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1 Introduction

SHAMATA is a register based hash function with a variable digest size. SHAMATA can hash messages of
length up to 264−1 bits. The chaining value is of length 2048 bits and is formed by the internal states of two
registers. Message is incorporated into the registers as 128-bit data blocks. The registers are clocked twice
after incorporation of each data block. SHAMATA also employs the MD-strengthening to pad the message
to a multiple of 128 bits. Finally, the output is composed from the last internal state of one of the registers.

SHAMATA uses one of the AES primitive functions MixColumns to incorporate the message into the
internal state and a modified version of the AES round function to mix the internal state.

2 Notation

⊕ : XOR operation
|| : Concatenation
A[i] : i-th most significant block (128 bits) of register A

A(i) : i-th most significant word (64 bits) of register A

A{i} : i-th most significant bit of register A

CV : Chaining Value

3 Specification

SHAMATA employs the MD-strengthening to pad the message to a multiple of 128 bits similar to the
padding of SHA. A “1” bit and sufficient number of “0” bits are concatenated to the message so that the
length of the padded message equals 64 modulo 128. Then the length of the original message represented as
a 64-bit value is concatenated at the end of the padded message. The digest lengths are multiples of 32 bits
starting from 224 bits up to 512 bits.

We always take the left-most bit as the MSB and the data given by the smallest index is the most
important. Message blocks are shown as M1,M2, ...,MNoMB where the last block, MNoMB , is the padding.

SHAMATA internal state consists of two registers:

• B register: main mixing register, consists of 4 blocks of size 128 bits each for a total of 512 bits.

• K register: second mixing register, consists of 12 blocks of size 128 bits each for a total of 1536 bits.

SHAMATA can be separated into 3 phases:

1. Initialization:

Initial internal states of B and K registers are formed in this phase. The IV vector is formed by the
digest size. Then IV is incorporated into the registers B and K and the registers are updated eight
times. The resulting internal state is taken as the initial internal state.

2. Message Loading:

This is the main part of SHAMATA, where message blocks are incorporated into the registers B and
K. Then the B and K registers are updated using the modified AES round function, which we call
ARF .

3. Finalization: The number of message blocks (NoMB) is taken as a 128-bit message block. For
example, if NoMB = 10 then it is taken as 0x0000 0000 0000 0000 0000 0000 0000 000A as a 128-bit
message block.

The B and K registers are updated with NoMB and then clocked using the modified AES round
function, ARF . This procedure is repeated 32 steps. Then the B register is used to produce the
message digest.

3
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Hash Length IV in hex
224 0x0000 0000 0000 0000 0000 0000 0000 00E0
256 0x0000 0000 0000 0000 0000 0000 0000 0100
384 0x0000 0000 0000 0000 0000 0000 0000 0180
512 0x0000 0000 0000 0000 0000 0000 0000 0200

Table 1: Examples of IV ’s which are the hash lengths written as 128-bit vectors.

Each phase of SHAMATA uses a function called UpdateRegister. The high level description of SHAMATA
is given in Algorithm 1.

We define r as the number of iterations for the modified AES round function ARF during message
loading. We determine that r is equal to one if the digest size is less than or equal to 256 bits and r is equal
to two if the digest size is greater than 256 bits.

3.1 UpdateRegister(State, D, blockno, r)

This is the main function used throughout SHAMATA. As input it takes r to specify the clocking behavior
and a 128-bit value D as the data block to be incorporated into the registers with its index blockno which
indicates its order in the message. The high level description of UpdateRegister is given in Algorithm 2.

UpdateRegister function can be decomposed into 2 sub-functions:

3.1.1 LoadDataBlock(State, D, blockno)

The function LoadDataBlock loads an extended copy of the given data D and its index blockno, which is the
order of D in the message, into the registers B and K.

Let P = MixColumns(D) and Q = MixColumns(DT ) where DT is the transpose of the data D when D

is considered as a 4× 4 matrix as in AES. That is, i-th most important four-byte forms the i-th column for
i = 1, 2, 3, 4. The MixColumns matrix is applied to the columns. Let P ′ = P (1)||Q(0) and Q′ = Q(1)||P (0).
Then

B[2] = B[2]⊕ P ⊕ blockno

B[3] = B[3]⊕Q⊕ blockno

K[3] = K[3]⊕ P ′

K[5] = K[5]⊕Q

K[7] = K[7]⊕ P

K[11] = K[11]⊕Q′

where blockno is a 64-bit vector but it is considered as a 128-bit vector while XOR’ing.
Example. The blockno is 10 while incorporating the 10-th message block (which is M10). Consider

blockno as a 128-bit vector to incorporate it into the register B. So, 10 will be written as 0x0000 0000 0000
0000 0000 0000 0000 000A.

3.1.2 ClockRegister(State, r)

The function ClockRegister is used to update the contents of B and K registers by clocking the registers
twice using the modified AES round function. B and K registers are considered as shift registers with 128-bit
cells and at each clocking their feedbacks are calculated as:

feedK = ARF r(B[2])⊕B[0]

feedB = feedK ⊕K[9]⊕K[0]

4
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Algorithm 1: High Level Description of SHAMATA.

Data: 128-bit blocks of the message with padding, h: digest size given as a 128 bit vector. h must be
a multiple of 32, between 224 and 512.

Result: h bit message digest
begin

Initialization Phase:
if h ≤ 256 then r := 1 else r := 2
begin

Initialize the registers: B:=0x0, K:=0x0

IV := h: Consider h as a 128-bit vector IV (see Table 1)
for i← 1 to 8 do

UpdateRegister(State, IV , i, r)

end
Message Loading Phase:
begin

for i← 1 to NoMB:Number of Message Blocks do
UpdateRegister(State, M [i], i, r)

end
Finalization Phase:
begin

for i← 1 to 32 do
UpdateRegister(State, NoMB, i, r)

ProduceOutput(State, h): Produce h bit output from the block register B

end

end

Algorithm 2: High Level Description of UpdateRegister.

Data: 128 bit value D with its blockno and r

Result: Updated B and K

begin
LoadDataBlock(State, D,blockno): Incorporate the data block with its index blockno into the
registers B and K

ClockRegister(State, r): Clock the B and K Registers twice. Run the modified AES round
function r rounds for each clocking

end
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Then B and K registers are shifted to the left by 128 bits and feedbacks are placed at their corresponding
low 128 bits for each clocking, i.e.

B[i] = B[i + 1], for i = 0, 1, 2

B[3] = feedB

K[i] = K[i + 1], for i = 0, ..., 10

K[11] = feedK

Clocking the registers B and K once is depicted in Figure 1. Clocking the registers twice is given as

feedK1 = ARF r(B[2])⊕B[0]

feedB1 = feedK1 ⊕K[9]⊕K[0]

feedK2 = ARF r(B[3])⊕B[1]

feedB2 = feedK2 ⊕K[10]⊕K[1]

B[i] = B[i + 2], for i = 0, 1

B[2] = feedB1

B[3] = feedB2

K[i] = K[i + 2], for i = 0, ..., 9

K[10] = feedK1

K[11] = feedK2.

ARF is the AES [21] Round Function without key addition. So, ARF consists of SubByte, ShiftRows

and MixColumns operations of AES. The parameter r determines how many times the ARF function is
iterated for each clocking. Hence, ClockRegister function calls the ARF function 2r times.

ARF r

B[1] B[2] B[3]B[0]

K[0]K[1]K[2]K[3]K[4]K[5]K[6]K[7]K[8]K[9]K[10]K[11]

Figure 1: Clocking the Registers B and K once.

3.2 ProduceOutput(State, h)

ProduceOutput produces the digest using the register B. The output is the first h Least Significant Bits of
the register B where the i-th LSB of the output is the i-th LSB of B:

Output = B{512− h}||B{512− h + 1}|| · · · ||B{511}.
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4 Design Rationale

SHAMATA hash function is designed as a secure, fast, efficient, and flexible hash function. It can provide
a satisfactory performance both on ultimate software platforms such as 64-bit processors and on hardware
platforms such as FPGAs.

Recall that SHAMATA is a register based hash function. The registers B and K are loaded with the
current message blocks and then updated. The registers B and K are operated like a block and a key of a
Feistel type block cipher respectively. The register B can be considered as the block register and the register
K can be considered as the subkey register of the block cipher (see Figure 2). Unlike classical block ciphers,
the subkeys are updated by data, by the block register and by the key register.

ARF
r

ARF
r

Ki

B[0]||B[1] B[2]||B[3]

Figure 2: The High Level Structure of SHAMATA as a Feistel Network. Ki corresponds the data from the
K register which is XOR’ed to produce two feedback values of the B register. Ki can be considered as the
subkey of i-th step.

The main philosophy behind supplying security by SHAMATA is to maximize the number of active S-
boxes in the AES round function ARF for any given difference in message blocks. It is well known that ARF

has an excellent confusion-diffusion performance. Any message block is encoded by a linear code before it is
incorporated into the registers B and K by MixColumns operation of AES. After encoding a message block
M , we obtain the blocks (P,Q) and (P ′, Q′). The MixColumns operation ensures that at least 8 bytes of
(P,Q) (and 8 bytes of (P ′, Q′) also) are active for any given difference to the message block M .

Besides encoding message blocks, loading several copies of an encoded message block provides a fast
diffusion.

In general, current data block is confused fully before loading next data in block cipher based hash
functions. Unlike classical block ciphers in hash modes, the linear redundancies in blocks and high diffusion
property of SHAMATA provides us of fast data loading securely. By this way, we obtain a fast hash function.

The index value blockno used in updating the registers B spoils the monotony and ensures that the
feedback function is a time-depending function and changes at each data loading. This strengths against
several attacks such as fixed-point attacks. Moreover, incorporating blockno destroys a structural property
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of ARF and MixColumns: If all the sixteen bytes of an input of ARF (or MixColumns) are equal, then all the
sixteen bytes of the output of ARF (or MixColumns) are also equal. All the operations in SHAMATA consist
of these two functions except XOR. On the other hand, XOR preserves this property too. Assume that the
internal state is zero at a time. Loading only the message blocks whose all the sixteen bytes are equal, would
produce an internal state whose blocks would have this property also if blockno were not incorporated. This
property is valid also for XOR differences of the message blocks whose all bytes are equal.

The output function takes values only from B so that preimage resistance is consolidated. Remark that
the next state function of the nonlinear registers B and K are invertible. So the registers can also be clocked
backward easily if their contents are completely known.

SHAMATA hash function is suitable in parallel implementation. Each of encoding and data loading can
be implemented in parallel. Encoding of next data block can be done while applying UpdateRegister to the
current data. Moreover, the input of the feedback function for the registers is formed from the third cell of
the register B. It is straightforward that the feedback function can be run twice and the two feedback values
of both B and K can be calculated in parallel.

4.1 Design Criteria for Building Blocks

• ARF : The AES round function ARF is used to compute both the feedbacks of K (feedK1, feedK2)
and the feedbacks of B (feedB1, feedB2). This is the only nonlinear part of SHAMATA.

• Encoding: Data is encoded as M −→ (P,Q) by MixColumns operation which is an [32, 16, 8] block code
over GF (256). Hence, any difference in a data block results in at least 8 active bytes. In addition, small
differences are diffused faster because of the concordant diffusion properties of ARF with MixColumns.
For example, one byte difference in M causes 8-byte difference in (P,Q) and these differences cause
32-byte (full-byte) differences after ARF in two clocking since each difference in 8-byte differences
comes to a different column after ShiftRows operation of ARF .

Encoding restricts the control of attacker while trying to find collisions. Because, the attacker cannot
impose any difference at a certain time. On the other hand, encoding is implemented by using tables
of size 8x32 in optimized codes. So, we can obtain endian-free implementation of data loading.

• Incorporating Data: Data is incorporated into the registers B and K by XOR’ing. XOR operation is
a simple operation both for software and for hardware. On the other hand, XOR is compatible with
the building blocks of AES in terms of security. Any difference in (P,Q) remains unchanged after
incorporating into the registers if there are no differences in the corresponding registers. For instance,
one byte difference in M causes 8-byte difference in (P,Q) and this 8-byte difference is incorporated
into B[2] and B[3] by XOR’ing.

• Registers: The register B is confused fast whereas the register K keeps history of differences for a long
time (during 6 loading) by a large internal state. The fast confusion of the register B provides several
iterations of ARF function. In fact, exactly n iterations of ARF is applied to the initial state of B[2]
and B[3] before the (n + 1)-th loading.

• Feedback Taps: There are two feedback taps except the most significant blocks of the registers B and
K, namely B[2] and K[9]. B[2] is the input for the ARF function. Also, P is incorporated into B[2].
So, we obtain a fast confusion of data throughout the B register. On the other hand, since the feedback
taps of B itself are all of even index number (B[0] and B[2] ), there is no diffusion between the blocks
having even index number with the blocks having odd index number (B[1] and B[3] ) by means of B

register. This can be seen easily from the Feistel approach depicted in Figure 2. The outputs of two
ARF functions in Figure 2 are seen not to be diffused by a diffusion layer after two ARF functions.
Whereas, K[9] supplies diffusion among the blocks of B having even index number with the blocks of
B having odd index number.

• IV : IV is determined by the digest size and is used to construct the initial states of the registers.
The length of the initial states is 2048-bits and it is not efficient to use 2048-bit constants as initial

8



TÜBİTAK-UEKAE SHAMATA

states for different digest sizes, particularly for restricted environments. So, we suggest an easy way to
construct initial states.

4.2 Related Constructions

The design philosophy of SHAMATA hash function is based on some ideas and security criteria which have
been discussed recently in the literature. For example we have adopted that the large internal state size
improves security. Lucks has proved some statements in this direction [15]. It may be considered that the
SHAMATA construction resembles the sponge construction [1]. Sponge constructions are also register based.
Message blocks are incorporated into a register and then the register is updated. As one difference, we encode
(and hence enlarge) the message before incorporating. Also, unlike sponge construction, the output is formed
from the final internal state of the register at once. Moreover, we adopt that incorporating the index i into
the registers enhances the security against certain attacks such as slide attacks or fixed point attacks. A
similar idea was introduced in the framework HAIFA [3] by Biham and Dunkelman. However, the number
of bits hashed so far is incorporated in HAIFA. Kelsey and Schneier also have proposed to add the message
index number to the inputs of compression function [13]. We utilize the digest sizes so as to generate the
initial states of the register like HAIFA construction. The only constant value is IV and it is determined by
the digest size.

4.3 Tunable Parameters

SHAMATA has several tunable parameters. The specific values of the parameters are determined mainly by
the digest size. The main parameter is r. The number of rounds of ARF , r, in each clock determines the con-
fusion and the diffusion performance of the feedback function. Increasing r causes higher confusion/diffusion
with a cost of more time. There is a straightforward tradeoff between security and efficiency for the choice
of the parameter r.

The confusion of the current data block into the registers B and K is mostly given by the number of
clocking the registers for each data loading which we determine as two. The number of clocking for each data
loading can be increased. However, this causes extra overhead in time meanwhile the security is expected to
be enhanced.

The initialization phase consists of 8 steps of IV loading. We need different initial internal states for
different digest sizes. These internal states are not supposed to be so much confused and uncorrelated. So,
we find 8 steps enough to obtain different initial internal states.

The finalization phase consists of 32 steps of NoMB loading. The finalization phase is four times longer
than the initialization phase. Because, the last data blocks must be well confused fairly. The latest block
incorporated into the ARF function is K[8] and it is incorporated into the ARF function after 5 steps.
Hence, 10 iterations of ARF is applied to the value in K[8] after 15 steps for r = 1. Assuming 10 rounds of
ARF is secure, we expect that all the block of B are well confused by each message bit after 16 steps of the
finalization phase. Adding another 16-step for security margin, we decide the finalization phase to consist of
32 steps.

4.4 Weakened Version

Several weakened version of SHAMATA can be designed by tuning the parameters such as r, number of
clocks per each loading and the number of loadings in finalization phase.

Apart from changing the parameters, one smart way of weakening SHAMATA is cancel the encoding
M −→ (P,Q) by MixColumns operation and considering (P,Q) as a message block itself. This will increase
the length of message block to 256-bit. Hence, the throughput is increased by a factor of two.

The initialization and the finalization steps may stay unchanged. It is an interesting question whether
this weakened version satisfies all the security requirements.
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4.5 Pros and Cons

SHAMATA has the following advantages:

• Not different algorithms for different digest sizes.

• Uses AES round function ARF : This gives advantages both in security and in implementation. All
the results and developments for efficient implementation of AES both in the literature and in industry
can be applied to SHAMATA. For example, a new set of Single Instruction Multiple Data (SIMD)
instructions that will be introduced in the next generation of the Intelr processor family will enable
much faster ARF implementation [26].

In addition, AES and SHAMATA can be implemented in a crypto chip with a mutual implementation
of ARF function, saving area. Moreover, the security of AES is well analyzed in the literature which
gives information about the security of SHAMATA.

• Simple design. Easy to analyze.

• Flexible. Any flexibility property of AES can be used in order to achieve good performance in terms
of area-time tradeoff.

• Highly parallelizable: AES is itself highly parallelizable. Moreover, two AES round function can be
implemented in parallel. Encoding the data and incorporating it into the registers can be also done in
parallel.

• No pitfalls of MD construction.

• Small memory for data since data block length is only 128-bit. In addition, almost no memory needed
for constants.

• Promising high performance on next generation CPUs.

• Easily tweakable. Tunable parameters can provide different versions of SHAMATA easily.

• Word oriented even though it can supply endian-free implementation.

SHAMATA has the following disadvantages:

• Large internal state size. 2048 bits of registers makes implementation of SHAMATA in small areas like
RFID chips difficult. We think that the internal state size must be twice as large as the digest size as
security criterion like the security criterion on the internal state size of stream ciphers. One can design
a hash function foiling the security pitfalls of MD construction by adopting this criterion.

The digest size of SHAMATA can be arbitrarily large, up to 512 bits. In fact, implementation difficulties
of hash functions having large digest size like 512 bits in a small area is a common problem. On the
other hand, the technology of chips develops quite fast, resulting in significant increase in number of
gates.

• Slow finalization. Finalization of SHAMATA consists of 32 steps which slows down SHAMATA while
hashing small data. Anyway, finalization takes a few thousands of cycles which is, we think, tolerable
for almost all the applications.

5 Security Analysis

We claim that SHAMATA satisfies full security against (second) preimage attacks and collision attacks.
Moreover, SHAMATA hash function is secure against multicollision attacks such as the one given in [11].

10
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5.1 Collision Resistance

We claim that the best attack to find a collision with SHAMATA is the brute force attack with workload
2n/2 where n is any digest size including 224, 256, 384 and 512. SHAMATA can provide the corresponding
security level when n is replaced by a smaller number m, by choosing a fixed subset of output bits.

We can categorize the collision into four groups: For some messages of same block length, the Chaining
Values (CV ’s) at the end of message loading (in the beginning of finalization) may be different but the
digest values may be same. For some messages of same block length, the CV ’s at the end of message loading
may be same. For some messages of different block length, the CV ’s at the end of message loading may be
different but the digest values may be same. For some messages of different block length, the CV ’s at the
end of message loading may be same (see Table 2).

NoMB’s vs CV ’s Same Different

Same Same CV ’s with same finalization
functions

Different CV ’s with same final-
ization functions

Different Same CV ’s with different final-
ization functions

Different CV ’s with different fi-
nalization functions

Table 2: The four categories of hash collision. Any difference on the number of message blocks (NoMB’s)
results in different finalization functions.

Same CV - Same NoMB: This is the most common attack scenario for finding collisions. In fact, the
most famous attacks on SHA such as those in [2, 5, 19, 20] families are also of this group.

We should remark at this point that finding collision on chaining value is as hard as finding collision
on hash value for MD constructions. This is one of the main weaknesses of MD constructions causing
easy collisions (collisions on one block or collisions on two blocks if the compression function is weak), easy
multicollisions (finding 2k collisions costs only k times more than finding one collision [11]), and makes MD
construction vulnerable to herding attack [13], long message second- preimage attacks [12], etc. All such
attacks aim at finding collision on chaining value to obtain a collision on hash value.

One of the design principle adopted in SHAMATA is that finding collision on chaining value is much
harder than finding collision on hash value. This is supplied by choosing a large CV length and by encoding
the message block before incorporating it into the registers.

It is trivial that finding collision on CV just by imposing a difference on a single block is impossible.
Even we can prove that it is also impossible to find collision on CV by imposing differences on 8 consecutive
blocks. We prove this fact in the following statements.

Lemma 1 If there exists a nonzero difference in K[0] after loading the i-th message blocks, then it is
impossible to find a collision on CV ’s after loading the (i + 1)-th message blocks.

Proof. Assume on the contrary that the statement is wrong. The next state function of the registers is
bijective. So, it is impossible to destroy a nonzero difference in the clocking step. So, the only step in destroy-
ing a nonzero difference is the message loading. There must be differences in B[2], B[3],K[11],K[7],K[5]
and K[3] (these are where data is incorporated) and there must be no difference in the other cells. On the
other hand, the difference in B[2] must be equal to the difference in K[7] since the same data difference(∆P )
is incorporated both into B[2] and into K[7]. If we clock the registers backward twice with these differences,
we obtain that there is no difference in K[0]. This is a contradiction. QED

Theorem 1 If the first feedback of the K register after a data loading (feedK1) has a nonzero difference,
then there exists no collision on CV ’s during forthcoming 7 data loadings.

Proof. The difference that occurs in the first feedback (which is ARF r(B[2]) ⊕ B[0])) is loaded into
K[12 − 2i] before i-th loading for i = 1, ..., 6. Observe that 12− 2i is an even number and there is no data
loading on cells of K with even index. So, the difference will move throughout K register without being
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cancelled by any data loading. In particular, the difference will come to K[0] before loading 6-th forthcoming
data blocks. It will live there after loading 6-th data blocks since there is no data incorporation into K[0].
This implies that there will be no collision on CV ’s after loading 7-th forthcoming data blocks by Lemma
1. QED

Corollary 1 It is impossible to find a collision on CV ’s by imposing differences only on eighth consecutive
blocks.

Proof. The first feedbacks of K will be different just after the first different blocks are loaded since ARF r

is bijective and hence produces nonzero difference for nonzero input difference. Hence ARF r(B[2])⊕B[0]))
produces nonzero difference since there is a difference on B[2] but there is no difference on B[0] after loading
the first different blocks. On the, other hand, since the first feedbacks of K will be different, then there exists
no collision on CV ’s during forthcoming 7 data loading by Theorem 1. Hence, 8 pairs of loadings which can
be different results in different CV ’s. QED

Corollary 2 Assume there is a collision on CV ’s after loading several pairs of message blocks. Then, the
last seven pairs of feedK1’s before the collision are all equal to each other.

The proof of the Corollary 2 is immediate by Theorem 1. Hence, an attacker must try to obtain zero
differences for the last seven feedK1’s to obtain a collision.

Remark. We make use of just high level structure of SHAMATA to obtain the statements above. We do
not use specific properties of ARF function or encoding the data before incorporating it into the registers.

The common technique to find a collision on CV for sponge construction is meet-in-the-middle attack
type. Unlike finding collisions on SHA family, differences in several blocks are used to find a collision. Certain
differences are imposed while clocking the registers in forward direction one one hand and certain differences
are imposed while clocking the registers in backward direction on the other hand. Finally, the differences in
forward direction meets the differences in backward direction, causing collision on CV at the beginning of
backward direction. A collision attack by Peyrin to GRINDAHL ([18]) and two attacks to RadioGatún by
Khovratovich and Biryukov ([14]) are recent examples of such attacks on sponge constructions.

It is certain that one must impose several difference on several blocks to find collision on CV for
SHAMATA. The techniques used in [18] or in [14] can be tried for SHAMATA also. However, the problem
seems more difficult since the internal state size of SHAMATA is larger, data is encoded before loading and
three copies of encoded data is loaded. Moreover, the number of active bytes is increased dramatically by
the ARF function and by encoding if the number of active bytes in the message block is very small (see
Table 3). This property increases the complexity of finding collision using active bytes by the truncated
differential approach.

Different CV - Same NoMB: In this case we have the same finalization function F for both messages.
However, the inputs of F are different. Different inputs produces different and unrelated outputs even though
the inputs are quite related. Because F is bijective and consists of 64 clocks applying 32 iterations of ARF .
On the other hand, there may be collision on the internal states of the B register. However, the output
is highly confused because of many iterations of ARF . So, it is expected that the probability of occurring
collision on the internal states of the B register after the finalization gives no advantages to attacker.

Same CV - Different NoMB: Consider two messages of different block length. Assume that they have
same CV ’s before the finalization. This case is quite difficult to occur because of MD strengthening at the
end of message loading. In this situation there is a collision on CV ’s after the MD strengthening. If there
would be no finalization step then this would result in collision on hash values. We expect that, even coming
to this point is practically impossible.

Different NoMB’s cause different finalization functions. Let F1 be the finalization function determined
by NoMB1 and F2 be the finalization function determined by NoMB2. Then there will be no relationship
between the outputs F1(CV ) and F2(CV ) since 32 iterations of ARF function is applied. This problem is
similar to the problem of finding two keys producing the same ciphertexts from a given plaintext where the
block cipher is a 32-round Feistel network using ARF as round function (see Figure 2).

12
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Different CV - Different NoMB: Consider two messages of different block length. Assume that they
have different CV ’s before the finalization. This is the most difficult case to form a collision on the final
internal states. Because both the finalization functions and their inputs are different. Let’s note that attacker
do not have any control during the finalization since there is no message loading in this phase. The registers
are clocked 64 times since there are 32 loadings.

5.2 Preimage Resistance

We claim that the best attack to find a preimage with SHAMATA is the brute force attack with workload
2n where n is any digest size including 224, 256, 384 and 512. SHAMATA can provide the corresponding
security level when n is replaced by a smaller number m, by choosing a fixed subset of output bits.

The output is formed from certain bits of the register B. Assume that the final internal state of B is
given to the attacker. Then, she cannot clock the registers without knowing the register K. Even, it is a
difficult problem to recover the internal states just before the finalization step starts. This problem is similar
to the problem of finding the plaintext of a given ciphertext which is decrypted by a 32-round Feistel cipher
whose round function is ARF (see Figure 2), without knowing the key.

5.3 Second-Preimage Resistance

We claim that the best attack to find a second-preimage with SHAMATA is the brute force attack with
workload 2n even for extremely long messages bounded by 264 bits, where n is any digest size including 224,
256, 384 and 512. SHAMATA can provide the corresponding security level when n is replaced by a smaller
number m, by choosing a fixed subset of output bits.

The large internal state size of SHAMATA, the time dependent compression function and the finalization
step foils second-preimage attacks, including the long message second-preimage attack by Kelsey and Schneier
in [13]. See section 5.10.

One interesting property that SHAMATA attains is given in Corollary 2. According to the corollary, to
have a collision on a chaining value CV , the previous 7 feedK1 values must be equal for two messages where
one of the messages is given to the attacker. In this case, the attacker has difficulty in satisfying even this
condition. Because, one must choose the message blocks besides choosing the differences for corresponding
blocks so as to satisfy 7 feedK1 values to be equal. However, the attacker has no ability to choose message
blocks for a given message.

5.4 Collision on Randomized Hash

SHAMATA can be used as randomized hash as proposed by Halevi and Krawczyk in [10] and also as a new
proposal given in Section 8.6. We claim that the minimum complexity of finding a pair (M ′, r′) for a given
pair (M, r) such that RMX − SHAMATA(r,M) = RMX − SHAMATA(r′,M ′) where M is given by
attacker (and of arbitrary length bounded by 264 bits) and r is randomly chosen after M is provided, is 2n

where n is any digest size including 224, 256, 384 and 512. We assume that predicting r is almost impossible.
The length of the message M does not determine the security level since the length of CV is much larger
than the digest length.

This is a special type of second-preimage attack where the attacker has more control on the message.
The attacker cannot choose the blocks that are incorporated into the register. However, she can choose
any difference between any two blocks in a message (except the first block) incorporated into the registers.
However, this does not give extra advantages to the attacker in comparison with the second-preimage attack
since the differences in message blocks of a given message are not used to find a collision.

To find a collision on a CV , the previous 7 feedK1 values must be pairwise equal for a message M ′ of
same length as that of M by Corollary 2. Hence, one must choose both the message blocks and the differences
for each incorporation to satisfy just this condition. However, the message blocks (with randomized value)
of the message M cannot be chosen by the attacker.
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5.5 Forgery Attacks on HMAC

We claim that any distinguishing attack on PRF-HMAC with SHAMATA requires at least 2n/2 queries with
a time complexity of at least 2n steps for any digest size n, including 224, 256, 384 and 512 bits.

Two iterations of SHAMATA supplies at least 64 iterations of ARF with an unknown key. The obtained
key dependent function is expected to be PRF, since AES is expected to be PRF.

5.6 Differential Analysis

Differential analysis was first discovered by Biham and Shamir and applied to DES [4]. The attack exploits
the statistical deficiencies in the output differences corresponding to certain input differences. For the hash
functions, this corresponds to finding collision when the output difference is chosen to be zero. Therefore,
differential analysis can be considered as the most substantial analysis for hash functions. Indeed, almost all
the analyses including those in [2, 5, 19, 20] on SHA family have been based on differential analyses.

Our most important design principle may be considered as to maximize the number of active S-Boxes
in ARF in order to provide statistically uniform distribution in output differences in a short time. This is
achieved by data encoding and utilizing the proved fine confusion/diffusion properties of AES round function.

Any message block is encoded first and then the ARF function is applied to the encoded message. Any
difference in one byte in a message block result in at least eight different bytes in the encoded block for
(P,Q). These differences are confused in ARF . In general, the minimum number of active bytes are given
in Table 3. For instance, 3-byte difference in M results in at least 14-byte difference in (P,Q). Assuming
that this is the difference for the inputs of ARF , we obtain at least 16-byte difference after applying ARF

function in two clocks.

M (P,Q) After ARF

1 8 32
2 11 24
3 14 16
4 17 8

Table 3: Minimum number of active bytes.

5.7 Fixed Point Analysis

One of the conspicuous pitfalls of the Merkle-Damg̊ard construction is its vulnerability against second-
preimage attacks if the underlying compression function has many fixed points and if it is easy to deduce the
fixed points [8]. The large internal state of SHAMATA and applying a different feedback function at each
data loading by incorporating the order of each data, renders second- preimage attacks based on fixed-points
infeasible.

5.8 Multicollision Attacks

The multicollision attack of Joux (see [11]) is not feasible for SHAMATA because of the large internal state.
Remark that multicollisions are formed by using collisions of chaining values in [11]. Chaining values are the
internal states of the registers B and K in SHAMATA. Hence, it is much more difficult to find collision on
chaining values than to find collision on hash values due to the large internal state size.

5.9 Herding Attacks

The herding attack by Kelsey and Kohno (see [12]) is also not feasible for SHAMATA because of large
internal state. The collisions are all searched on chaining values in the attack. The large internal state size
foils finding collisions on chaining values as easy as finding collisions on hash values.

14
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5.10 Long Message Second-Preimage Attacks

The long message second-preimage attack by Kelsey and Schneier ([13]) is also not feasible for SHAMATA
because of large internal state and time varying compression function. Recall that the order of a message
block is also incorporated into the registers. Hence, any (k, k + 2k − 1) expandable message defined in [13]
is unusable to find a second-preimage. Because the messages in the set of an expandable message are of
different length and hence the collision on the chaining values for the expandable message makes no sense
in case for SHAMATA since after the collision different compression functions are applied by incorporating
different message orders.

5.11 Slide Attacks

A very recent application of slide attack on hash functions is introduced by M. Gorski, S. Lucks and T.
Peyrin ([9]). The slide attack works on sponge like constructions. The self-similarity of the update function
is exploited. The extended data which is incorporated into the register K is never zero. Also, there is a
nonzero padding block at last. Even the index blockno spoils the self-similarity of updating the registers. In
summary, it seems that the slide attacks does not work against SHAMATA.

5.12 Length-Extension Attacks

Length-extension attacks are applied to find hash value of an extended message M ′ from the hash value of
M and its length where M is kept secret. The most important property that the attack exploits is that
the hash value can be a chaining value at the same time. This is not the case in SHAMATA. There is a
finalization step in SHAMATA and a hash value can not be a chaining value. Anyway, they are of different
length.

Chaining values must be kept secret to third parties for some applications such as HMAC, especially
if the last input block of the compression function is public. However, last chaining value is given as the
hash value for large variety of constructions such as MD construction. Such a property renders the scheme
vulnerable against length-extension attacks. The output function is different from the compression function
in SHAMATA. So, the last chaining value is not given as output. In addition, the finalization function is
different from the compression function, foiling the length-extension attack. Also, the index is reset in the
finalization step. So, an attacker cannot use the finalization step as a part of message loading.

A special kind of length-extension attack is a kind of slide attack and is given in [9]. However, as explained
in Section 5.12, this attack is not applicable to SHAMATA.

6 Hardware Performance

SHAMATA was implemented on a Xilinx Virtex-5 LX30 chip with the design language VHDL for 224-bit and
256-bit digest sizes as examples. Two parallel ARF functions were implemented in parallel with 32 parallel
SubBytes operations as look-up tables. The throughput is around 9 Gbit per second with 95 MHz clock
frequency. The total area is around 28K gates. This is a time optimized implementation of SHAMATA.

7 Software Performance Figures

7.1 8-bit Processors

An implementation of SHAMATA has been simulated on the Atmel AT89C51ED2 micro-controller in 33
MHz using Keil development environment with memory capacity of 1792 Bytes on-chip XRAM, 64K Flash
on-chip and 2048 Bytes EEPROM. There is no operation system available.

Code lengths and execution times are given in Table 4. We implement AES S-box as a table. MixColumns
operation is implemented as in the reference code (byte-wise implementation). The code is a C code. We
expect that the code size and the speed can be enhanced significantly by implementing it in assembly.
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Hash Length 224-bit 256-bit 384-bit 512-bit

MOIP 0.08 s 0.08 s 0.09 s 0.09 s
TOIP 0.00047 s 0.00047 s 0.00047 s 0.00047 s

Code Size with MOIP 4384 Byte 4384 Byte 4744 Byte 4744 Byte
Code Size with TOIP 5369 Byte 5361 Byte 5727 Byte 5722 Byte
Memory with MOIP 684 Byte 688 Byte 720 Byte 736 Byte
Memory with TOIP 684 Byte 688 Byte 720 Byte 736 Byte

Finalization 0.35 s 0.35 s 0.39 s 0.39 s
Update (16 Byte) 0.01 s 0.01 s 0.01 s 0.01 s

Update (1024 Byte) 0.66 s 0.66 s 0.74 s 0.74 s

Table 4: Performance of SHAMATA on 8-bit microprocessor. TOIP: Time Optimized Initialization Phase
(Initialization phase is pre-computed). MOIP: Memory Optimized Initialization Phase (Initialization phase
is performed). Update is message loading part.

7.2 Optimized ANSI C in 32 Bit Architecture

SHAMATA has been implemented on a 2.66 GHz Pentium Core2Duo, running Windows Vista Ultimate
32Bit with 2GB of RAM. MS Visual Studio 2005 is used as a compiler with optimization option O2. The
implementation is serial and portal implementation using only one CPU. Parallelization properties of the
CPU are not utilized. The code sizes are around 20-25 KBytes for any digest size.

The Mixcolumns operations together with SubBytes are implemented as four tables of size 8 × 32 as
proposed by Daemen and Rijmen [6]. Moreover the Mixcolumns operations during encoding the data are
also implemented as four tables of sizes each 8×32. All the 8 tables are together cover 8 KBytes of memory.
This provides us of fast implementation since we get rid of multiplications in GF (256). Indeed Mixcolumns

as a byte-wise implementation with multiplications takes 376 cycles whereas it takes 16 cycles as table based
implementation.

Initialization phase is done in two ways: Either the initial states of the registers B and K are pre-
computed and saved in memory, or the initial states are computed on-line from the IV . The former method
costs extra memory of 2048 bits with negligible time whereas the latter method costs time of roughly 2000
cycles for 224 and 256 bit hash lengths and 3000 cycles for 384-bit and 512-bit hash lengths with negligible
extra memory for initialization.

Performance of the code is given in Table 5.

Hash Length TOIP as cycle MOIP as cycle Hashing as Cycle/Byte Finalization as cycle
224 & 256 136 1976 15 6120
384 & 512 136 2944 22 8704

Table 5: Performance of SHAMATA on 32-bit processor. TOIP: Time Optimized Initialization Phase (Ini-
tialization phase is pre-computed). MOIP: Memory Optimized Initialization Phase (Initialization phase is
performed). The overhead due to padding is included in Finalization phase.

The tables allocate around 8200 Bytes in memory and the variables allocate around 1100 Bytes in memory
for any digest sizes for TOIP implementation.

7.3 Optimized ANSI C in 64 Bit Architecture

SHAMATA has been implemented in a serial mode on a 2.66 GHz Pentium Core2Duo, running Windows
Vista Ultimate 64 Bit with 2GB of RAM. MS Visual Studio 2005 is used as a compiler. Performance of the
code is given in Table 6. The code sizes are around 20-25 KBytes for any digest size.
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The Mixcolumns operations together with SubBytes are implemented as four tables of size 8 × 32.
Moreover the Mixcolumns operations during encoding the data are also implemented as four tables of sizes
each 8×32. All the 8 tables are together cover 8 KBytes of memory. This provides us of fast implementation
since we get rid of multiplications in GF (256). Indeed Mixcolumns as a byte-wise implementation with
multiplications takes 376 cycles whereas it takes 16 cycles as table based implementation.

Initialization phase is done in two phase: Either the initial states of the registers B and K are pre-
computed and saved in memory, or the initial states are computed on-line from the IV . The former method
costs extra memory of 2048 bits with negligible time whereas the latter method costs time of roughly 750
cycles for 224 and 256 bit hash lengths and 1400 cycles for 384-bit and 512-bit hash lengths with negligible
extra memory for initialization.

Hash Length TOIP as cycle MOIP as cycle Hashing as Cycle/Byte Finalization as cycle
224 & 256 104 752 8 3384
384 & 512 104 1368 11 5184

Table 6: Performance of SHAMATA on 64-bit processor. TOIP: Time Optimized Initialization Phase (Ini-
tialization phase is pre-computed). MOIP: Memory Optimized Initialization Phase (Initialization phase is
performed). The overhead due to padding is included in Finalization phase.

The tables allocate around 8200 Bytes in memory and the variables allocate around 1100 Bytes in memory
for any digest sizes for TOIP implementation.

8 Functionality

SHAMATA hash function can be used in any cryptographic applications currently specified in FIPS and
NIST Special publications that require a NIST-approved hash algorithm.

8.1 Digital Signature Standard

SHAMATA hash function is suitable with FIPS 180-2 Secure Hash Algorithm Standard. Hence, it is also
suitable for FIPS 186-2 Digital Signature Standard and can be used in digital signature applications.

8.2 HMAC

SHAMATA hash function can be used as the HMAC algorithm (FIPS 198 [23]) by using inner pad (ipad)
and outer pad (opad) with a suitable block length. Recall that the block length of SHAMATA is 128-bit
whereas the block lengths of SHA-256 and SHA-512 are 512-bit and 1024-bit respectively.

The key “K0” in FIPS 198 is determined by the original key “K” and the block length “B” in [23]. We
propose to use the block length of the corresponding SHA to determine “K0” when using SHAMATA as
the HMAC defined in FIPS 198. That is, if the output of the hash is less than or equal to 256-bit, then
determine “K0” by comparing the the length of the key “K” with 512 (take “B” as 512) and if the output
of the hash is greater than 256-bit, then determine “K0” by comparing the the length of the key “K” with
1024 (take “B” as 1024) in steps 1-2-3 of Table 1 in FIPS 198. Any other applications using HMAC in FIPS
198 such as SP 800-56A, SP 800-90 or FIPS 186-2, can use SHAMATA as HMAC as proposed here.

8.3 PRF- HMAC

SHAMATA hash function with HMAC algorithm in FIPS 198 can be used as a Pseudo Random Function
(PRF). Recall that the proposed length of the key used with ipad and opad in hashing with SHAMATA as
HMAC is slightly different than the original length described in FIPS 198. See section 8.2. The PRF can be
generated as in RFC 4868 ([25]) by replacing SHA with SHAMATA.
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8.4 Pair-Wise Key Establishment

SHAMATA hash function is suitable with FIPS 180-2 Secure Hash Algorithm Standard. Hence, it is also suit-
able for SP 800-56A Recommendation for Pair-Wise Key Establishment Schemes Using Discrete Logarithm
Cryptography.

8.5 Deterministic Random Bit Generator

Since SHAMATA hash function is suitable with FIPS 180-2, it can also be used in Deterministic Random
Bit Generators (DRBGs).

8.6 Randomized Hash

Randomized Hash is a kind of modes of operation for hash functions using a random salt value r, proposed
by Halevi and Krawczyk in [10]. If H is a hash function, the corresponding randomized hash is given as

RMX −H = Hr(M) = H(r||M1 ⊕ r||M2 ⊕ r|| · · · ||Mn ⊕ r).

SHAMATA can be used as randomized hash with RMX construction where r is a multiple of block length.
There is another version of randomized hash in [10]. However, we adopt this version even though we think
that there is no difference in terms of practical security for SHAMATA.

New Proposal: This proposal is same as RMX-SHAMATA, except different IV and NoMB are used.
This proposal can be used when the salt, r, is of length 128 bits or 256 bits. If the length of r is 128 bit
then IV ′ = IV ⊕ r and NoMB′ = NoMB ⊕ r. If the length of r is 256 bit then IV ′ = IV ⊕ r0 and
NoMB′ = NoMB⊕r1 where r0 is the first 128-bit part and r1 is the last 128-bit part of r. Then everything
is same as in the case for RMX-SHAMATA, except using IV ′ instead of IV and NoMB′ instead of NoMB.
We call this proposal as RMXX-SHAMATA.

9 Test Vectors

224 bit hash length:

Message = 52A608AB21CCDD8A4457A57EDE782176

MD = 976BE2195E6097092A0F8FA11C1EC930FFC205585B9EEC325872E98C

256 bit hash length

Message = 52A608AB21CCDD8A4457A57EDE782176

MD = 4A6A43A58A6240672714269A7FD6819C097F23E209EE326BC06B2C8577A4A3E7

384 bit hash length

Message = 52A608AB21CCDD8A4457A57EDE782176

MD =33BB1FF0CD78A9F3E78E87A613B4C495894028402AA367C3510679469FC8083CAD

757AC0BBA59E3E4550825E83F62FBD

512 bit hash length

Message = 52A608AB21CCDD8A4457A57EDE782176

MD =9ECB44C6EFBCFB8F6993DC0CAE2F10AD79A70168167B0318D32C03BB4298FEED8A

985873183CEA6B33F97FFEF88D2B042FD592D5359F0843761D3F906B93CA86
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Appendix : Modified AES Round Function ARF

The feedback function of the registers B and K makes use of the AES round function ARF without key
addition for 128 bit block length.

The round transformation of AES is given in pseudo C notation as

AESRound(State,RoundKey)

{

SubBytes(State);

ShiftRows(State);

MixColumns(State);

AddRoundKey(State, RoundKey);

}

in the standard FIPS 197, “ADVANCED ENCRYPTION STANDARD(AES)” by NIST [21]. We use the
same transformation except running the

AddRoundKey(State, RoundKey)

function. More precisely, the ARF function is given in pseudo C notation as

ARF(State)

{

SubBytes(State);

ShiftRows(State);

MixColumns(State);

}

In other words, ARF is the AES round function with the RoundKey which is equal to zero.
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