collisions, which meets the theoretical bound of 2/2, is not reduced in any
regard by the fact that many messages colliding to the same hash value can be
found with only little more effort.

One of the main application of multicollisions is the construction of long
message second preimage attacks [35]. As was mentioned in Sect. [4.10, the
inclusion of the counter precludes these attacks for LANE. Hence, we argue
that, although Joux’ multicollision attack does apply to LANE, it is not a threat
in practice. Finally, it should be noted that the fact that this multicollision
attack applies to LANE is a mere consequence of the mode of iteration and does
not imply any weakness in the compression function itself.

4.13 On the mode of operation

In this section, the reduction-based provable security approach is used to as-
sess the security of the LANE iteration. More precisely, security claims on the
LANE iteration under some concrete assumptions on the underlying compres-
sion function are stated. Following this approach, concrete security bounds on
the computational complexity of an adversary against the LANE iteration can
be shown. We also exhibit information theoretic results on the LANE itera-
tion which indicate security against generic attacks under the assumption that
the compression function is an ideal primitive. For a full security analysis on
the LANE iteration, we refer to the work of Andreeva [1]. Here, we present a
summary of the main results.

Similarly to the known Merkle-Damgard iterative principle [46, 22], An-
dreeva shows that both the non-salted and salted versions of the LANE itera-
tion are provably collision secure. Following Rogaway’s human-ignorance ap-
proach [54], the advantage of an adversary against the LANE hash function is
related to that of another adversary against the LANE compression function to
derive a tight security bound.

The upper bounds on the advantage of information theoretic adversaries
against the second preimage and preimage security, respectively, of the non-
salted LANE hash function indicate that 2™ evaluations of the underlying ideal
compression function need to performed to break the respective security prop-

4.14. EXPECTED STRENGTH OF LANE 47

erty. Moreover, making a (variant of) preimage security assumption on the
output transformation of LANE and adopting some randomness extraction and
regularity properties on the iterative portion of the non-salted LANE hash func-
tion, a tight preimage security bound on the LANE iteration is exhibited.

For the salted version of the LANE hash function a broad set of security
notions is developed that capture most of the important attack scenarios of
randomised hashing. In addition, the possibility of attacks under equal or dis-
tinct and known or secret salt values is taken into account. The same (as for
the non-salted LANE hash function) security against information theoretic ad-
versaries is obtained in the second preimage case, and the preimage case. The
salted LANE iteration also provides second preimage security guarantees of or-
der 2" against adversaries who first commit to a target message and then are
given a random target salt value.

The latter information theoretic results show that no generic attacks on the
second preimage and preimage security on both salted and non-salted LANE
hash function variants succeed in under 2" number of evaluations of an ideal
compression function.

Another important security feature of the LANE iterative design in both
salted and non-salted versions is the security against extension attacks and lack
of structural flaws ensured by the prefix-free property of the processed inputs.
The latter design characteristic of LANE ensures its indifferentiability from a
random oracle according to the work of Coron et al. [16] and pseudorandom
function behaviour according to Bellare et al. [6].

The suggested parallel processing method, see Sect. [3.1.5 is also shown to
be collision secure when the underlying hash function is collision secure. Under
the second preimage/preimage security and some mild assumptions on the min
entropy extraction properties of the hash functions, it is also shown that the
parallel mode of operation is second preimage/preimage secure.

4.14 Expected strength of LANE

To the best of our knowledge, the complexity of finding collisions, first, and
second preimages for LANE is O(27/2), O(2"), and O(2"), respectively. In all
three cases, the complexities refer to generic approaches applicable to any hash
function: the birthday attack for finding collisions and simple brute force for
preimages. As discussed in this chapter, none of the dedicated attack attempts
yielded a lower complexity than the generic attacks. This holds for any of the
specified digest lengths n = 224,256,384, 512.

Length-extension attacks are generally precluded, as outlined in section4.111
Our analysis also did not indicate any imbalance concerning the strength of
individual output bits, so forming an n’-bit hash function by selecting n’ < n
digest bits in an arbitrary manner yields a hash function fulfilling the above
criteria in terms of n’ instead of m. In particular, no n’-bit truncation of an
n-bit hash value is a valid n’-bit digest for the same message, since the initial
value depends on the digest length n.

The claimed security levels for each of the specified digest lengths are sum-
marised in Table[4.2!

48

CHAPTER 4. SECURITY ANALYSIS

Table 4.2: Expected strength of LANE against cryptanalytic attacks.

Attack

LANE-224 LANE-256 LANE-384 LANE-512

Collision attacks
Preimage attacks

Second preimage attacks
Length-extension attacks
Output bits equally strong

2112 2128 2192 2256
2224 2256 2384 2512
2224 2256 2384 2512

not applicable
yes

Chapter 5

Implementation aspects

This chapter discusses implementation aspects of LANE. Several software im-
plementations of LANE targeting general purpose CPU’s have been created, as
well as two hardware implementations. They are presented and evaluated in
Sect. [5.1 and Sect. respectively. Sect. discusses the implementation
aspects of LANE on 8-bit embedded systems.

5.1 General purpose CPU’s

As LANE is based on the AES block cipher [21,[48], the implementation tech-
niques that are commonly used for the AES can be applied directly to LANE.
A prevailing technique is to group the SubBytes and (part of) the MixColumns
operations into four 8-t0-32-bit lookup tables [21]. ShiftRows can be imple-
mented as a simple reordering of the indices, so it does not require any actual
instructions. The AddConstants and AddCounter operations in LANE are imple-
mented in the same way as AddRoundKey in the AES. Finally, like ShiftRows,
also the SwapColumns operation does not require any explicit instructions, just
an appropriate permutation of the indices.

There is extensive literature on fast AES implementations [3, 9] 43, 42, 44,
56, [61, 62]. The design of LANE is such that entire rounds of the AES block
cipher are used as components. Hence, virtually all of the fast implementation
techniques and ‘tricks’ apply to LANE as well.

We wrote an optimised implementation of LANE in ANSI-C, using the stan-
dard, well-known techniques for the implementation of the AES [21]. In addi-
tion, we also wrote a very similar implementation in x86 assembly using the
MMX instruction set as a source of eight extra registers. This reduces the regis-
ter pressure, and shows a considerable improvement in performance in our test
results. Finally, we developed a bitsliced implementation of LANE, inspired by
the work of Matsui et al. on the AES [42,|44]. Details on this implementation
are given in Sect.[5.1.1.

We measured the performance of our implementations, using three different
software suites: Microsoft Visual Studio, GNU GCC and the Intel C compiler.
Details on our test hardware and these three software are given in Table 5.1
We tested both short, 64 byte messages and long, 32 kilobyte messages, and
normalised the cycle count by dividing it by the message length, i.e., we use

49

o0

CHAPTER 5. IMPLEMENTATION ASPECTS

Table 5.1: Test platform for the software implementations of LANE.

CPU:

Memory:

Intel(R) Core(TM) 2 Duo T8100 2.1 GHz
(supports MMX, SSE, SSE2, SSSE3, SSE4.1)
3072 KB cache memory

1024 MB

Platform 1 (64-bit)

Operating System
Compiler
Compiler flags
Assembler

Ubuntu Linux 8.04 x86_64
GNU C compiler (GCC) version 4.2.3
-03 -fomit-frame-pointer

GNU MMX assembler (GAS) version 2.18.0

Platform 2 (32-bit)

Operating System

Microsoft Windows XP professional SP2

Microsoft Visual Studio 2008 Version 9.0.21022.8 RTM
/02

Compiler
Compiler flags

Platform 3 (64-bit)

Ubuntu Linux x86_64
Intel C compiler (ICC) 10.1 20080801
-03

Operating System
Compiler
Compiler flags

‘cycles per byte’ (cpb) as a performance metric. The measurement results are
presented in Table [5.2l As the performance of LANE-224 and LLANE-384 are
identical to LANE-256 and LANE-512, respectively, we only give data for the
latter two. Also, our two assembly implementations currently only support
LANE-256, hence no data on LANE-512 is given for these implementations.

We note that apparently, the choice of the compiler has a large impact on
the performance. The Intel C compiler (ICC) achieves a speed which is very
close to that of our MMX assembly implementation. We expect that further im-
provements can be made to these implementations. As several highly advanced,
very fast AES implementations exist, e.g., the very recent work by Bernstein
and Schwabe [9], we expect that (much) faster implementations of LANE can be
made using these techniques.

5.1.1 Bitsliced implementation

Similarly to the AES block cipher, the C implementation of LANE relies heav-
ily on table lookups. Several authors have demonstrated side-channel attacks
against such software implementations of AES, using cache-timing analysis to
gather information on these data-dependent table lookups [7,[51]. While side-
channel attacks are not relevant for hash functions in their most straightforward
application, they become a potential threat once the hash function is used to
process secret values such as the message authentication key in an HMAC con-
struction [27]. Thus, we provide an alternative proof-of-concept implementation
of LANE-256 that is constant-time and consequently not vulnerable to cache-
timing attacks.

5.1. GENERAL PURPOSE CPU’S 51

Table 5.2: Performance measurement results of our LANE implementations. The
test platform, and the three software suites we used, are described in Table[5.1]

Implementation Platform 64 byte message 32 kbyte message
Optimised ANSI-C GNU (1) 130.67 cpb 43.02 cpb
implementation of Microsoft (2) 104.75 cpb 40.46 cpb
LANE-256 Intel (3) 79.78 cpb 26.17 cpb
MMX Assembly GNU (1) 79.84 cpb 25.66 cpb
implementation of

LANE-256

Bitsliced implemen- GNU (1) 87.19 cpb 30.20 cpb
tation of LANE-256

Optimised ANSI-C GNU (1) 1069.97 cpb 176.97 cpb
implementation of Microsoft (2) 923.11 cpb 152.24 cpb
LANE-512 Intel (3) 864.46 cpb 145.31 cpb

5.1.1.1 A Cache-Timing Resistant Implementation of LANE-256

The constant-time implementation of LANE-256 uses bitslicing to implement
the AES S-box. That is, instead of using table look-ups, we compute the S-box
output on-the-fly, using its representation as a concatenation of eight 8-to-1-
bit Boolean functions. Such a bitsliced implementation of the AES S-box was
first proposed by Matsui [42]. Later, Matsui and Nakajima [44] reported a
particularly efficient implementation of bitsliced AES on the Intel Core 2 Duo
processors, achieving speeds of up to 10.2 cycles per byte in modes of operation
where sufficient parallelism is possible, such as the counter mode. Similarly, the
parallelism available in LANE allows for an efficient bitsliced implementation.

Our implementation uses eight 128-bit XMM registers to store part of the
LANE-256 state, one register for each bit position in a LANE state. That is,
we collect in the first register bits from the least significant bit position in each
LANE-256 byte, in the second register bits from the second bit position, and so
forth. In order to fill the 128-bit XMM registers and fully utilise their width,
we need to be able to process 128 bytes of state in parallel. At first glance,
LANE-256 does not lend to such optimal parallelism: the six parallel P-lanes
contain altogether 192 bytes, whereas the two QQ-lanes in the second, sequential
layer contain only 64 bytes. However, we observe that lanes P, and P; are
independent of the chaining value and thus can be processed before the actual
chaining value is known. This observation allows us to process the LANE-256
state in two parts of 128 bytes each. Namely, during each compression function
call, we first process the Q-lanes of the previous call together with lanes P, and
Ps5. The output of the Q-lanes then provides us with the chaining value required
to process lanes Py, Py, Py, Ps.

5.1.1.2 Performance

We have implemented the compression function of LANE-256 in a bitsliced man-
ner, using GNU assembly. Table[5.3]lists the number of instructions required in
one LANE round. In addition to the compression function, our implementation

52 CHAPTER 5. IMPLEMENTATION ASPECTS

SubBytes 205
ShiftRows 8
MixColumns 43
AddConstants 8
AddCounter 8
SwapColumns | 72

Total 344

Table 5.3: Number of XMM instructions in one LANE round.

contains bitslicing for input messages, and inverse bitslicing for the hash out-
put, so that the bitsliced implementation is fully compatible with the standard
implementation. Notice that apart from the input message, also the counter
needs to be bitsliced on the fly for each compression function call, introducing
an overhead compared to an AES implementation.

Including format conversion overhead for input, output and counters, the
bitsliced implementation achieves a speed of 30.2 cycles per byte on our test
platform (see Table [5.1 for platform details). We conclude that at least on
64-bit platforms, it is possible to implement LANE in a cache-timing resistant
manner without a significant penalty in performance.

5.1.2 Intel AES-NI instruction set

In a white paper [17], Intel has announced AES-NI, a new set of instructions
that are going to be introduced in the next generation of Intel processors, as of
2009. The AES-NI extension consists of six instructions that will provide full
hardware support for the AES block cipher [21, 48].

As LANE reuses rounds of the AES as components, the Intel AES-NI in-
struction can also be used to create a fast implementation of LANE. LANE only
uses full AES rounds in the encryption direction, hence only one of the six new
instructions, AESENC, is required to implement LANE.

The AESENC instruction consists of the ShiftRows, SubBytes, MixColumns
and AddRoundKey operations. The AddRoundKey operation in the AES is
functionally equivalent to AddConstants in LANE. Other operations used in
LANE can be implemented using instructions from the SSE/SSE2 instruction
set. The message expansion and AddCounter can be implemented using the
PXOR instruction, and either SHUFPD or SHUFPS can be used to implement
SwapColumns, depending on the LANE variant.

As the underlying hardware that implements the AESENC instruction is
fully pipelined [17], a new AES round can be started each clock cycle, provided
that there are no data dependencies. The latency of the AESENC instruction
is 6 cycles [17], which implies that six parallel AES rounds suffice to keep the
pipeline filled. LANE offers ample opportunities for parallel AES rounds. In the
first layer, there are 12 independent AESENC instructions in each round. In
the second layer, there are only four parallel AES rounds. But, by scheduling
the second layer of one compression function call in parallel with the P, and
P5 lanes of the next compression function call, as explained in Sect.[5.1.1, the
parallelism can be balanced out more evenly.

5.2. EMBEDDED SYSTEMS WITH AN 8-BIT CPU 93

As processors supporting the AES-NT instruction set are not yet available on
the market, we can only estimate the performance of LANE on such a machine.
For a parallel mode of AES, a throughput of about 12 cycles per block, or
1.2 cycles per AES round is claimed [17]. Counting only the AES rounds in a
LANE-256 compression function call would yield a performance of 84 - 1.2/64 =
1.575 cycles per byte for LANE-256. But as other components of the LANE
compression function, which are negligible in other implementations, can likely
no longer be ignored, a performance of around 5 cycles per byte seems more
reasonable. Still, this shows that LANE has the potential to achieve a very
high performance on platforms that offer a fast, hardware accelerated way to
compute AES encryptions.

5.2 Embedded systems with an 8-bit CPU

As LANE is based on rounds of the AES block cipher, its performance on 8-bit
CPU’s can be estimated based on the existing literature on the implementation
of the AES on these platforms. Rinne et al. [53] present an implementation of
the AES on an 8-bit AVR microcontroller, inspired by the 8-bit AES code of
Gladman [30]. Their implementation has a code size (ROM size) of 3410 bytes,
and is able to do an AES encryption in 3766 CPU cycles.

The message expansion of LANE-256 can be implemented using 288 8-bit
XOR operations. An 8-bit XOR operation typically takes a single CPU cycle
on these CPU’s, hence the message expansion costs about 288 CPU cycles. An
AES encryption consists of ten rounds, so the cost of a single AES round can be
estimated at 377 CPU cycles. One LANE-256 compression function call contains
84 AES rounds, yielding a total of 31668 CPU cycles. The AddCounter opera-
tion consists of four 8-bit XOR'’s, and is used 34 times per compression function
call — 136 CPU cycles in total. Finally, the computation of the constants needs
to be counted. A single step of the LFSR can be implemented in 8 CPU cycles,
and it needs to be carried out 272 times, resulting in a cost of 2176 CPU cycles.
Adding these components gives a total cost of 34268 CPU cycles.

Based on this rough estimate, we can expect a real implementation of LANE-
256 on this 8-bit platform to require about 35000 CPU cycles per compression
function. This corresponds to an expected performance of roughly 550 cycles
per byte. As most of the program code will be the same as for an AES im-
plementation, we expect that an implementation of LANE-256 should fit in less
than 5 kilobytes of ROM.

The amount of RAM required by a LANE-256 implementation on a resource-
constrained system can be estimated as follows.

e 768 bits of read/write memory to store the input chaining value H;, and
for intermediate storage. Note that it is possible to reuse the memory
used for storing H; after the fourth lane of the first layer has been started,
because the last two lanes are independent of H;. This trick allows to save
256 bits of memory.

e 512 bits to store the message block. Note that the message expansion
does not need to modify this memory, so it could be shared with another
application, e.g., a transmit or receive buffer.

54 CHAPTER 5. IMPLEMENTATION ASPECTS

Table 5.4: Hardware evaluation of the LANE hash function.

Design Area Frequency # of Throughput
[GE] [MHz] Cycles [Mbps]
LANE-224/LANE-2561 | 16462 100 2201 23.3
LANE-224/LANE-256% | 243486 305 11 14191
LANE-384/LANE-512F | 466 190 286 14 20958

t Compact implementation.
t High-throughput implementations.

e (4 bits for the counter.
o (optionally) 256 bits to store the salt value.
e 32 bits for computing the constants on-the-fly.

For example, a LANE-256 implementation not using salts requires 172 bytes of
RAM., of which the 64 bytes containing the current message block can be shared.
Tillich et al. [59] propose to add a small hardware accelerator of only 1.1 kGates
to an AVR microcontroller, which increases the performance of an AES encryp-
tion by a factor 3.6 compared to the pure software implementation of [53]. Of
course, such techniques will also greatly benefit the performance of LANE. It
is even more interesting for embedded systems requiring both a hash function
and a block cipher. When using LANE and the AES, a single investment in
additional hardware can be used both for faster hashing and faster encryption.

5.3 Hardware implementation

The hardware performance evaluation of the LANE hash function was done by
synthesising the proposed designs using 0.13 pm CMOS standard cell library.
The code was first written in GEZEL [29], then compiled to VHDL and syn-
thesised using the Synopsys Design Vision tool [58]. The synthesis results are
given in Table 5.4l

As the ample parallelism provided by LANE allows for much flexibility in
high-throughput implementations, our main goal was to show that LANE can
achieve a very high throughput at the cost of consumed gate area. Additionally,
by implementing a compact version, we have also shown that the same algorithm
can be used in more constrained environments where the available gate area is
a limiting factor.

The target for the high-throughput implementations was to minimise the
critical path of the design. To perform the first layer of permutations, we used
6 permutation blocks in parallel where each of them contained 2 full AES engines
(4 for LANE-384 and LANE-512). The two permutations from the first layer were
also reused for the second layer.

The straightforward implementation of LANE-224 /L ANE-256 resulted in the
critical path of 5.60 ns and the cycle count of 9. The critical path was placed
from the input of the message injection function, going along the permutation
block and ending at the input of the second layer of permutation. As the
message injection function was performed only once per input message block, we

5.3. HARDWARE IMPLEMENTATION 95

moved the state registers at the input of the permutation blocks. This approach
resulted in the faster design, shortening the critical path to 4.28 ns. One more
clock cycle had to be spent in order to perform the complete round, but the final
throughput increased by about 20 %. The critical path was now placed along
the permutation block and also contained the 3-input XOR gate at the output of
the first layer permutations. By storing the output of the first layer back to the
state registers and then performing an XOR operation, we introduced one more
clock cycle and reduced the critical path down to only 3.28 ns (3.49 ns for LANE-
384/LANE-512). The final design achieved a high throughput of 14.2 Gbps and
21.0 Gbps for LANE-224/LANE-256 and LANE-384/LANE-512, respectively.

As can be seen from Tablel5.4] the most compact implementation is obtained
for LANE-224/LANE-256 algorithm and consumes approximately 16.5 kGE. The
major part of the compact design is consumed by the message expansion, though
it is performed only once per input message block. Hence, we also evaluated
the circuit size assuming that the message expansion is performed outside of
the hash engine. This resulted in a smaller design with a gate area of only
11.7 kGE. The compact implementation was made using only one permutation
block. Inside the permutation we used a single compact AES S-box [45] and
a single AES MixColumns block. This approach resulted in a large number
of cycles (2201), while on the other hand it efficiently reduced the final gate
count. We used three 256-bit registers to maintain the internal state. Note
that our only goal for the compact implementation was to have a small die size,
regardless of the circuit speed. Hence, we fixed the frequency to 100 MHz and
synthesised our design.

The throughput was calculated according to the following equations:

Frequency

Throughput256/224 = m X 512 y (51)
Frequenc
Throughputs;2/384 = #oi(’liCyclzs x 1024 . (5.2)

Our hardware performance figures show that the LANE cryptographic hash
functions can be implemented very efficiently and provide very high through-
puts, up to 21 Gbps. On the other hand, the compact implementation shows
that, at the cost of speed, the LANE hash functions can be considered as a good
candidate for constrained environments. We believe that in the future faster and
more compact LANE designs will be announced. By exploring different levels
of parallelism, one can make a number of trade-offs and choose the appropriate
application-driven implementation. Compact implementation of hash functions
remains a challenging task in general and hence, we expect more research effort
in this direction.

o6

CHAPTER 5. IMPLEMENTATION ASPECTS

Bibliography

1]

2]

[10]

[11]

Elena Andreeva. On LANE modes of operation. Technical Report 2008,
COSIC, 2008.

Elena Andreeva, Charles Bouillaguet, Pierre-Alain Fouque, Jonathan J.
Hoch, John Kelsey, Adi Shamir, and Sébastien Zimmer. Second preimage
attacks on dithered hash functions. In Smart [57], pages 270-288.

Kazumaro Aoki and Helger Lipmaa. Fast implementations of AES candi-
dates. In AES Candidate Conference, pages 106-120, 2000.

Gwénolé Ars, Jean-Charles Faugere, Hideki Imai, Mitsuru Kawazoe, and
Makoto Sugita. Comparison between XL and Grébner basis algorithms.
In Pil Joong Lee, editor, ASIACRYPT, volume 3329 of Lecture Notes in
Computer Science, pages 338-353. Springer, 2004.

Thomas Becker and Volker Weispfenning. Gréibner bases: A computational
approach to commutative algebra, volume 141 of Graduate Texts in Math-
ematics. Springer-Verlag, New York, 1993.

Mihir Bellare, Ran Canetti, and Hugo Krawczyk. Pseudorandom functions
revisited: The cascade construction and its concrete security. In FOCS,
pages 514-523, 1996.

Daniel J. Bernstein. Cache-timing attacks on AES. Preprint, 2005. Avail-
able online at http://cr.yp.to/papers.html#cachetiming.

Daniel J. Bernstein. What output size resists collisions in a XOR of inde-
pendent expansions? ECRYPT Workshop on Hash Functions, 2007.

Daniel J. Bernstein and Peter Schwabe. New AES software speed records.
In INDOCRYPT, Lecture Notes in Computer Science. Springer, 2008. to
appear. preprint available at http://eprint.iacr.org/2008/381.

Eli Biham and Orr Dunkelman. A framework for iterative hash functions
— HAIFA. Presented at the second NIST hash workshop (August 24-25),
2006.

Eli Biham and Adi Shamir. Differential cryptanalysis of DES-like cryp-
tosystems. In Alfred Menezes and Scott A. Vanstone, editors, CRYPTO,
volume 537 of Lecture Notes in Computer Science, pages 2—21. Springer,
1990.

o7

http://cr.yp.to/papers.html#cachetiming
http://eprint.iacr.org/2008/381

o8

[12]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

BIBLIOGRAPHY

Gilles Brassard, editor. Advances in Cryptology - CRYPTO 89, 9th Annual
International Cryptology Conference, Santa Barbara, California, USA, Au-
gust 20-24, 1989, Proceedings, volume 435 of Lecture Notes in Computer
Science. Springer, 1990.

B. Buchberger. FEin Algorithmus zum Auffinden der Basiselemente des
Restklassenringes nach einem nulldimensionalen Polynomideal. PhD the-
sis, Mathematical Institute, University of Innsbruck, Austria, 1965.

Florent Chabaud and Antoine Joux. Differential collisions in SHA-0. In
Hugo Krawczyk, editor, CRYPTO, volume 1462 of Lecture Notes in Com-
puter Science, pages 56—71. Springer, 1998.

Carlos Cid, Sean Murphy, and Matthew Robshaw. Algebraic Aspects of the
Advanced Encryption Standard. Springer-Verlag, New York, 2006.

Jean-Sébastien Coron, Yevgeniy Dodis, Cécile Malinaud, and Prashant
Puniya. Merkle-Damgard revisited: How to construct a hash function. In
Victor Shoup, editor, CRYPTO, volume 3621 of Lecture Notes in Computer
Science, pages 430—448. Springer, 2005.

Intel Corporation. Advanced encryption standard (AES) instructions set.
White paper, July 2008. Available online at http://softwarecommunity.
intel.com/isn/downloads/intelavx/AES-Instructions-Set_WP.pdf.

Nicolas Courtois, Alexander Klimov, Jacques Patarin, and Adi Shamir.
Efficient algorithms for solving overdefined systems of multivariate polyno-
mial equations. In FUROCRYPT, pages 392-407, 2000.

Nicolas Courtois and Josef Pieprzyk. Cryptanalysis of block ciphers
with overdefined systems of equations. In Yuliang Zheng, editor, ASI-
ACRYPT, volume 2501 of Lecture Notes in Computer Science, pages 267—
287. Springer, 2002.

Joan Daemen, Lars R. Knudsen, and Vincent Rijmen. The block cipher
Square. In Eli Biham, editor, FSE, volume 1267 of Lecture Notes in Com-
puter Science, pages 149-165. Springer, 1997.

Joan Daemen and Vincent Rijmen. The design of Rijndael: AES — the
Advanced Encryption Standard. Springer-Verlag, 2002.

Ivan Damgard. A design principle for hash functions. In Brassard [12],
pages 416-427.

Richard D. Dean. Formal Aspects of Mobile Code Security. PhD thesis,
Princeton University, January 1999.

Hans Dobbertin. Cryptanalysis of MD4. In Dieter Gollmann, editor, FSE,
volume 1039 of Lecture Notes in Computer Science, pages 53—69. Springer,
1996.

Jean-Charles Faugere. A new efficient algorithm for computing Grébner
bases (F4). In Journal of Pure and Applied Algebra, pages 61-83. ACM
Press, 1999.

http://softwarecommunity.intel.com/isn/downloads/intelavx/AES-Instructions-Set_WP.pdf
http://softwarecommunity.intel.com/isn/downloads/intelavx/AES-Instructions-Set_WP.pdf

BIBLIOGRAPHY 99

[26]

[29]

[30]

[31]

[32]

[35]

[37]

[38]

Jean-Charles Faugere. A new efficient algorithm for computing Grobner
bases without reduction to zero (F5). In T. Mora, editor, International
Symposium on Symbolic and Algebraic Computation, pages 75-83, 2002.

Federal Information Processing Standards Publication FIPS PUB 198. The
Keyed-Hash Message Authentication Code (HMAC), 2002.

Pierre-Alain Fouque, Jacques Stern, and Sébastien Zimmer. Cryptanaly-
sis of tweaked versions of SMASH and reparation. In Selected Areas in
Cryptography, SAC 2008, Lecture Notes in Computer Science. Springer, to
appear.

The GEZEL development environment. http://rijndael.ece.vt.edu/
gezel2/index.php/Main_Page.

Brian Gladman. Byte oriented AES implementation. Available online at
http://fp.gladman.plus.com/AES/.

Shai Halevi and Hugo Krawczyk. Strengthening digital signatures via ran-
domized hashing. In Cynthia Dwork, editor, CRYPTO, volume 4117 of
Lecture Notes in Computer Science, pages 41-59. Springer, 2006.

Antoine Joux. Multicollisions in iterated hash functions. application to
cascaded constructions. In Matthew K. Franklin, editor, CRYPTO, volume
3152 of Lecture Notes in Computer Science, pages 306-316. Springer, 2004.

Jorge Nakahara Jr., Daniel Santana de Freitas, and Raphael Chung-Wei
Phan. New multiset attacks on Rijndael with large blocks. In Ed Dawson
and Serge Vaudenay, editors, Mycrypt, volume 3715 of Lecture Notes in
Computer Science, pages 277-295. Springer, 2005.

Jorge Nakahara Jr. and Ivan Carlos Pavao. Impossible-differential attacks
on large-block Rijndael. In Juan A. Garay, Arjen K. Lenstra, Masahiro
Mambo, and Rene Peralta, editors, ISC, volume 4779 of Lecture Notes in
Computer Science, pages 104-117. Springer, 2007.

John Kelsey and Bruce Schneier. Second preimages on n-bit hash functions
for much less than 2" work. In Ronald Cramer, editor, EUROCRYPT, vol-
ume 3494 of Lecture Notes in Computer Science, pages 474-490. Springer,
2005.

Lars R. Knudsen. Truncated and higher order differentials. In Bart Preneel,
editor, F'SE, volume 1008 of Lecture Notes in Computer Science, pages 196—
211. Springer, 1994.

Lars R. Knudsen and David Wagner. Integral cryptanalysis. In Joan Dae-
men and Vincent Rijmen, editors, FSE, volume 2365 of Lecture Notes in
Computer Science, pages 112-127. Springer, 2002.

Xuejia Lai. Higher order derivatives and differential cryptanalysis. Proc.
Symposium on Communication, Coding and Cryptography, in honor of
James L. Massey on the occasion of his 60’th birthday, Feb. 10-13, 1994,
Monte-Verita, Ascona, Switzerland, 1994.

http://rijndael.ece.vt.edu/gezel2/index.php/Main_Page
http://rijndael.ece.vt.edu/gezel2/index.php/Main_Page
http://fp.gladman.plus.com/AES/

60

[39]

[40]

[41]

[42]

[43]

[44]

[45]

BIBLIOGRAPHY

Xuejia Lai, James L. Massey, and Sean Murphy. Markov ciphers and dif-
ferential cryptanalysis. In EUROCRYPT, pages 17-38, 1991.

Rudolf Lidl and Harald Niederreiter. Introduction to finite fields and their
applications. Cambridge University Press, revised edition edition, 1994.

Stefan Lucks. The saturation attack - a bait for Twofish. In Mitsuru
Matsui, editor, FSE, volume 2355 of Lecture Notes in Computer Science,
pages 1-15. Springer, 2001.

Mitsuru Matsui. How far can we go on the x64 processors? In Matthew
J. B. Robshaw, editor, FSE, volume 4047 of Lecture Notes in Computer
Science, pages 341-358. Springer, 2006.

Mitsuru Matsui and Sayaka Fukuda. How to maximize software perfor-
mance of symmetric primitives on Pentium IIT and 4 processors. In Henri
Gilbert and Helena Handschuh, editors, FSE, volume 3557 of Lecture Notes
in Computer Science, pages 398—412. Springer, 2005.

Mitsuru Matsui and Junko Nakajima. On the power of bitslice implemen-
tation on Intel Core2 processor. In Pascal Paillier and Ingrid Verbauwhede,
editors, CHES, volume 4727 of Lecture Notes in Computer Science, pages
121-134. Springer, 2007.

Nele Mentens, Lejla Batina, Bart Preneel, and Ingrid Verbauwhede. A sys-
tematic evaluation of compact hardware implementations for the Rijndael
S-box. In Topics in Cryptology — CT-RSA 2005, volume 3376 of Lecture
Notes in Computer Science, pages 323-333. Springer, 2005.

Ralph C. Merkle. A certified digital signature. In Brassard [12], pages
218-238.

Shoji Miyaguchi, Kazuo Ohta, and Masahiko Iwata. Confirmation that
some hash functions are not collision free. In EUROCRYPT, pages 326—
343, 1990.

National Institue of Standards and Technology. Specification for the Ad-
vanced Encryption Standard (AES). Federal Information Processing Stan-
dards Publication 197, 2001. Available online at http://csrc.nist.gov/
publications/fips/fips197/fips-197.pdf.

National Institue of Standards and Technology. Secure hash standard.
Federal Information Processing Standards Publication 180-2, 2002. Avail-
able online at http://csrc.nist.gov/publications/fips/fips180-2/
fips180-2withchangenotice.pdf.

National Institute of Standards and Technology. Announcing request for
candidate algorithm nominations for a new cryptographic hash algorithm
(SHA-3) family. Federal Register, 72(212):62212-62220, November 2007.

Dag Arne Osvik, Adi Shamir, and Eran Tromer. Cache attacks and coun-
termeasures: The case of AES. In David Pointcheval, editor, CT-RSA,
volume 3860 of Lecture Notes in Computer Science, pages 1-20. Springer,
2006.

http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf
http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf
http://csrc.nist.gov/publications/fips/fips180-2/fips180-2withchangenotice.pdf
http://csrc.nist.gov/publications/fips/fips180-2/fips180-2withchangenotice.pdf

BIBLIOGRAPHY 61

[52]

Bart Preneel, René Govaerts, and Joos Vandewalle. Hash functions based
on block ciphers: A synthetic approach. In Douglas R. Stinson, editor,
CRYPTO, volume 773 of Lecture Notes in Computer Science, pages 368
378. Springer, 1993.

Soéren Rinne, Thomas Eisenbarth, and Christof Paar. Performance anal-
ysis of contemporary light-weight block ciphers on 8-bit microcontrollers.
ECRYPT workshop SPEED — Software Performance Enhancement for En-
cryption and Decryption, 2007.

Phillip Rogaway. Formalizing human ignorance. In Phong Q. Nguyen,
editor, VIETCRYPT, volume 4341 of Lecture Notes in Computer Science,
pages 211-228. Springer, 2006.

Phillip Rogaway and John P. Steinberger. Security/efficiency tradeoffs for
permutation-based hashing. In Smart [57], pages 220-236.

Bruce Schneier and Doug Whiting. A performance comparison of the five
AES finalists. In AES Candidate Conference, pages 123-135, 2000.

Nigel P. Smart, editor. Advances in Cryptology - EUROCRYPT 2008,
27th Annual International Conference on the Theory and Applications of
Cryptographic Techniques, Istanbul, Turkey, April 13-17, 2008. Proceed-
ings, volume 4965 of Lecture Notes in Computer Science. Springer, 2008.

Synopsys design vision. http://www.synopsys.com/.

Stefan Tillich and Christoph Herbst. Boosting AES performance on a tiny
processor core. In Tal Malkin, editor, CT-RSA, volume 4964 of Lecture
Notes in Computer Science, pages 170-186. Springer, 2008.

David Wagner. A generalized birthday problem. In Moti Yung, editor,
CRYPTO, volume 2442 of Lecture Notes in Computer Science, pages 288—
303. Springer, 2002.

Richard Weiss and Nathan L. Binkert. A comparison of AES candidates
on the Alpha 21264. In AES Candidate Conference, pages 75-81, 2000.

John Worley, Bill Worley, Tom Christian, and Christopher Worley. AES
finalists on PA-RISC and [A-64: Implementations & performance. In AES
Candidate Conference, pages 57-74, 2000.

http://www.synopsys.com/

62

BIBLIOGRAPHY

Appendix A

The constants used in LANE

Table contains the precomputed values of the constants used in LANE.

07£c703d,,
fe7£c702,,
83e7fc71,,
9e3e7fc6,,
3de3e7fcy,
6bde3e7f,,
74bde3e7,,
ab4bde3f,,
7854bde3;;,
1d854bde,,
ebd854bc,;,
665d854b,,
cc65d855,,
22c¢65d85,,
2c2c65d8;,
d2c2c65cy,
652c2c65,,
2852c2c6;,
36852c2cy,
6b6852c2,,
8ab6852d,,
£6ab6853,,
156ab685,,
2f56ab68,,
d2£56ab7,,
af2fb6aa,,
56£2f56a,,
596f2f56,,
3196£2f5,,
2d196f2f .,
704196£2,,
8b0d196e,,
ecb0d197,,
accb0d18,,
daccb0d0,,
Odaccb0d,,
fedaccbl,,
99edaccag,
659edaccy,
6d59edac;,

Table A.1: The constants used in LANE

k1
ks
ko
k13
k17
ko1

d3fe381f,,
7£3fe381,,
91f3fe39,,
4f1£3fe3,,
lef1f3fe,,
ebef1f3e,,
eabefl1f2,,
82abefle,,
ec2abef0,,
Oec2abef,
T2ec2abe,,
e32ec2a4,,
b632ec2b,,
c1632ec3;,
161632ecy,
6961632e,,
e2961633,,
14296163,
1b429616,,
35b42961,,
955b4297 .,
abb55b428,,
dab55b43,,
17ab55b4,;,
b97abbba,,
5797ab55,,
2b797ab5,,
2cb797aby,
c8cb797by,,
c68cb796,
3868cb79,,
45868cb7,
a65868ca,
5665868c,,
64665868,
d6d66587,;,
af6d6659,,
4cf6d4665,;,
2acf6d66;;,
36acf6d6,,

63

ko

ke

k1o
k14
k1g
koo
k26
k3o
k34
kss
k42

kog

k102
k106
k110
k114
k118
k122
k126
k130
k134
k138
k142
k146
k150
k154
k158

b9fficOe,,
ef9fficl,,
98f9ff1d,,
£78£f9ff0,,
0f78f9ff,,
72£78£9f .,
752f78f9,,
4152f78f;,
7615278,
d76152f6;,
3976152f .,
71976152,
8b197614,,
b0b19760,,
0b0b1976;,
34b0b197,,
a14b0b18;,
da14b0bO0,,
0da14bOb,,
cadal4dbl,,
9aadaléda,,
5b5aadal4,,
bdb5aadal,,
Obd5aadag,
5cbdbaad,,
fbcbdbab,,
c5bcbdbb,;,
c65bcbd4,;,
b465bcbce,,
63465bcb,,
cc3465bd;;,
£2c3465a,,
532c3465;,
2b32c346,,
36b32c34,,
bb6b32c2;,
87b6b32d;;,
£67b6b33;,
1567b6b3,,
1b567b6b,,

koo

k103
k107
k111
k115
k119
k123
k127
k131
k135
k139
k143
k147
k151
k155

5cf£8e07,,
a7cff8el,,
9cT7cff8f,,
Toc7cff8,;,
d7bc7cfe,,
e97bc7ce,,
ea97bc7d,
£0a97bc6 ,
3b0a97bcy,
6bb0a97b,,
ccbb0a96,;,
38cbb0a9,,
458cbbla,,
5858cbb0,,
05858cbb,,
cab8568cay,
50a5858c,,
6d0a5858,,
d6d0ab584,,
b56d0a59,,
4d56d0ab5,,
2adb56d0a;;,
5eadb56d0,,
05eadb56d;,
febeadb7,,
adebead4,,
b2debeac,,
632debeay,
5a32debe,,
ela32de4,,
b61a32df,,
7961a32d,,
£9961a33,,
159961a3;,
1b59961a,,
5db59961
93db5997 .,
ab3db598,,
dab3db58,,

k159 = ddab3db4,,

64 APPENDIX A. THE CONSTANTS USED IN LANE

Table A.1: The constants used in LANE (continued)

k160 = 6edb59eda,, k161 = 376acf6d,, k162 = cbbb567b7, k163 = bbdab3da,,
k164 = Haedb59ed,, k165 = £d76acf7,, k166 = aebbb67a,, k167 = 575dab3d,,
k16s = fbaed59f,, k169 = add76ace,, k170 = 56ebb567, k171 = fb75dab2,,
k172 = Tdbaed59,, k173 = eedd76ad,, k174 = a76ebbb57,, k175 = 83b75daa,,
k176 = 41dbaed5,, k177 = £0edd76b,, k178 = a876ebb4,, k179 = 543b75da,,
k180 = 2aldbaed,, k181 = c50edd77, k182 = b2876eba,, k183 = 5943b75d,,
k1g4 = fcaldbaf,, k1s5s = aeb0edd6, k1ge = 572876eby, k1g7 = £b943b74,,
k188 = Tdcaldba,, k189 = 3eeb0edd,, k190 = c£72876f,, k191 = b7b943b6,;,
k192 = 5bdcaldby, k193 = fdeebOecy, k194 = Tef72876,, k195 = 3f7b943b,,
k196 = cfbdcalcy, k197 = 67dee50e,, k19s = 33ef7287,, k199 = c9f7b942,,
kooo = 64fbdcaly, kop1 = e27deebl,, koo2 = al3ef729,, koo3 = 809f7b95,,
k204 = 904fbdcby, koos = 9827deed,, kooe = 4c13ef72,, koo7 = 2609f7b9,,
koopgs = c304fbdd,, koog = b1827def,, ko210 = 88c13ef6,, ko11 = 44609f7b,,
ko12 = £2304fbc,, ko13 = 791827de,, ko214 = 3c8c13ef,, ko15 = ce4609f6,,
ko16 = 672304fb,, ko17 = e391827c¢,, ko218 = T71c8c13e,, ko19 = 38e4609f,,
kooo = cc72304e,, koo1 = 66391827, kooo = e31c8c12,, koo3 = 718e4609,,
ko4 = e8c72305,, koos = a4639183,, koo = 8231c8c0y, koo7 = 4118e460,,
koog = 208c7230,, koog = 10463918, kozo = 08231c8cy, ko31 = 04118e46,,
ko3 = 0208c723,, ko33 = d1046390,, ko34 = 688231c8,, koss = 344118e4,,
ko3 = 1a208c72;, kosz7 = 04104639, ko3gs = d688231d,, ko3g = bb44118f,,
k240 = 8da208c6, ko4q1 = 46410463, ko4o = £3688230,, ko4s = T79b44118,,
ko244 = 3cda208c,, ko4s = 1641046, ko4 = 0£368823,, kog47 = d79b4410,,
kogqs = 6bcda208,, kog9 = 35e6d104,, koso = 1af36882,, kos1 = 0d79b441,,
kos2 = d6bcda2l,, kos3 = bbbe6dll,, kos4 = 8daf3689,, koss = 96d79b45,,
kose = 9b6bcda3,, kos7 = 9db5e6d0,, koss = 4edaf368,, kosg = 276d79b4,,
koeo = 13b6bcda, koe1 = 09db5e6d,, ko2 = ddedaf37., koes = ba76d79a,,
kogsa = 5d3b6bcd, kogs = fe9dbbeT,, kogs = afdedaf2,, kog7 = 57a76d79,,
koeg = £bd3b6bd,, koeg = ade9db5f,, koro = 86fdedae,, ko1 = 437a7647,,
ko7o = f£1bd3b6a,, ko73 = 78de9db5,, ko74 = ec6fdedby,, kors = a637a76¢cy,
ko7e = 531bd3b6,;, ko7 = 298de9db,, kors = c4c6fdecy, korg = 62637a76,,
kogo = 3131bd3by;, kog1 = c898de9c,, kogo = 644c6fde,, kogs = 322637a7,,
kogq = ¢9131bd2,, kogs = 64898de9,, kogg = e244c6f5,, kog7 = al22637b,,
kogs = 809131bc,, kogg = 404898de, kogo = 20244c6f,, kog1 = c0122636,
kogo = 6009131b,, kog3 = e004898c,, kogq = T700244c6,, kogs = 38012263,
koge = ¢cc009130,, kog7 = 66004898, kogs = 3300244c,, kogg = 19801226,
k300 = 0cc00913,, k301 = d6600488, k302 = 6b300244,, k303 = 35980122,
k304 = 1lacc0091,, k3os = dd660049,,, k3oe = beb30025,, kso7 = 8£598013,,
k308 = 97acc008, k309 = 4bd66004,;, k310 = 25eb3002;, k311 = 12£59801,,
k312 = d97acc01,, k313 = bcbd6601,, k314 = 8e5eb301,, k315 = 972£5981,,
k316 = 9b97accl,, k317 = 9dcbd661,, k318 = 9eebeb3l,, k319 = 9£72£599,,
k320 = 9fb97acd,, k321 = 9fdcbd67,, k3oo = 9feebeb2,, k3o3 = 4f£72f59,,
k324 = £7£fb97ad,, k3aos = abfdcbd7,, k3oe = 85feebeay, k3o7 = 42ff72f5,,
k3og = £17fb97b,, k329 = a8bfdcbcy, k330 = 545feebe,, k331 = 2a2ff72f,,
k332 = cb17fb96,, k333 = 628bfdcby, k334 = eldbfeed,, k3ss = 70a2ff72,,
k336 = 38517fb9,, k337 = cc28bfdd,, k33s = b6145fef,, k339 = 8b0a2ff6,,
k340 = 458517fb,, k3q1 = £2c28bfcy, k3q2 = T796145fe,, k343 = 3cbOa2ff,,
k344 = ceb8517e,, k345 = 672c28bf,, k346 = e396145e,, k347 = TlcbOa2f,,
k348 = e8e58516,, k349 = TAT72c28by,, k350 = eal396144,, k351 = 751cbOa2,,
k3s2 = 3a8eb851,, k3s3 = cd472c¢c29,, k3sa = b6a39615,, k3s5 = 8b51cbOby,
k356 = 95a8e584,, k357 = 4ad472c2,, k3ss = 256a3961,, k359 = c2b51cbl,,
k3eo = b15a8e59,, k3e1 = 88ad472d., k3e2 = 9456a397,, kses = 9a2bblcay,
k3ga = 4d15a8e5;, k3gs = £68ad473,, k3gs = ab456a38;, k3g7 = 55a2bblc,,
k3es = 2ad15a8e,, k3eg = 1568ad47,, k370 = dab4b56a2,, k371 = 6d5a2b51,,
k372 = eBad15a9,, k373 = a3568ad5;, k374 = 81ab456b,, k375 = 90d5a2b4,,
k376 = 486ad1ba,, k377 = 243568ad,, k37s = c21ab4b7,, k379 = bl0db5a2a,,
k3go = 5886ad15,, ksg1 = £c43568b,, k3gs = ae2labdd,, k3g3 = 5710d5a2,,
k3g4 = 2b886adl,, k3gs = c5c43569,, k3gse = b2e2labb,, k3g7 = 89710d5b,,
k3gs = 94b886acy, k3gg = 4abc4356,, k3go = 252e21ab,, k3g1 = ¢29710d4,,
k392 = 614b886a,, k393 = 30a5c435,, k394 = c852e21by,, k395 = b429710c,,

k3ge = 5a14b886,, k3g7 = 2d0abc43,, k3gs = c6852e20,, k3gg = 63429710,

65

Table A.1: The constants used in LANE (continued)

kapo = 31a14b88,;, kap1 = 18d0abcé,, kap2 = 0c6852e2;, kap3 = 06342971,
k404 = d31a14b9,, k405 = b98d0abd,, k406 = 8cc6852f,, kao7 = 96634296,
k408 = 4b3laldb,, k409 = £598d0a4,;, k410 = Tacc6852,, k411 = 3d663429,,
k412 = ceb3lalb,, k413 = b7598d0b,;, k414 = 8bacc684,, kq15 = 45d66342,,
kq16 = 22eb3lal,, kq17 = c17598d1,, k418 = bObacc69,, k419 = 885d6635,,
ka20 = 942eb31b,, ka21 = 9al17598c,, k422 = 4dObacc6,, k423 = 2685d663;,
kq24 = c342eb30,, kqo5 = 61217598, k426 = 30dObaccy, kqo7 = 18685d66,,
ka28 = 0c342eb3;, ka29 = d61a1758,;, ka30 = 6b0dObacy, ka31 = 358685d6,;,
k432 = lac342eb,, k433 = dd61al74,, k434 = 6eb0dOba,, k435 = 3758685d,,
k436 = cbac342f,, k437 = bbd61al6,, k438 = 5aeb0dOby;, k439 = £d758684,,
kq40 = Tebac342,, kqq1 = 3fbd6lal,, kq42 = cfaeb0dl,, k443 = b7d75869,,
k444 = 8bebac35,, k445 = 95£5d61by;, k446 = 9afaebOcy, k447 = 44747586,
k448 = 26bebac3;, ka49 = c35£5d60,, kaso = 6lafaebO,, ka51 = 30d7d758;,
k452 = 186bebacy, k453 = 0c35£5d6,;, k454 = 06lafaeby,, k455 = d30d7d74,,
ka5 = 6986beba,, kas7 = 34c35f5d,, kasgs = cablafaf,, kas9 = b530d7d6;,
ki60 = 5a986beby, kqg1 = £d4c35f4,, kyg2 = Teablafa,, kq63 = 3£530d7d,,
k464 = cfa986bf,, k465 = b7d4c35e,, k466 = Bbeablaf,, k467 = £d£530d6,
ki = Tefa986b,, kagg = ef7d4c34,, kq70 = TTbeabla,, kq71 = 3bdf530d,,
k472 = cdefa987,, k473 = b6£7d4c2,, k474 = 5bTbeabl,, k475 = £dbdf531,,
ka76 = aedefa99,, ka77 = 876£7d4d,, ka7 = 93bT7bea’, ka79 = 99dbdf52,,
kqgo0 = 4cedefa9,, kqg1 = £676£7d5,, k482 = ab3b7beby, kg3 = 859dbdf4,,
kagqa = 42cedefa,, kags = 21676£7d,, kage = cOb3b7bf,, kag7 = b059dbde,;,
kqs8 = 582cedef, kqgg9 = £c1676£6,, k490 = 7eOb3b7by,, k491 = ef059dbc,,
kago = T782cede,, ka93 = 3bcl676f,, k494 = cde0b3b6,;, ka95 = 66£059db,;,
kq96 = e3782cecy, kq97 = T1bcl676,, k498 = 38de0b3by, k499 = cc6£059c,,
k500 = 663782cey, k501 = 331bcl167,, ks02 = c98de0b2,, k503 = 64c6£059,,
k504 = 2637824, k505 = al31bcl7,, k506 = 8098dela, k507 = 404c6£05,,
ksos = £0263783, ks09 = a8131bcOy, ks10 = 54098de0,;, k511 = 2a04c6f0,,
k512 = 15026378, k513 = 0a8131bc,, k514 = 054098de,, k515 = 02a04c6f,,
k516 = d1502636;, k517 = 68a8131by, k518 = e454098c,, k519 = 722a04c6,,
k520 = 39150263, ks21 = cc8a8130,, ks2o = 66454098, k523 = 3322a04c,,
k524 = 19915026, k525 = 0cc8a813,, k506 = d6645408,;, kso7 = 6b322a04,,
ks2g = 35991502, ks29 = lacc8a81,, ks30 = dd664541,, ks31 = beb322al,,
k530 = 8£599151,, k533 = 9Tacc8a9,, k534 = 9bd66455,, k535 = 9deb322by,
ks36 = 9e£59914,, ks37 = 4fT7acc8ay, ks3g = 27bd6645,;, ks39 = c3deb323,,
k540 = b1ef5990,, ks41 = 58fTacc8y, ks42 = 2c7bd664,, k543 = 163deb32;,
k544 = Oblef599,, k545 = d58fTacd,, ks46 = bacTbd67, ks47 = 8d63deb2,,
k548 = 46blef59,, k549 = £358f7ad,, ks50 = a9ac7bd7,, k551 = 84d63deay,
k550 = 426blef5,, k553 = £1358f7b,, k554 = a89acTbcy, k555 = 544d63de,,
kss6 = 2a26blef, kss7 = c51358£6,;, kss8 = 6289ac7by, kss9 = e1444d63c,,
k560 = T7T0a26ble,, k561 = 3851358f,, k562 = cc289ac6,, k563 = 66144d63,,
ksea = e30a26Db0,;, kses = 71851358, ksee = 38c289acy, kse7 = 1c6144d6,,
k568 = 0e30a26b,;, k569 = d7185134,, k570 = 6b8c289a,, ks71 = 35c6144d,,
k572 = cae30a27,, ks73 = b5718512,, ks74 = 5ab8c289,, ks7s = £d5c6145,,
k576 = aeae30a3;, ks77 = 87571850, k578 = 43ab8c28,;, k579 = 21d5c614,,
ksg0 = 10eae30a,, ksg1 = 08757185, ksg2 = d43ab8c3,, k583 = bald5c60,,
k584 = 5d0eae30, kss5 = 2e875718;, k586 = 1743ab8c, k587 = Obaldbc6,;,
ksss = 05d0eae3,, ksg9 = d2e87570, k590 = 69743ab8,, k591 = 34baldbcy,
k592 = labdOeae, k593 = 0d2e8757, k594 = d69743aa,, k595 = 6b4bald5,,
k596 = ebabdOeby, k597 = a2d2e874,, k598 = 5169743a,, k599 = 28b4dbald,,
keoo = c45a5d0f;, k601 = b22d2e86,;, keo2 = 59169743, keos = fc8b4baly,
keoa = Tedb5abd0,, keos = 3f22d2e8,;, keos = 1£916974,, keo7 = 0fc8b4dba,,
keos = 07e45abd,, keog = d3f22d2f,, ke10 = b9f91696,, ke11 = 5cfc8bdby,,
ke12 = feTedbad,, ke13 = 7£3£22d2,, ke14 = 3f9£9169,, k615 = cfcfc8b5,,
ke16 = bTe7edbb,, ke17 = 8bf3£f22c,, ke1s = 45£9f916,, ke19 = 22fcfc8by,,
ke2o = cl7eTedd,, keo1 = 60b£3£f22,, keoa = 305£9f91,, keas = c82fcfc9,,
keoqa = b417eTe5,, keos = 8a0bf3f3,, keog = 9505£f9£8,, keo7 = 4a82fcfc,,
keog = 25417e7e,, k629 = 12a0bf3f,, k630 = d9505f9e,, ke31 = 6ca82fcf,,
ke32 = e65417e6,, ke33 = 732a0bf3,, ke34 = e99505£8,;, ke3s = T4ca82fcy,

ke3g = 3a65417e,, ke37 = 1d32a0bf,, ke3g = de99505e,;, ke3g = 6f4ca82f,,

66 APPENDIX A. THE CONSTANTS USED IN LANE

Table A.1: The constants used in LANE (continued)

keao = e7aB5416,, keq1 = 73d32a0b,, keaz = €9e99504,, keas = T4f4ca82,,
k644 = 3aT7abb4l,, keas = cd3d32al,, k646 = b69e9951,, kea7 = 8b4fdca9,,
ke4g = 95aT7ab55,, ke49 = 9ad3d32b,, keso = 9d69e994,, kes1 = 4ebdfdca,,
kes2 = 275aT7a65;, kes3 = c3ad3d33,, kes4 = b1d69e98,, kes5 = 58ebdfdc,,
kese = 2c7baTab,, kes7 = 163ad3d3., kess = db1d69e8,, kesg = 6d8ebdfd,,
kego = 36cT75aTay, kes1 = 1b63ad3d,, keg2 = ddb1d69f ., kess = bed8ebde,,
kesa = 5f6c75a7,, kees = £fb63ad2,, kese = 7T£db1d69,, kee7 = efed8ebb,,
kees = a7f6c75by, k6o = 83fb63acy, ke7o = 41£db1d6,;, ke71 = 20fed8eb,,
kg7 = c07£6cT4,, ke73 = 603fb63a,, ke74 = 301fdbid,, ke7s = c80fed8f,,
ke7e = b40T£6c6,, ke77 = 5a03fb63,, kers = £d01£db0, kerg = Te80fed8,,
keso = 3f407f6¢,, kes1 = 1fa03fb6,, kege = 0fd01fdb,, kess = d7e80fecy,
kega = 6bf407£6,, kegs = 35fa03fb,, kese = cafdOlfc,, keg7 = 657e80fe,,
kess = 32bf407f,, kesg = c95fal3e,, kego = 64afd0if,, keg1 = e257e80e,,
kega = T12b£f407,, kegs = e895fa02,, kega = T44afdOl,, kegs = ea2b57e81,,
keoe = ab12bf4dl,, keg7 = 82895fal,, keog = 9144afdl,, kegg = 98a257e9,,
k700 = 9¢512bf5,, k701 = 9e2895fb,, k702 = 9f144afc,, k703 = 4f8a257e,,
k704 = 27c512bf,, k705 = c3e2895e,, k7oe = 61f144af,, k707 = e0£8a256,,
k708 = 707c512b,, k709 = e83e2894,, k710 = T41f144a,, k711 = 3a0f8a25,,
k712 = ¢d07c513,, k713 = b683e288, k714 = 5b41f144,, k715 = 2da0f8a2,,
k716 = 16d07c51,, k717 = db683e29,, k718 = bdb41f15,, k719 = 8edal0f8by,
k720 = 976d07c4,, k721 = 4bb683e2,, k7o = 25db41fl,, k723 = c2edal0f9,,
k724 = b176d07d,, k725 = 88bb683f;, k726 = 945db4dle,, k727 = 4a2edalf,,
k7og = £5176d06,;, k729 = Ta8bb683,, k730 = ed45db40,, k731 = T6a2edal,,
k732 = 3b5176d0,, k733 = 1da8bb68,, k734 = O0ed45db4,, k735 = 076a2eda,,
k736 = 03b5176d,, k737 = d1da8bb7,, k738 = b8ed4bda,, k739 = 5c76a2ed,,
k740 = £e3b5177,, k741 = aflda8ba,, k749 = 578ed45d,, k743 = fbcT76a2f,,
k744 = ade3b516,, k745 = 56f1da8by, k746 = fb78ed44,, k747 = TdbcT76a2,,
k748 = 3ede3b51,, k749 = cf6f1da9,, k750 = b7b78ed5,, k751 = 8bdbcT76b,,
k752 = 95ede3b4,, k753 = 4af6flda,, k754 = 257b78ed, k755 = c2bdbc77,,
k756 = blbede3a,, k7s7 = 58af6f1d,, k7sg = £cb7b78f,, k759 = ae2bdbc6,,
k760 = 5715ede3;, k761 = fb8af6f0,, k762 = 7dcb7b78,, k763 = 3ee2bdbcy,

k764 = 1f715ede,, k765 = 0fb8af6f,, k766 = d7dc57b6,, k7¢7 = 6bee2bdb,.

	Introduction
	Specification
	Introduction
	Preliminaries
	Bit strings, bytes and states
	The finite field GF(28)

	Building blocks
	SubBytes
	ShiftRows
	MixColumns
	AddConstants
	AddCounter
	SwapColumns

	Preprocessing
	Message padding
	Setting the initial chaining value

	The Lane compression function
	The message expansion
	The permutations

	The output transformation

	Design rationale
	The iteration mode
	The message padding
	The use of a counter
	The output transformation
	The use of a salt value
	A parallel iteration mode

	The compression function
	The message expansion
	The permutations
	The constants

	Advantages and limitations of Lane
	Advantages
	Limitations

	Security analysis
	Reduced versions of Lane for cryptanalysis
	Standard differential cryptanalysis
	Active lanes in the first layer
	Active S-boxes per lane
	Breaking reduced versions
	Maximum probability of a trail

	Truncated differential cryptanalysis
	Truncated differentials
	Identifying the optimal truncated differential
	Using truncated differentials for collision searching

	Higher order differential cryptanalysis
	A fourth order differential distinguisher
	Square attacks on the compression function
	Multiset distinguishers

	Cryptanalysis of wide-block Rijndael
	Algebraic attacks
	Attacks based on reduced query complexity
	General comments
	Results on Lane
	Bounds for query complexity

	Wagner's generalised birthday attack
	Meet-in-the-middle attacks
	Long message second-preimage attacks
	Length-extension attacks
	Multicollision attacks
	On the mode of operation
	Expected strength of Lane

	Implementation aspects
	General purpose CPU's
	Bitsliced implementation
	Intel AES-NI instruction set

	Embedded systems with an 8-bit CPU
	Hardware implementation

	The constants used in Lane

