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Chapter 1

Introduction

Hash functions are one of the milestones of the field of cryptology that are extensively used in various

applications including message integrity, message authentication, address generation and verification, digital

signatures and several others each demanding corresponding security properties of the underlying hash func-

tion.

Recent breakthroughs in the design and analysis of cryptographic hash functions led to great devel-

opments in this field including a demand in a new hash standard SHA-3[51]. In this document, we describe

a new hash function family Sarmal as a SHA-3[51] candidate. Starting from the mathematical preliminaries

and the necessary notation throughout the document, we describe the specification, design rationale, security,

implementation and performance of Sarmal Hash Family. We conclude with the acknowledgements, references

and appendix.

Chapter 2 mainly deals with the necessary mathematical background and the notation used in the

document which help to understand the properties of Sarmal Hash Family. Necessary mathematical background

is quite familiar from the existing literature which is basic finite field and modular arithmetic. Notation, on the

other hand, is fixed to be used throughout the document.

Chapter 3 is dedicated to the specification of the Sarmal Hash Family which makes it clear to un-

derstand and implement the overall hash function. This chapter is divided into two sections that cover the

specification of the mode of operation and the compression function respectively. Specification of the mode

of operation details how a given message is used to create the corresponding digest. Specification of the

compression function describes the components of the underlying compression function used in the mode of

operation. We provide the design rationale behind the specification in Chapter 4 which covers the reasons why

the underlying primitives are used as components of Sarmal.

Chapter 5 consists the basic security claims about Sarmal Hash Family. Again, we make a distinction

between the security of the mode of operation and the compression function of Sarmal despite of the fact that

they are closely related to each other. That is, in the first part, assuming the underlying compression function

has no known weaknesses, namely ideal, we provide the security claims for the mode of operation. In the

6



Chapter 1: Introduction 7

second section, we give the security analysis of Sarmal’s compression function against known attack scenarios.

Here, we maturely assume the blindness of a designer and conjecture that the Sarmal compression function is

secure.

In Chapter 6, implementation and performance results of Sarmal Hash Family are given. We provide

performance figures on 32/64-bit processors and comment the performance of Sarmal Hash Family on 8-bit

processors. Besides, a detailed explanation is provided about the optimized implementation of Sarmal Hash

Family.



Chapter 2

Preliminaries

2.1 Notation

Throughout the document we use a fixed notation which is given in Table 2.1. As a convention we

number the words and bytes from left to right. The specific values are shown in hexadecimal and denoted by :x

and the binary representation is denoted by (:)2. Index i is used to show the ith compression function evaluation.

Table 2.1: Notation

Variable Size Definition

⊕ Exclusive OR (XOR) Operation

� Addition Modulo 264

� Subtraction Modulo 264

w 64-bit Word

H(M, s, d) Sarmal Hash Function

f (hi−1,Mi, s, ti) Compression Function of Sarmal

G(., .) Round Function

g(.) Nonlinear Subround Function

σk(Mi) Message Permutation

hi 8w Chaining Value

Xi 8w State Value

Xle f t
i 8w Left State Value

Xright
i 8w Right State Value

Xle f t
i,r′ [ j] w jth word of the left state after r′ rounds

Xright
i,r′ [ j] w jth word of the right state after r′ rounds

M Message to be hashed

Mi 16w ith Message Block

8



Chapter 2: Preliminaries 9

s 4w Salt Value

ti w Number of bits hashed up to ith f evaluation

c 2w Constant Value

r Non-negative number of rounds

.[i] w ith word of given value ‘.’

.[i · · · j] (i − j + 1)w The words from i to j for given value ‘.’

a0||a1|| · · · ||an Concatenation of the n blocks of data

S [.] 8 × 8-bit S-box Transformation

A8×8 8 × 8 Maximum Distance Seperable (MDS) Matrix

2.2 Mathematical Background

2.2.1 GF(28) Arithmetic

Mathematical operations used in Sarmal are quite common in the cryptology literature. One of the

basic mathematical operations in the compression function is the arithmetic operations over GF(28). The

structure of the finite field is of the form GF(2)[x]/p(x) where p(x) is primitive polynomial over GF(2) which

is given by p(x) = x8 + x4 + x3 + x2 + 1 [38]. Thus, the elements in GF(28) can be represented as polynomials

over GF(2) whose degrees are less than 8. As an example, a byte a = (a7, a6, a5, a4, a3, a2, a1, a0) is mapped to

the polynomial:

a = a7 · x7 + a6 · x6 + a5 · x5 + a4 · x4 + a3 · x3 + a2 · x2 + a1 · x1 + a0 · x0

Example:

65x = (01100101)2

= 0 · x7 + 1 · x6 + 1 · x5 + 0 · x4 + 0 · x3 + 1 · x2 + 0 · x1 + 1 · x0

= 1 · x6 + 1 · x5 + 1 · x2 + 1 · x0

Addition in GF(28): Addition of polynomials in GF(28) is the bitwise XOR of the corresponding binary

representations of the polynomials.

Example: Let f (x) = x7 + x6 + x2 + 1 and g(x) = x4 + x3 + x2 be two polynomials defined over the

finite field above. Then,

f (x) + g(x) = (x7 + x6 + x2 + 1) + (x4 + x3 + x2)

= x7 + x6 + x4 + x3 + 1

f (x) + g(x) = (11000101)2 ⊕ (00011100)2

= (11011001)2
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Multiplication in GF(28): Multiplication of two bytes (or polynomials) in GF(28) is done by the multipli-

cation of the corresponding polynomials over the finite field described above. Two polynomials are multiplied

and reduced to modulo p(x) = x8 + x4 + x3 + x2 + 1.

Example: Let D8x and 4Ax be two bytes. Then,

D8x · 4Ax = (11011000)2 · (01001010)2

= (x7 + x6 + x4 + x3) · (x6 + x3 + x)

= x13 + x12 + x10 + x9 + x10 + x9 + x7 + x6 + x8 + x7 + x5 + x4

= x13 + x12 + x8 + x6 + x5 + x4

= x8 · (x5 + x4 + 1) + x6 + x5 + x4

= (x4 + x3 + x2 + 1)(x5 + x4 + 1) + x6 + x5 + x4

= x5 + x2 + x + 1

Circulant Matrix An m × m matrix (in our case 8 × 8) which is of the form

C =



c0 c1 · · · cm−2 cm−1

cm−1 c0 c1 cm−2

· cm−1 c0 · ·

· · · · ·

· · · · ·

· · ·

c2 c1

c1 c2 · · · cm−1 c0


called a circulant matrix over GF(28) (i.e. ci ∈ GF(28)). This special type of a matrix is used in the nonlinear

subround function g which has significant advantages both in security and implementation.



Chapter 3

Specification

The specification of Sarmal Hash Family consists of the specification of the mode of operation and the

compression function of Sarmal. In this chapter, we provide the necessary information to be able to implement

and understand the description of Sarmal.

Sarmal Hash Family accepts messages M of arbitrary length (no more than (264 − 1)-bits) as input

and produces various d-bit message digests D by using Sarmal Hash Function H(M, s, d):

H : {0, 1}∗ × {0, 1}4w × ∆→ {0, 1}d

where d ∈ ∆ = {224, 256, 384, 512}.

Each member of Sarmal uses same structure with minor differences which is mainly due to the variable digest

size d:

• Each Sarmal-d has different initial and constant values.

• Number of rounds r in compression function of f is 16 and 20 for Sarmal-224/256 and Sarmal-384/512

respectively.

• 8 different message permutations are used in Sarmal-224/256 while 10 different message permutations

are used in Sarmal-384/512.

• Each Sarmal-d has different number of d-bit truncations at the end.

The operations in Sarmal are described starting from the mode of operation followed by the specification of the

compression function in the following sections.

3.1 Sarmal Mode of Operation

Sarmal follows an iterative mode of operation which has been recently proposed as HAIFA [12]

(HAsh Iterative FrAmework). In HAIFA, additional parameters, such as salt s and the number of bits hashed

11



Chapter 3: Specification 12

up to ith iteration ti, are added to the standard Merkle-Damgård construction [21, 46] with a different padding

rule. The reason behind this is to provide randomized hashing and withstand the latest attack scenarios which

have been revealed in recent years [22, 32, 33, 35]. We describe the security properties of the Sarmal mode of

operation in detail in Chapter 5.

The input of the Sarmal Hash Family is a message M of arbitrary length l (l < 264 − 1), the user

supplied salt s and the digest size d. Sarmal mode of operation starts with an injective padding rule (see

Section 3.1.1) to extend the length of M to a multiple of 16w. Then, the padded message M′ = (M1|| · · · ||Mn)

is divided into 16w-bit message blocks Mi to which the compression function f is applied iteratively until the

end of message blocks. Chaining values hi which are the output of the compression function f at the end of

each iteration are of 8w-bit and calculated exactly the same manner for all digest sizes. As described above,

the only differences are the constants, initial values and the number of rounds for different digest sizes. The

message digest D which is of 8w-bit, is calculated after truncation to d bits of the last chaining value hn. The

details of the compression function are provided in Section 3.2. The overall process is described in Table 3.1.

Table 3.1: Sarmal Mode of Operation

Input: M: l-bit Message Value (l ≤ 264 − 1)

s: 4w-bit Salt Value

d: d-bit Digest Size

Output: H(M, s, d) = D: Hash value of the message M

Preprocess:

1. Pad the message M according to the procedure in Section 3.1.1.

2. Divide the padded message into n 16w-bit blocks, M′ = (M1,M2, · · ·Mn).

3. Initialize IV = h0 and c using the Table 3.4

Process:

1. for(1 ≤ i ≤ n)

{

hi = f (hi−1,Mi, s, ti)

}

Output Generation:

1. Sarmal-224: H(M, s, d) = right most 224 − bit of hn[4 · · · 7]

2. Sarmal-256: H(M, s, d) = hn[0 · · · 3]

3. Sarmal-384: H(M, s, d) = hn[0 · · · 5]

4. Sarmal-512: H(M, s, d) = hn
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3.1.1 Padding

Padding is necessary for all iterative mode of operations as the underlying compression functions

are defined by fixed sized input and outputs. In Sarmal, we use the same padding rule for all digest sizes

except for the step where the digest size d is added. It is an additional update to the standard Merkle-Damgård

strengthening which is specified in the proposal of HAIFA [12].

As the compression function f of Sarmal accepts message blocks Mi of length 16w bits, the aim is to

pad the message to a multiple of 16w bits without any security loss. We use exactly the same padding rule given

in [12] which is specified in Table 3.2. It basically appends one bit to the end of the message and additional

zero bits until the length of the message is congruent to 16w − w − l modulo 16w. Finally the length of the

message and the digest sizes are encoded in w and l bits respectively. The details are given in Table 3.2.

Table 3.2: Padding

Input: M: l-bit Message Value

Output: A multiple of 16w-bit Padded Message.

Process:

1. Check the length of the message M. If it is congruent to 950 modulo 16w, pass to step

4.

2. Add a single bit ‘1’ to end of the message. Check the length of the new message. If it

is congruent to 950 modulo 1024, pass to step 4.

3. Add 0-bits following the bit 1 until the length of the message is congruent to 950

modulo 1024.

4. Pad the hash size d as a 10-bit string. (0011100000, 0100000000, 0110000000,

1000000000 are the 10-bit strings which are used for Sarmal-224/256/384/512, re-

spectively.)

5. Pad the message length l in 64-bits.

Output Generation:

1. M′ = (M1,M2, · · ·Mn)

3.2 Sarmal Compression Function

3.2.1 High Level Description of f

Compression function f (hi−1,Mi, s, ti) of Sarmal, at ith step, takes the previous chaining value hi−1 of

8w-bit, message block Mi of 16w-bit, user supplied salt s of 4w-bit and the number of bits hashed ti up to step
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i of w-bit as inputs at each step and produces 8w-bit output hi. It is defined as follows:

f : {0, 1}8w × {0, 1}16w × {0, 1}4w × {0, 1}w −→ {0, 1}8w.

Compression function makes use of two parallel parts operating independently each consisting of

same nonlinear round function G and a Davies-Meyer form feedforward at the end. The security properties and

the design rationale behind f are provided in Chapters 4 and 5 respectively. The general scheme of compression

function of Sarmal is visualized in Figure 3.1 and the details are given in Table 3.3.

Table 3.3: Compression function of ith Step of Sarmal

Input: Mi: 16w-bit Message Block

s: 8w-bit Salt Value

ti: w-bit Number of bits hashed up to ith step

hi−1: 8w-bit Previous Chaining Value

Output: hi: 8w-bit Following Chaining Value

Preprocess:

1. Obtain σ and c from Table 3.9 and Table 3.4 resp.

Process:

1. Xle f t
0 = hi−1[0 · · · 3] || s[0 · · · 1] || c[0] || ti

2. Xright
0 = hi−1[4 · · · 7] || s[2 · · · 3] || c[1] || ti

3. for(1 ≤ j ≤ r)

{

a) k = b
j−1
4 c

b) ` ≡ (4 j − 1) mod 16

c) Xle f t
j = G(Xle f t

j−1 , σk(Mi)[(` − 3) · · · `])

d) Xright
j = G(Xright

j−1 , σk+(r/4)(Mi)[(` − 3) · · · `])

}

Output Generation:

1. hi = (Xle f t
r ⊕ Xright

r ) ⊕ hi−1



Chapter 3: Specification 15

2j

.

.

.

.

.

iM

iM iM

iM

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

X iXi
l r

h

h i

i−1

σ(    )
0

j
σ(    )

σ  (    )
j+1

σ (    )

.

Figure 3.1: Compression function f of Sarmal
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3.2.2 Initial Values and Constants

Different 8w-bit initial values h0 and 2w-bit constants c are required for the evaluation of f which are

given in Tables 3.4 and 3.5. The values are different for various digest sizes and obtained from fractional part

of the square root of 3, golden ratio, square root of 5 and π for the Sarmal-224, Sarmal-256, Sarmal-384 and

Sarmal-512 respectively.

Table 3.4: Initial Values of Sarmal

Initial Values of Sarmal-224

h0[0] = BB67AE8584CAA73Bx h0[4] = 490BCFD95EF15DBDx

h0[1] = 25742D7078B83B89x h0[5] = A9930AAE12228F87x

h0[2] = 25D834CC53DA4798x h0[6] = CC4CF24DA3A1EC68x

h0[3] = C720A6486E45A6E2x h0[7] = D0CD33A01AD9A383x

Constants of Sarmal-224

c[0] = B9E122E6138C3AE6x c[1] = DE5EDE3BD42DB730x

Initial Values of Sarmal-256

h0[0] = 9E3779B97F4A7C15x h0[4] = 2767F0B153D27B7Fx

h0[1] = F39CC0605CEDC834x h0[5] = 0347045B5BF1827Fx

h0[2] = 1082276BF3A27251x h0[6] = 01886F0928403002x

h0[3] = F86C6A11D0C18E95x h0[7] = C1D64BA40F335E36x

Constants of Sarmal-256

c[0] = F06AD7AE9717877Ex c[1] = 85839D6EFFBD7DC6x



Chapter 3: Specification 17

Table 3.5: Cont. Initial Values of Sarmal

Initial Values of Sarmal-384

h0[0] = 3C6EF372FE94F82Bx h0[4] = 4ECFE162A7A4F6FEx

h0[1] = E73980C0B9DB9068x h0[5] = 068E08B6B7E304FEx

h0[2] = 21044ED7E744E4A3x h0[6] = 0310DE1250806005x

h0[3] = F0D8D423A1831D2Ax h0[7] = 83AC97481E66BC6Dx

Constants of Sarmal-384

c[0] = E0D5AF5D2E2F0EFDx c[1] = 0B073ADDFF7AFB8Cx

Initial Values of Sarmal-512

h0[0] = 243F6A8885A308D3x h0[4] = 452821E638D01377x

h0[1] = 13198A2E03707344x h0[5] = BE5466CF34E90C6Cx

h0[2] = A4093822299F31D0x h0[6] = C0AC29B7C97C50DDx

h0[3] = 082EFA98EC4E6C89x h0[7] = 3F84D5B5B5470917x

Constants of Sarmal-512

c[0] = 9216D5D98979FB1Bx c[1] = D1310BA698DFB5ACx
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3.2.3 G Function

G is the nonlinear round function of f which is a special Generalized Unbalanced Feistel Network

(GUFN) with 8-branches of w-bit aords each. Contrary to the standard Generalized Unbalanced Networks,

Sarmal uses 2 different branches to update 6 remaining ones. An AES [20](or Whirlpool[5])-like nonlinear

subround function g is used together with the basic arithmetic operations like XOR, addition and subtraction

modulo 264. At each G evaluation, 4w-bit of permuted message is mixed with the input data and 4G evaluations

use whole 16w-bit of message block Mi. Round function can be defined as follows:

G : {0, 1}8w × {0, 1}4w → {0, 1}8w

The number of G evaluations are same for parallel left and right parts. However, it changes for

different digest sizes (16 and 20 for Sarmal-224/256 and Sarmal-384/512 respectively). The security properties

and the design rationale behind G are provided in Chapters 4 and 5 respectively. The general view of G is given

in Figure 3.2 and the operations are described in Table 3.6.

(4i−4) mod 16jM jM jM jM

g g

 i−1  i−1X     [2]  i−1X     [3]  i−1X     [4] X     [5] X     [6]  i−1X     [7]

 iX  [0]  iX  [1]  iX  [2]  i  iX  [4]  iX  [5]  iX  [6]  iX  [7]

 i−1

X  [3]

X     [0] X     [1]  i−1  i−1

A B C D

A = k σ (     )[               ] B = kσ (     )[               ](4i−3) mod 16 C = kσ (     )[               ](4i−2) mod 16 D = kσ (     )[               ](4i−1) mod 16

Figure 3.2: G Function

3.2.4 g Function

The nonlinear subround function g is a component of G which is defined on w-bit words:

g : {0, 1}w → {0, 1}w

It is an AES [20](or Whirlpool[5])-like Substitution-Permutation Network (SPN) which makes use

of 8 parallel 8× 8-bit S-box followed by a permutation layer which is defined on GF(28) and similar to the one

in Whirlpool. Function g is described in the Table 3.7 and in visualized Figure 3.3.
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Table 3.6: Description of G at r′th Round

Input: 8w-bit State Value Xr′−1

4w-bit Permuted Message σk(M j)[(i − 3) · · · i]

Output: 8w-bit Updated State Value Xr′

PreProcess:

1. A = σk(M j)[(4i − 4) mod 16]

2. B = σk(M j)[(4i − 3) mod 16]

3. C = σk(M j)[(4i − 2) mod 16]

4. D = σk(M j)[(4i − 1) mod 16]

Process:

1. Xi[0] = Xi−1[7]� g(Xi−1[4] ⊕C)

2. Xi[1] = Xi−1[0] ⊕ A

3. Xi[2] = Xi−1[1] ⊕ g(Xi−1[0] ⊕ A)

4. Xi[3] = (Xi−1[2] ⊕ B)� g(Xi−1[0] ⊕ A)

5. Xi[4] = Xi−1[3]� g(Xi−1[0] ⊕ A)

6. Xi[5] = Xi−1[4] ⊕C

7. Xi[6] = Xi−1[5] ⊕ g(Xi−1[4] ⊕C)

8. Xi[7] = (Xi−1[6] ⊕ D]� g(Xi−1[4] ⊕C)

Output Generation:

1. Xr′ = Xi[0] || Xi[1] || · · · || Xi[7]

Table 3.7: Nonlinear Function g at Round i

Input: w-bit Input Value I

Output: w-bit Output Value g(I)

Process:

1. I = I[0] || I[1] || · · · || I[7]

2. I = S (I[0]) || S (I[1]) || · · · ||S (I[7])

Output Generation:

1. g(I) = A8×8 · I8×1 where A is given in Section 3.2.6
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A −

I[1] I[2] I[3] I[4] I[5] I[6] I[7]

g(I[2]) g(I[3]) g(I[4]) g(I[5]) g(I[6]) g(I[7])g(I[0]) g(I[1])

S S S S S S S S

Matrix

I[0]

Figure 3.3: g Function

3.2.5 S-box

Sarmal g function makes use of an 8 × 8-bit S-box whose design is inspired from the S-boxes of

CLEFIA [60] and Whirlpool [5] where several 4×4 S-boxes are combined to generate a bigger 8×8-bit S-box.

In this subsection we only provide the construction method and the specification of the smaller S boxes in

Figure 3.4 and in Table 3.8 respectively. Exact values and the details about the S-box are provided in Appendix

A and Section 4.2.3.

Table 3.8: S-boxes of Sarmal

0 1 2 3 4 5 6 7 8 9 Ax Bx Cx Dx Ex Fx

S 0 Ex Ax 4x 7x Cx 9x Fx 0x Bx Dx 5x 1x 6x 3x 2x 8x

S 1 2x Ex 8x 1x Fx Dx 0x 5x 6x 3x 4x 7x Ax 9x Bx Cx

S 2 6x 5x Cx Ex 9x 7x Bx Ax 4x 8x 3x Dx 0x Fx 2x 1x

S 3 4x Bx Dx 6x Ex Cx 0x 2x 3x 5x 1x 8x 7x Ax Fx 9x

S
0

S
1

S
2

S
3

1

2 1

2

Figure 3.4: S-box of Sarmal
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3.2.6 MDS Matrix

The nonlinear subround function g makes use of a permutation which is similar to the one in Whirlpool[5].

The circulant matrix A used in g-function is a [16, 8, 9] MDS code on GF(28) which refers to the name MDS

Matrix. The matrix A8×8 given below.

A =



01x 06x 08x 09x 06x 09x 05x 01x

01x 01x 06x 08x 09x 06x 09x 05x

05x 01x 01x 06x 08x 09x 06x 09x

09x 05x 01x 01x 06x 08x 09x 06x

06x 09x 05x 01x 01x 06x 08x 09x

09x 06x 09x 05x 01x 01x 06x 08x

08x 09x 06x 09x 05x 01x 01x 06x

06x 08x 09x 06x 09x 05x 01x 01x



.

There are several advantages of using such a permutation based on a circulant matrix. The main

advantage is due to the implementation in both 32 and 64-bit architectures. Secondly, it is highly diffusive

providing nice security features.

Let w-bit input value I be the concatenation of 8-bytes in the form I = (I[7], I[6], · · · , I[0]) and similarly w-bit

output value O be O = (O[7],O[6], · · · ,O[0]). Then the permutation is defined as a matrix multiplication

O = A · I over GF(28):

O[0]

O[1]

O[2]

O[3]

O[4]

O[5]

O[6]

O[7]



=



01x 06x 08x 09x 06x 09x 05x 01x

01x 01x 06x 08x 09x 06x 09x 05x

05x 01x 01x 06x 08x 09x 06x 09x

09x 05x 01x 01x 06x 08x 09x 06x

06x 09x 05x 01x 01x 06x 08x 09x

09x 06x 09x 05x 01x 01x 06x 08x

08x 09x 06x 09x 05x 01x 01x 06x

06x 08x 09x 06x 09x 05x 01x 01x



·



I[0]

I[1]

I[2]

I[3]

I[4]

I[5]

I[6]

I[7]


The security and the implementation properties of the multi-permutation are provided in Section

4.2.4 in detail. The addition and multiplication over GF(28) are performed according to operations described

in Section 2.2.

3.2.7 Message Permutation

The compression function of Sarmal uses 16w-bit message block Mi each iteration. The message

block Mi is first divided into sixteen 64-bit words, then 16 words are permuted by several permutations σk(Mi).

One execution of the round function G uses 4 permuted message words leading to a full mixing in 4G invoca-

tions at each left and right parts.
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Since the full message block Mi is used in four consecutive rounds and we have 16×2 = 32 (20×2 =

40) rounds for Sarmal-224/256 (Sarmal-384/512), 8-permutations (10-permutations) are needed for the overall

compression function f . There are several design choices for the permutations used for each member of Sarmal

which are given in Chapter 4 in detail. Here, we provide the necessary permutations in Table 3.9.

Table 3.9: Message Permutations of Sarmal

Sarmal-224/256

Left Part

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

σ0(M j)[.] 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

σ1(M j)[.] 1 14 15 10 12 2 7 4 13 8 3 9 11 5 0 6

σ2(M j)[.] 11 4 10 7 14 9 13 1 6 5 8 2 3 15 12 0

σ3(M j)[.] 8 2 0 5 10 3 14 13 12 7 1 15 9 4 6 11

Right Part

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

σ4(M j)[.] 2 8 5 7 11 1 12 4 6 14 15 10 0 13 9 3

σ5(M j)[.] 13 14 2 1 10 12 11 7 5 3 9 15 8 4 0 6

σ6(M j)[.] 3 13 4 0 5 6 2 10 9 8 7 11 12 15 1 14

σ7(M j)[.] 6 3 11 14 4 0 5 8 7 13 2 12 10 1 15 9

Sarmal-384/512

Left Part

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

σ0(M j)[.] 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

σ1(M j)[.] 1 14 15 10 12 2 7 4 13 8 3 9 11 5 0 6

σ2(M j)[.] 11 4 10 7 14 9 13 1 6 5 8 2 3 15 12 0

σ3(M j)[.] 8 2 0 5 10 3 14 13 12 7 1 15 9 4 6 11

σ4(M j)[.] 13 10 3 2 8 11 1 5 9 12 0 4 15 6 7 14

Right Part

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

σ5(M j)[.] 2 8 5 7 11 1 12 4 6 14 15 10 0 13 9 3

σ6(M j)[.] 13 14 2 1 10 12 11 7 5 3 9 15 8 4 0 6

σ7(M j)[.] 3 13 4 0 5 6 2 10 9 8 7 11 12 15 1 14

σ8(M j)[.] 6 3 11 14 4 0 5 8 7 13 2 12 10 1 15 9

σ9(M j)[.] 15 7 9 12 3 13 10 0 4 6 1 14 2 5 8 11
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3.2.8 s and t Values

The salt value s is a user defined constant string of 4w-bit which is used to extend the 8w-bit chaining

value to 16w together with the round constants and t. The ti value, on the other hand, is w-bit counter that

represents the number of bits hashed up to ith compression function evaluation. Starting from zero string it is

incrementally updated at each compression function evaluation.



Chapter 4

Design Rationale

The design rationale behind the design of Sarmal Hash Family basically tries to solve the main

problem in designing cryptologic algorithms: The trade-off between security, speed and implementation cost.

These problems are dealt with seperately, but in a close relation with the mode of operation and the compression

function of Sarmal.

Security, being the main concern in cryptographic hash functions, can not be reduced to solve a

mathematically hard problem for Sarmal. Instead, we choose the components of Sarmal to be not provably

secure but fast and efficient in multiple platforms. One of the reasons behind this is that we can not provide fast

and efficient implementations for such provably secure schemes. Obviously, the efficiency is not the only issue.

As the recent breakthroughs in cryptanalysis of hash functions lead to the design of SHA-3[51], we propose

Sarmal being resistant to the recent attack scenarios.

Speed, as one of the primary concerns, is crucially important since a significantly slower design

than SHA-2[49] does not improve the existing properties of SHA-2. On the other hand, a more secure and

faster scheme can lead to significant improvements. In Sarmal, we choose fast components for both hardware

and software which satisfy and provide necessary security requirements both for mode of operation and the

compression function of Sarmal.

Implementation cost has become fundamentally important especially in hardware due to the emerging

technologies in extremely constrained environments. As the use of cryptographic hash functions show great

progress in various applications which require equally constrained environments, we choose the components

of Sarmal to be able to be compatible in several platforms.

The design rationale of the components of the mode of operation and compression function of Sarmal

are detailed in the following sections in terms of these three building blocks. We refrain from repeating the

specification of the components as they are detailed in the previous chapter.

24
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4.1 Sarmal Mode of Operation

Despite of the fact that there have been significant breaktroughs in cryptanalysis of iterative mode

of operations Sarmal assumes an iterative mode of operation that has been recently proposed as HAIFA [12].

Having been analyzed in detail in recent years is one of the reasons to choose HAIFA as a mode of operation for

Sarmal as it provides concrete security claims. The detailed security properties of Sarmal are given in Chapter

5.

Besides, among the existing constructions, HAIFA is one of the most practical mode of operation in

terms of supporting salts, variable digest size and flexible implementation. In Sarmal, we use only one fixed

compression function with different variables to define several digest sizes. Moreover, we just need to deal with

the blocks of messages rather than keeping full message that reduces the memory requirements significantly.

The only disadvantage is the parallelizability in mode of operation as it resumes iteratively. Nevertheless, we

provide parallelizability in the evaluation of compression function. Still, as its compression function permits,

Sarmal can also be used in different mode of operations both iteratively and parallelly. Yet, we choose not to

make a flexibility in mode of operation and decide to use HAIFA as a standard mode of operation for Sarmal.

Summary of design features of Sarmal in mode of operation can be listed as follows.

1. Sarmal mode of operation has been analyzed extensively and designed to practically resist all existing

attacks.

2. Theoretical reduction proofs for collision and preimage resistances are possible. For the second preimage

resistance, we follow the recent research results for HAIFA mode of operation and conjecture Sarmal to

be second preimage resistant.

3. It is possible to reduce the immunity against recent generic attacks to the iterative mode of operations by

using the properties of HAIFA and the compression function.

4. Sarmal mode of operation supports salts and randomized hashing.

5. Flexibility in several digest sizes is possible by truncation at the end. Thus, only one construction is

sufficient to design several hash outputs (It is not limited only to the supported hash sizes).

6. The memory requirement is tolerable as it only requires the blocks of messages rather than the whole

message to be hashed.

4.2 Sarmal Compression Function

Sarmal compresssion function f has been designed to satisfy three basic properties for a crypto-

graphic algorithm. We use very well known components to provide security, speed and low implementation

cost. Besides, we design one compression function f to support variable digest sizes which provides a lot of

flexibility in implementation.
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The design choices for the compression function of Sarmal are closely related with the ones for the

mode of operation. As detailed in previous section the main design criteria, from security point of view, is to

resist all known attack models in a practical sense. Therefore, the first step while designing f to choose the

number of bits in the chaining values. As Sarmal has to support variable digest sizes (224, 256, 384 and 512

bits), 16w-bit chaining value would be sufficient to resist all known attacks both theoretically and practically.

However, it has a lot of practical implications and we believe 8w-bit chaining value is necessary and sufficient

as described in detail in Chapter 5. Even if the compression function operates on 2 parallel blocks of 8w-bit

each, we use this property to resist the attacks to the compression function itself. Moreover, we choose to

digest 16w-bit of messages at a time so as to increase the speed and the efficiency of the algorithm. Besides, it

is suitable for HMAC. The only drawback is the increasing memory, but it is tolerable by the increasing amount

of memory spaces with the help of emerging technology.

As described in Section 3.2, f is composed of two parts operating on parallel which is the main

property of f . The choice for this to satisfy parallelizability in implementation and provide security at the

same time. The reason for parallelizability is obvious in the sense that left and right parts in Sarmal operate

totally independent of each other until the end of f and it provides reasonable amount of speed. The reason for

security, on the other hand, is the evolution of the recent attack models to the well known cryptographic hash

functions. Starting from the attacks of Wang et.al [61, 62, 63, 64], the attack models cannot easily deal with

two different parallel blocks at the same time. The only attacks to that kind are the attack on FORK [39, 43]

which uses 4 parallel blocks and the attack on RIPEMD-128 [61] where the former uses weak round functions

together with less number of rounds and the latter does not make use of different message permutations.

The details of the components of the compression function f will be given in the following subsec-

tions. We summarize the basic design criteria for f :

1. The flexibility in the design of f leads to be able to define all modes of Sarmal depending on the digest

size.

2. It is possible to provide practical and theoretical security with 8w-bit of chaining value.

3. At each f evaluation, it is possible to digest 16w-bit of messages which incerases the efficiency of Sarmal.

4. It is highly paralellizable in the sense that the whole compression function f is composed of two parallel

independent 8w-bit of blocks.

5. It is difficult to control 2 parallel blocks at the same time which makes it difficult to attack f .

6. The components of f are well known and analyzed which makes it easier to analyze its security and to

implement it efficiently.

4.2.1 G Function

The compression function f of Sarmal makes use of successive application of a nonlinear function

G. As described in Section 3.2.3, the function G follows a GUFN of 8 branches where 2 of which are used
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to update remaining 6 branches. Our model is quite different from the standard GUFN model which has been

used in several designs including block ciphers and hash functions [1, 30, 31, 65]. The main reason why we

choose this structure is quite obvious that the number of g executions per G computations, that is the main cost

of implementation, is quite low which leads to a more compact and less hardware-demanding design. In order

to be able to update 16w-bit of data at a time more securely, we choose to use less demanding components in

G.

Another issue here is to increase the efficiency in both 64 and 32-bit architectures at the same time.

One solution is to choose w-bit words at each branch which is also our main design criteria as Sarmal is aimed

to be a future design. Nevertheless, on 32-bit architectures, Sarmal is not as efficient as on 64-bit architectures

since the operations used in Sarmal are w-bit oriented. Still, it is highly efficient on 32-bit architectures.

Besides, to increse the speed, nonlinear g function can be processed parallelly at the same time to update the

data and different arithmetic operations are used to differentiate the update of the branches. We summarize the

basic design criteria for G:

1. It is less hardware demanding comparing to the nonlinear round functions which update 16w-bit at a

time. Even if the number of G invocations have to be increased, it is tolerable.

2. w-bit of branches are used to be able to increase the efficiency especially in 64-bit architectures. Still it

is not slow on 32-bit architectures.

3. Different arithmetic operations are used to update 6 branches by using 2 branches. Therefore, each

branch is updated at each G invocation.

4.2.2 g Function

In the round function G, nonlinear function g plays a crucial role in the security of Sarmal com-

pression function. It is an AES [20](or Whirlpool[5])-like w-bit bijection that satisfies certain cryptographic

properties. The reason behind the choice of g is mainly due to the extensive work done on that kind of nonlin-

ear functions. The security evaluations of g are well established and known such that we can provide concrete

results about the cryptographic properties of g. Also, the sound research done on g-like functions allows us to

find fast, elegant and low-cost implementations. We summarize the basic design criteria for g:

1. It is possible to provide security claims, especially for differential kind of attacks.

2. Fast, secure and low-cost implementations for each architecture are possible which is due to sound work

done on this kind of functions.

4.2.3 S-Box

S-Box of Sarmal is mainly inspired from the S-boxes of CLEFIA [60] and Whirlpool [5] which use

smaller S-boxes to generate a bigger one. The obvious reason for this is to reduce the hardware requirements
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Figure 4.1: S-Box of Sarmal

of 8 × 8-bit S-boxes as it reduces the required memory dramatically. We follow the same fashion as done in

[60] and generate Sarmal’s S-box from 4 different 4 × 4-bit S-boxes connected by a permutation over GF(24)

defined by the primitive polynomial p(x) = x4 + x + 1. 4 × 4-bit S-boxes are selected randomly and combined

with a manner described in Figure 4.1.

From the security point of view, it is not as good as the optimal 8 × 8-bit S-box. However it satisfies

several cryptographic properties which are provided in Table 4.1. We summarize the design criteria for the

S-box of Sarmal as follows.

1. It is 8 times less hardware demanding comparing to the optimal 8 × 8-bit S-boxes.

2. It is possible to satisfy basic cryptographic properties.

Table 4.1: Properties of S-box

Probability of Maximum Difference Value 2−4.68

Probability of Maximum Linear Value 2−4.38

Maximum Degree of Boolean Functions 6

Minimum Nonlinearity 100

4.2.4 MDS Matrix

In the design of Sarmal, an MDS matrix is used to diffuse the incoming data in the g-function. It

is based on a [16, 8, 9] MDS code which helps us to evaluate the security of Sarmal against differential type

of attacks. Being also circulant, it enables us to use various definitions for our MDS matrix. The following

definition provides us nice security results about Sarmal g function

Definition 4.2.1 (Branch Number[19]) Let G be a linear transformation operating on bytes and let W(.) be the

byte weight of an input value (i.e. counts the non-zero bytes of the given value). Then, the branch number of G

is defined as mina,0{W(a) + W(G(a)}.
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The branch number of Sarmal permutation is 9, which guarantees minimum number of active bytes

that will be used to evaluate the total number of active S-boxes in differential attacks. In the following, we

summarize the basic criteria behind the choice of this permutation.

1. The MDS matrix guaranties at least 9 active bytes in the input and output that enables us to evaluate the

security.

2. It is possible to implement the matrix efficiently in 8, 32, 64 bit platforms with the aid of matrix proper-

ties.

4.2.5 Message Permutation

In Sarmal, we choose not to make an additional operation on the original message block and use the

message as is in the compression function f . There are several reasons for this. The trivial answer is to decrease

the cost of this computation. As we do not make any modifications on the original message, it is efficient for

any implementation. Besides, message block can be stored externally and reached from the external memory.

The selection of message permutation is one of the crucial parts of Sarmal compression function

f . Message permutations can be written as a 4 × 16 (or 5 × 16) matrix for each (left and right) part of the

compression function (Table 3.9) where the entry in ith row and jth column is denoted by αi, j. There are several

restrictions while choosing the message permutations which are described below.

In the G-function of Sarmal, half of the message words are not used just before the g-function and

this can lead to a self-cancelation under certain circumstances depending on the message values. This situ-

ation is depicted in Figure 4.2. In the figure, given four message values (αi,9, αi,11, αi,13, αi,15) in the ith per-

mutation, their positions in the next permutation can cause cancellations if they are chosen appropriately as

(αi+1,2, αi,0, αi,6, αi,4) respectively. Here, our aim is to force the attacker to increase the number message words

to be modified so as to find local collisions.

Secondly, we do not want to allow the similar case for the chosen two message pairs. If one of

the message pairs (αi,1, αi,10) or (αi,3, αi,8) and their iterated versions up to 4th round are taken identical, then

they cancel each other due to the structure of Sarmal. We construct our message permutation by taking these

conditions also into account. Here, the aim is again the same in the sense of the first case.

So, we can summarize the design criteria for the message permutation of Sarmal as follows.

1. Simple message permutations are used to spend less time in message expansion part.

2. Message permutations are chosen to increase the number of message words to be modified to find local

collisions.
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4.2.6 s and t Values

User supplied salt value s and the counter value t are mainly used to improve the strength of the

Sarmal against generic attacks on iterative modes of operations. They are fundamental components of HAIFA

mode of operation and satisfy certain security properties against known generic attacks. These properties are

considered mainly in Chapter 5.

We decide to place s and t directly in the state so as to make inversion or meet-in-the-middle attacks

harder. Similar methods have also been used in [7, 8]. Namely, instead of imposing these values in the rounds

we apply, in particular s, directly in left and right parts of the state in order to prevent partial recovery especially

when s is used as key.

Number of bits for s and t values are chosen accordingly with the number of necessary bits. That is,

we are bound to choose w-bit value for t as the length l of the message M can be at most 264 − 1. The case for

s is quite different in that the only requirement is when it is used as key especially for MAC. In HMAC [25],

the size of the key, s, shall be equal to or greater than d/2. As we choose s to be 4w bits, it is sufficient for all

digest sizes.
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Security

Aforementioned applications of cryptographic hash functions require three basic security properties

which are given below.

1. Collision resistance: For an adversary, it should be hard to find two distinct messages M and M′ such

that H(M) = H(M′).

2. Preimage resistance: For an adversary, given the target hash value D, it should be hard to find a preimage

M such that H(M) = D.

3. Second-preimage resistance: For an adversary, given a message M, it should be hard to find another

different message M′ such that H(M) = H(M′).

From these definitions, it is clear that finding a second preimage is equivalent to finding a collision

for the entire hash function H. In terms of security requirements today, one would expect

• Collision resistance of about d/2 bits which is due to the birthday paradox and equivalent to O(2d/2)

queries for an adversary.

• Preimage resistance of about d bits which is equivalent to O(2d) queries for an adversary.

• Second-preimage resistance of d−l bits for any message shorter than 2l bits which is equivalent to O(2d−l)

queries for an adversary.

The security proofs contain a close interaction between the security of the mode of operation and the

compression function. Namely, in order to show the security of mode of operation, one assumes compression

function’s being secure. So, in the first part of this chapter we assume that our compression function f does

not have any weaknesses. In the second part, we show the resistance of f to the recent and the possible attacks

which will provide a sound idea about the overall security of Sarmal. The final section expresses the ideas of

the submitters about the expected security of Sarmal.

32
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5.1 Security of the Mode of Operation of Sarmal

As described, the security evaluation of Sarmal is divided into two parts regarding the security of

mode of operation and compression function. Security of the mode of operation of Sarmal heavily depends

on the security of HAIFA [12]. We add further details by using the internal properties of Sarmal to provide

concrete results. We present the collision resistance, preimage resistance, second-preimage resistance, pseu-

dorandomness of Sarmal together with the resistance against recent generic attacks to the iterative modes of

operations.

5.1.1 Collision Resistance

The reduction proof of the collision resistance of the mode of operation of Sarmal is provided in

HAIFA [12, 9] which is very similar to the reduction proof of collision resistance of Merkle-Damgård con-

struction with minor differences. As done in [12, 9], we assume that the attacker has full control over all

parameters which is the strongest definition of a collision resistance. The result follows from the fact that

if an attacker can find two arbitrary but finite length messages M,M′ ∈ {0, 1}∗ and s, s′ ∈ {0, 1}4w such that

H(M, d, s) = H(M′, d, s′), then he can construct a collision in f such that f (h,m, s, t) = f (h′,m′, s′, t′) or in

fd which is the last iteration of f together with d-bit truncation. Therefore, we can conclude if the underlying

compression function is collision resistant our hash function family Sarmal is collision resistant.

5.1.2 Preimage Resistance

For the preimage resistance of the mode of operation of Sarmal, one can use several works [2, 12, 9]

that discuss the preimage resistance of HAIFA. However, the reduction proof of preimage resistance changes

according to the definition of the preimage finding advantages of the adversaries which have been formalized

in [58] as Pre, aPre and ePre that stand for preimage, always and everwhere preimage resistances, repectively.

These definitions play respective roles depending on the applications of the underlying cryptographic hash

function. Based on [2], HAIFA mode of operation satisfies ePre where there are also counter-examples for Pre

and aPre. However, in [9] it is simply accepted that HAIFA mode of operation is preimage resistant.

5.1.3 Second-Preimage Resistance

Second-preimage resistance is stronger assumption than the collision resistance, as one can produce

collisions if it is possible to create second preimages. Unfortunately, we cannot make a reduction proof for

the second preimage resistance for Sarmal mode of operation. Also, the work [2, 12, 9] support this claim by

assuming a d/2-bit of security for the second preimage resistance of HAIFA.

However, a sketch proof has been provided in [12, 9] recently about the second preimage resistance

of HAIFA mode of operation if the underlying compression function is ideal. Nevertheless, we conjecture the

second preimage resistance of mode of operation of Sarmal as d − l bits for any message shorter than 2l bits

which is equivalent to O(2d−l) queries for an adversary.
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5.1.4 Pseudorandomness

Pseudorandom oracle preservation and pseudorandom function preservation were investigated in sev-

eral papers [27, 28, 40, 41, 42]. However, there is no known work for HAIFA mode of operation about its

pseudorandomness and unpredictability. As a SHA-3 candidate, Sarmal should support 2d/2 level of security as

MAC. We propose Sarmal to be used as keyed in place of salt value s which provides 4w bits of security which

is sufficient for all digest sizes of Sarmal. Besides, as it is a form of Merkle-Damgård iterative construction, it

can be used in place of existing MACs [6].

5.1.5 Resistance Against Generic Attacks to the Iterative Hash Functions

Security notions discussed in the previous parts do not deal with some practical attacks which have

emerged recently such as multicollision [32], fixed-points [22], expandable message [22, 35], long message sec-

ond preimage [35], herding [33] and Nostradamus [33] attacks. There is no established theoretical background

to resist these type of attacks which are generic to all iterative mode of operations. This section considers the

security of Sarmal against these attacks.

Resistance Against Multicollision Attacks

Multicollisions (r-collisions) are defined to simply to be the generalization of collisions (2-collisions).

This time the attacker tries to find r-tuple of messages which give the same hash value rather than only one

collision. This attack was first described by Joux [32] for standard Merkle-Damgård construction and used for

attacking concatenated schemes.

The strength of this attack stems from the fact that it can be applied to any iterative schemes. The

hardness of the applicability of the attack heavily relies on the collision resistance of the underlying compres-

sion function. Still, it is possible to apply this attack in the worst case, that is in the birthday bound. Assuming

this is the case, in order to find 2t-collisions, the attacker needs to call O(t2d/2) queries, where d is the number

of bits in the chaining variables.

The resistance of Sarmal against multicollision attacks should be investigated in several cases de-

pending on the digest size. First of all, as noted in [12], if the attacker does not have control over the salts, it

is impossible to precompute multicollisions and apply the attacks. This works for all digest sizes and we can

deduce this property thanks to the mode of operation of Sarmal. If the attacker has control over the salts, the

attacker needs O(t24w) queries to apply the attack for t-collision.

An obvious way to resist this attack is to enlarge the chaining value. However, it has some practical

and performance implications. A 16w-bit of chaining variable would be sufficient to resist this attack for all

digest sizes of Sarmal, but we choose to make a trade-off. As Sarmal supports chaining value of 8w bits,

clearly Sarmal-224 and Sarmal-256 can resist multicollisions. Sarmal-384, on the other hand, can resist t-

multicollisions for many of the t-values and for increasing values of t, the complexity of the attack gets closer

to O(28w). For Sarmal-512, the resistance against multicollisions is at the same level for standard Merkle-

Damgård construction under the assumption that the attacker has full control over the salt. Nevertheless, the
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applicability of the attack is still questionable as it does not seem to be reasonable to apply this attack for

d = 512 assuming the underlying compression function is collision resistant.

Fixed-Points and Dean’s Attack

An expandable message is a kind of multicollision that consists of colliding messages before the

last compression function evaluation of different lengths. In [22], Dean showed an efficient way of finding

expandable messages by using fixed points of the compression function. This attack entirely depends on the

simplicity of finding fixed points which is the case for Davies-Meyer mode of operation. Many hash functions

including SHA family [48, 49, 50], MD4 [55], MD5 [56], Tiger [1] and RIPEMD [23] use Davies-Meyer mode

of operation.

In Sarmal, we also use a version of Davies-Meyer construction which was detailed in Chapter 3. In

order to show the resistance of Sarmal against Dean’s attack, we first show the resistance against finding fixed

points. Next, we show the infeasibility of iterating fixed points by using the properties of the mode of operation

of Sarmal.

As Sarmal uses Davies-Meyer for the compression function f , it is still possible to find fixed points

of f , but it is not that simple. As usual, we start with assuming that the attacker does not have control over

s. Since the attacker does not have control over the s, once he chooses Xl and Xr at the end of r rounds as

zero-string, he can revert the whole compression function by taking a random message. Now, the probability of

obtaining the actual s, t and c is 2−8w as we assume that the attacker does not have control over s which makes

the attack infeasible. If the attacker has control over s, the probability increases to 2−4w. Nonetheless, to apply

the attack the attacker has to generate 24w random fixed points that is again infeasible. Besides, so as to generate

messages by using fixed points Dean [22] makes an extensive use of the iteration of same compression function

in standard Merkle-Damgård construction. However, even if the attacker can find the fixed points very easily,

the mode of operation of Sarmal does not allow to iterate fixed points as t differentiates each compression

function.

Resistance Against Expandable Messages and Long-Message Second-Preimage Attack

In [35], Kelsey and Schneier proposed a method to find multicollisions of different lengths and used

this idea to create expandable messages. The outcome of this work transforms the attack of Dean to the case

where the fixed points cannot easily be found. Besides, a solution to the inapplicability of long-message

second-preimage attack to Merkle-Damgård strengthened constructions is provided.

As for in multicollisions and Dean’s attack, we consider the security of Sarmal against expandable

messages and long-message second-preimage attack by considering the cases where the attacker has/does not

have control over s. When the attacker does not have control over s, the attack becomes infeasible as the

attacker cannot create expandable messages without knowing s. For the case when the attacker can control

s, we need to consider the computational complexity of the attack for several versions of Sarmal. Again, we

choose to make a trade-off between the resistance against this attack and the performance of Sarmal by choosing
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the chaining value as 8w bits.

As the attack basically depends on finding collisions in the compression function, the main work

factor comes from O(24w) number of queries that the attacker has to make. Obviously, Sarmal-224 and Sarmal-

256 can resist this attack. For Sarmal-384, the theoretical applicability of this attack depends on the length

of the message where the computation effort is still close to O(26w) queries. For Sarmal-512, the resistance

against this attack is at the same level for standard Merkle-Damgård construction under the assumption that the

attacker has full control over the salt. Nevertheless, the applicability of the attack is still questionable as it does

not seem to be reasonable to apply this attack for d = 512 assuming the underlying compression function is

collision resistant.

Resistance Against Herding Attack

The herding attack [33] allows an attacker to commit to the hash of a message that is not fully known

with an additional cost of a large precomputation. The attacker starts producing a special search structure which

contains many intermediate hash values which is called a diamond structure. In this structure, an attacker can

produce a message leading to the same final hash D from any intermediate value. After determining a prefix P,

the attacker starts searching for a single-block which would yield an intermediate value in diamond structure

when combined with P. Finally, the attacker is able to produce message blocks from the diamond structure

to link this intermediate hash value. At the end of this process, the attacker first committed to a hash D, then

decided what message she will provide which hashes to H and which begins with the prefix P.

The overall complexity of this attack is dominated by constructing the diamond structure and search-

ing for an intermediate value in diamond structure to match. While constructing diamond structure the attacker

has to find collisions repeatedly which is not as effective as multicollisions. As Sarmal uses 8w-bit of chaining

value, it makes this precomputation phase quite infeasible, in particular for Sarmal-224 and Sarmal-256. Fur-

ther, the attacker has to know s to make this precomputation. If the attacker does not have access to s, 4w-bit

s value is sufficient to resist this attack regardless of the digest size. While searching for an intermediate value

in diamond structure to match, it is again overcome by choosing 8w-bit of chaining value as it decreases the

probability of the success of the attack. Assuming the attacker has full control over all variables, for Sarmal-

512, it is theoretically possible to apply the attack. Nevertheless, we believe it is much more efficient to make

a choice in favor of the performance.

5.2 Security of the Compression Function of Sarmal

5.2.1 Differential Properties of Compression Function of Sarmal

Last term attacks, which are basically differential in nature [10, 11, 15, 47, 59, 61, 62, 63, 64],

mainly focus on the collision resistance of the cryptographic hash functions. Therefore, differential properties

of Sarmal have an important role while giving the security against similar attacks. We analyze the compression
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function in Section 5.2.2 and 5.2.4 against differential kind of attacks. Our results mainly reveal the following

properties.

• The structure of Sarmal compression function reduces the applicability of recent attacks in which a

difference is defined and controlled in the rest of the hash function. In Sarmal, controlling the introduced

difference is not easy due to the independence of left and right parts.

• Due to the fast diffusion properties of G-function, it is difficult to handle the propagation of differences.

5.2.2 Collision Resistance

While experiencing the resistance of Sarmal against several collision attack models, we introduce

differences from various parts (from message block or state or both at the same time) of Sarmal and search for

best differential paths. When a difference propagates through the structure of f , it passes the non-linear layer(s)

with some cost (an output difference is obtained from non-linear layer with some probability). Therefore, the

best path for an introduced difference becomes the one that passes through minimum number of S-boxes. In

oder to find out these paths, an algorithm is developed which calculates the Active S-box Number (ASN). We

mainly make use of byte-oriented structure of g function to calculate ASN. The details of the algorithm are

given as follows:

1. S-box of Sarmal takes 1-byte of input and produces an output of 1-byte. Thus, we choose byte-wise

notation and each w-bit word is considered as 8-byte.

2. A byte is called active unless it has a zero difference and if a byte is active it cannot have inactive output.

Thus, activity of a w-bit word is ranges from 0 to 8.

3. g-function accepts 8-byte inputs and its output is again 8-byte. It has an MDS matrix in its structure

which guarantees at least nine active bytes for the input and output differences.

4. Addition and subtraction operations modulo 264 are difficult operations to analyze due to the carry and

borrow bits. So, they are converted to XOR operation to ease the calculation. Since both addition and

subtraction operations are non-linear, the original design’s result is not worse than the modified version’s

result, and actually it is expected to see more active S-boxes in Sarmal on average. Still, the addition and

subtraction modulo 264 may have undesirable effects on the propagation of differences. However, this

will have an additional cost.

In the following, Tables (5.1 and 5.2) provide obtained ASN for 12 and 16 rounds of Sarmal respec-

tively. Since the maximum value in the XOR Table of Sarmal’s S-box is 2−4.68, these numbers show theoretical

minimum number of rounds required for Sarmal.
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Table 5.1: Active S-box Number for 12 round Sarmal

Part ASN Number of Active Bytes of States Active Messages and

X[7] X[6] X[5] X[4] X[3] X[2] X[1] X[0] Active Byte Number

Left 3 0 0 0 1 0 0 0 1 M[0] = 1 M[2] = 1

Right 29 0 0 1 0 8 8 8 0 M[0] = 1 M[2] = 1

Total 32

Left 4 0 0 1 0 8 8 8 1 M[12] = 1 M[15] = 1

Right 31 0 0 0 0 1 1 0 0 M[12] = 1 M[15] = 1

Total 35

Left 6 0 0 0 2 0 0 0 2 M[0] = 2 M[2] = 2

Right 30 0 0 2 0 0 0 0 2 M[0] = 2 M[2] = 2

Total 36

Left 8 0 0 2 0 7 7 7 2 M[12] = 2 M[15] = 2

Right 33 6 0 4 3 0 1 4 0 M[12] = 2 M[15] = 2

Total 41

Left 9 6 0 3 3 0 0 0 0 M[6] = 3 M[10] = 6

Right 35 0 0 2 0 0 0 7 0 M[6] = 3 M[10] = 6

Total 44

Left 9 0 0 0 3 0 0 0 3 M[0] = 3 M[2] = 3

Right 33 3 0 0 0 0 6 3 3 M[0] = 3 M[2] = 3

Total 42

Left 32 0 0 7 0 0 8 7 0 M[1] = 7 M[8] = 1

Right 3 0 0 8 0 0 2 8 0 M[1] = 7 M[8] = 1

Total 35

Left 39 1 0 6 0 0 0 2 0 M[1] = 5 M[8] = 2

Right 6 0 0 7 0 0 4 7 0 M[1] = 5 M[8] = 2

Total 45
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Table 5.2: Active S-box Number for 16 round Sarmal

Part ASN Number of Active Bytes of States Active Messages and

X[7] X[6] X[5] X[4] X[3] X[2] X[1] X[0] Active Byte Number

Left 27 0 0 3 0 0 3 0 0 M[1] = 3 M[9] = 6

Right 45 3 0 6 0 3 0 3 3 M[1] = 3 M[9] = 6

Total 72

Left 30 6 0 3 3 3 0 0 0 M[10] = 6 M[15] = 0

Right 42 6 0 0 3 3 3 6 0 M[10] = 6 M[15] = 0

Total 72

Left 30 6 0 3 3 3 0 0 0 M[10] = 6 M[14] = 0

Right 42 6 0 0 3 3 3 6 0 M[10] = 6 M[14] = 0

Total 72

Left 30 6 0 3 3 3 0 0 0 M[10] = 6 M[15] = 0

Right 42 6 0 0 3 3 3 6 0 M[10] = 6 M[15] = 0

Total 72

Left 30 6 0 3 3 3 0 0 0 M[10] = 6 M[12] = 0

Right 42 6 0 0 3 3 3 6 0 M[10] = 6 M[12] = 0

Total 72
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5.2.3 The Attacks to the Similar Constructions

As a compression function, many designs follow some similarities with Sarmal. Firstly, it makes use

of GUFN of 8 branches which is quite common in many designs including block ciphers and hash functions.

In the round function, Sarmal uses well-established arithmetic operations together with AES-like Substitution-

Permutation structure. Therefore, it makes sense to recapitulate recent developments in the analysis of hash

functions whose compression functions use such structures.

Assuming GUFN as a basic building block, Sarmal is similar to FORK [30] which also uses in-

dependent parallel blocks at the same time. Recent attacks [17, 39, 43] can break FORK faster than generic

birthday attack by using clever differential paths. The main feature of the attack against FORK is the so called

micro-collisions in the round transformation which can also be defined for Sarmal.

A micro-collision is defined to be the propagation of zero difference in round r′ in one of the branches

Xr′ [1], Xr′ [2], Xr′ [3] (or Xr′ [5], Xr′ [6], Xr′ [7]) while having a nonzero difference in Xr′ [0](or Xr′ [4]). Simulta-

neous micro-collisions occur if more than one branch has zero difference, which is the main weakness of

FORK. The attacker can obtain micro-collisions for FORK as it uses modular addition and XOR at the same

time in each branch which allows attacker to cancel additive and XOR differences in the same branch. The

case for Sarmal can be considered as a special case of the differential properties provided in previous section

where we assume to cancel differences in branches even if it is not the case. Nevertheless, the attack model

in FORK can not be applied directly to Sarmal as the round function is stronger than FORK’s round function

which decreases the probability of the attack model in FORK.

As another example, Sarmal is similar to Tiger [1] in that its round function uses modular addition,

subtraction and XOR at the same time. Also, the round update is quite similar which uses one branch to

update the others. There are serious attacks [34, 44, 45, 53] to Tiger which can be used to find reduced-round

collisions/pseudocollisions, nonrandomness and full pseudo-near collision. These attacks are differential in

their nature and make use of mainly the weknesses in the round function and the message expansion of Tiger.

The message update in Sarmal is weaker than Tiger as in the latter a nonlinear message expansion

is used while the former uses the message words as are. However, the attack model in Tiger allows attacker

to control one of the left or right parts of Sarmal, not both at the same time. Also, the iterative message

modification becomes difficult by the help of two parallel blocks in Sarmal. Besides, the round function of

Sarmal uses whole data in one branch to update three other branches which is not the case in Tiger.

Moreover, Grindahl[36] and Whirlpool[5] use AES-like round functions in their compression func-

tions where the former has been attacked recently [54] and the latter is still secure. The attack on Grindahl

seems inapplicable as the sponge construction allows attacker to control message words which is not the case

for Sarmal. Finally, the strengthened versions of RIPEMD[24] is similar to Sarmal as its compression function

consist of two parallel blocks. There is no serious threat to that version of RIPEMD.
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5.2.4 Possible Attack Scenarios

Recent attacks on hash functions mostly require to find a local collision. In Sarmal, we look for the

possibilities of finding local collisions and conclude that one needs two or five message differences to obtain a

local collision. We investigate these results in several cases.

Case-I The first possible case to find a collision is illustrated in Figure 5.1. As seen from the figure, if the

difference in the message words are chosen accordingly a local collision can be found for four rounds in one

of the left or right parts. We use αi, j to denote the ith row and jth column value of the Table 3.9 and v shows

choosing the difference ∆ in corresponding entries accordingly. Possible cases are drawn in Figure 5.1 and

given in Table 5.3.
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α
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α
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α
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α
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Figure 5.1: Local Collision (Case I)

As shown in Figure 5.1 and Table 5.3 it is possible to find a local collision for four rounds by modify-

ing 2 messages only. However, we cannot control this behaviour for the other part. Namely, message differences

propagate independently. We investigate this local collision to find the best possible path for finding collisions.

The only drawback wpuld be to find similar behaviour in the other branch. The results are shown in Table 5.4.

For this attack type, results show that after 8th round Sarmal-224/256 and after 12th round Sarmal-



Chapter 5: Security 42

Table 5.3: Conditions for Local Collision (Case I)

Required Message Equivalency (General Form)

∆αi,1 v ∆αi,10

∆αi,5 v ∆αi,14

∆αi,3 v ∆αi,8

∆αi,7 v ∆αi,12

Table 5.4: Results for Local Collision (Case I)

ASN of

Left Part

ASN of

Right Part

Total

Round 1: 0 0 0

Round 2: 0 0 0

Round 3: 0 8 8

Round 4: 0 9 9

Round 5: 0 18 18

Round 6: 0 24 24

Round 7: 0 34 34

Round 8: 1 41 42

Round 9: 2 48 50

Round 10: 3 58 61

Round 11: 19 62 81

Round 12: 19 76 95

Round 13: 24 79 103

Round 14: 28 92 120

Round 15: 33 98 131

Round 16: 38 104 142

ASN of

Left Part

ASN of

Right Part

Total

Round 1: 0 0 0

Round 2: 3 0 3

Round 3: 9 0 9

Round 4: 18 0 18

Round 5: 21 0 21

Round 6: 24 0 24

Round 7: 27 0 27

Round 8: 30 0 30

Round 9: 30 3 33

Round 10: 36 3 39

Round 11: 48 9 57

Round 12: 51 15 66

Round 13: 57 18 75

Round 14: 57 24 81

Round 15: 63 27 90

Round 16: 69 27 96
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384/512 one reaches the birthday attack bound. It can be concluded that message differences should be handled

simultaneously in each branch to find a collision.

Case-II In Sarmal, another way of obtaining local collisions for four rounds in one part requires five message

differences. In contrast to the first case, this attack model works probabilistically. The total number of way of

finding local collisions with this method is 16 where two of which are provided in Figure 5.2. Other cases are

similar and provided in Table 5.5.

We follow the same strategy as in the first case and investigate the possible message differences which

ought to be satisfied probabilistically. All cases are defined in Table 5.5 and it can be deduced from Table 5.5

that all five message difference groups are different for the left and right parts. Thus, local collisions can only

be obtained in one part of Sarmal and message differences diffuse in the other one.

Following that manner, we find the minimum active S-box numbers for each possible local collision

scenarios and provide the best possible attack scenario in Table 5.6 . For this attack type, results show that after

7th round Sarmal-224/256 and after 10th round Sarmal-384/512, one reaches the birthday attack bound. It can

be concluded that message differences should be handled simultaneously in each part to find a collision.
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Figure 5.2: Local Collisions (Case II)

5.2.5 Preimage and Second-Preimage Attacks

Recent preimage and the second-preimage attacks have not cought too much attention and success

comparing to the effective collision attacks. One of the reasons is obviously the difficulty of these attacks com-

paring to collision search. However, the works [3, 4, 16, 37] provide serious threats to existing cryptographic

hash functions. We try to measure the resistance of Sarmal against preimage and the second-preimage attacks

by showing the resistance against these last term attack scenarios.
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Table 5.5: Conditions for Local Collision (Case II)

Required Message Values (General Form)

1 ∆αi,0 ∆αi,9 ∆αi,5 ∆αi,1 ∆αi,6

2 ∆αi,0 ∆αi,9 ∆αi,5 ∆αi,10 ∆αi,6

3 ∆αi,0 ∆αi,9 ∆αi,14 ∆αi,1 ∆αi,6

4 ∆αi,0 ∆αi,9 ∆αi,14 ∆αi,10 ∆αi,6

5 ∆αi,2 ∆αi,11 ∆αi,7 ∆αi,3 ∆αi,4

6 ∆αi,2 ∆αi,11 ∆αi,7 ∆αi,8 ∆αi,4

7 ∆αi,2 ∆αi,11 ∆αi,12 ∆αi,3 ∆αi,4

8 ∆αi,2 ∆αi,11 ∆αi,12 ∆αi,8 ∆αi,4

Required Message Values (General Form)

9 ∆αi,4 ∆αi,13 ∆αi,9 ∆αi,5 ∆αi,10

10 ∆αi,4 ∆αi,13 ∆αi,9 ∆αi,14 ∆αi,10

11 ∆αi,4 ∆αi,13 ∆αi,9 ∆αi,5 ∆αi,1

12 ∆αi,4 ∆αi,13 ∆αi,9 ∆αi,14 ∆αi,1

13 ∆αi,6 ∆αi,15 ∆αi,11 ∆αi,7 ∆αi,8

14 ∆αi,6 ∆αi,15 ∆αi,11 ∆αi,12 ∆αi,8

15 ∆αi,6 ∆αi,15 ∆αi,11 ∆αi,7 ∆αi,3

16 ∆αi,6 ∆αi,15 ∆αi,11 ∆αi,12 ∆αi,3

Table 5.6: Results for Local Collision (Case II)

ASN of

Left Part

ASN of

Right Part

Total

Round 1: 0 0 0

Round 2: 0 0 0

Round 3: 0 0 0

Round 4: 0 1 1

Round 5: 0 8 8

Round 6: 0 13 13

Round 7: 16 18 34

Round 8: 18 24 42

Round 9: 20 32 52

Round 10: 25 34 59

Round 11: 33 45 78

Round 12: 34 50 84

Round 13: 38 56 94

Round 14: 48 59 107

Round 15: 58 71 129

Round 16: 64 74 138

ASN of

Left Part

ASN of

Right Part

Total

Round 1: 0 0 0

Round 2: 0 0 0

Round 3: 6 0 6

Round 4: 9 0 9

Round 5: 15 0 15

Round 6: 18 3 21

Round 7: 24 6 30

Round 8: 36 9 45

Round 9: 39 15 54

Round 10: 39 15 54

Round 11: 42 21 63

Round 12: 48 24 72

Round 13: 51 30 81

Round 14: 57 30 87

Round 15: 66 39 105

Round 16: 69 45 114
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The main characteristic of the works [3, 4, 16, 37] is to make use of the weaknesses of the underlying

compression functions. First of all, we choose to make use of two independent parts in Sarmal compression

function to resist that sort of atacks as there is no real threat to the hash functions that use that kind of struc-

ture. In Sarmal, two independent left and right parts make it diffucult to control both parts at the same time.

Secondly, the works [3, 4, 16, 37] share the efficiency of the so called meet-in-the-middle attack. The case for

Sarmal against meet-in-the-middle attack is quite similar for one of parts since Sarmal uses GUFN as the main

structure. Nevertheless, the large state size and two independent parts make meet-in-the-middle attack inappli-

cable. In the mean time, the user supplied salt s decreases the applicability of these attacks as the attacker has

to control the salt at the same time.

5.3 Expected Strength

In this chapter, we try to give concrete security results for Sarmal Hash Family. Firstly, we provide

some results about the resistance of Sarmal mode of operation by reducing the problem to HAIFA mode of

operation. Besides, the close relation between the chaining values and the compression function is provided.

We conclude that Sarmal mode of operation is at least practically secure for all generic attacks to the iterative

mode of operations known so far.

For the compression function of Sarmal, we provide basic differential properties which include some

bounds and the minimum required number of rounds. More precisely, our results show that Sarmal compression

function is theoretically secure up to 12 and 16 rounds for Sarmal-224/256 and Sarmal-384/512 respectively

which leads us to choose number of rounds 16 and 20 for these versions. These results are derived subject

to some attack models and valid for attacks that are differential in nature. Still, it is possible to increase the

number of rounds used in G function by adding extra permutations on message blocks. This will definitely

increase the safety margin of Sarmal. The only drawback is the performance. We leave this issue for the later

stages of the competition period.

For the preimage and second-preimage resistance of Sarmal, we conjecture that the compression

function is secure against these attack models. This is mainly due to larger state size comparing to message

digest and the independent left and right parts in the compression function. We do not expect any weaknesses

of Sarmal against these attacks.
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Implementation and Performance

In this chapter, the implementation methods of Sarmal for various platforms are discussed and the

required number of operations for each one is estimated. The performance of Sarmal is also tested in different

enviroments and the results are presented.

6.1 Implementation

6.1.1 Optimization Techniques

8-bit Optimization

The following implementation method can be used for implementing matrix multiplication on 8-bit processors

to reduce the required RAM amount.



b0

b1

b2

b3

b4

b5

b6

b7



=



01x 06x 08x 09x 06x 09x 05x 01x

01x 01x 06x 08x 09x 06x 09x 05x

05x 01x 01x 06x 08x 09x 06x 09x

09x 05x 01x 01x 06x 08x 09x 06x

06x 09x 05x 01x 01x 06x 08x 09x

09x 06x 09x 05x 01x 01x 06x 08x

08x 09x 06x 09x 05x 01x 01x 06x

06x 08x 09x 06x 09x 05x 01x 01x



·



a0

a1

a2

a3

a4

a5

a6

a7


In order to perform the operation efficiently in 8-bit processor, it can be rearranged as follows:

a0 ⊕ a3 ⊕ a5 ⊕ a6 ⊕ a7 ⊕ x · { a1 ⊕ a4 ⊕ x · { a1 ⊕ a4 ⊕ a6 ⊕ x · { a2 ⊕ a3 ⊕ a5 } } }

a0 ⊕ a1 ⊕ a4 ⊕ a6 ⊕ a7 ⊕ x · { a2 ⊕ a5 ⊕ x · { a2 ⊕ a5 ⊕ a7 ⊕ x · { a3 ⊕ a4 ⊕ a6 } } }

a0 ⊕ a1 ⊕ a2 ⊕ a5 ⊕ a7 ⊕ x · { a3 ⊕ a6 ⊕ x · { a0 ⊕ a3 ⊕ a6 ⊕ x · { a4 ⊕ a5 ⊕ a7 } } }

a0 ⊕ a1 ⊕ a2 ⊕ a3 ⊕ a6 ⊕ x · { a4 ⊕ a7 ⊕ x · { a1 ⊕ a4 ⊕ a7 ⊕ x · { a0 ⊕ a5 ⊕ a6 } } }

a1 ⊕ a2 ⊕ a3 ⊕ a4 ⊕ a7 ⊕ x · { a0 ⊕ a5 ⊕ x · { a0 ⊕ a2 ⊕ a5 ⊕ x · { a1 ⊕ a6 ⊕ a7 } } }

a0 ⊕ a2 ⊕ a3 ⊕ a4 ⊕ a5 ⊕ x · { a1 ⊕ a6 ⊕ x · { a1 ⊕ a3 ⊕ a6 ⊕ x · { a0 ⊕ a2 ⊕ a7 } } }

a1 ⊕ a3 ⊕ a4 ⊕ a5 ⊕ a6 ⊕ x · { a2 ⊕ a7 ⊕ x · { a2 ⊕ a4 ⊕ a7 ⊕ x · { a0 ⊕ a1 ⊕ a3 } } }

a2 ⊕ a4 ⊕ a5 ⊕ a6 ⊕ a7 ⊕ x · { a0 ⊕ a3 ⊕ x · { a0 ⊕ a3 ⊕ a5 ⊕ x · { a1 ⊕ a2 ⊕ a4 } } }



46
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In the above expression, x.{.} denotes the multiplication with x over GF(28) and it is stored in a lookup table

with the size of 256-byte. The evaluation of this expression requires 96 XORs and 24 table lookups. If the first

four substitutions are made, the number of XORs are reduced to 72. Proceeding with the next four substitutions

reduces this number further to 68. Finally, when all substitutions given below are made, the whole expression

can be evaluated via 64 XORs where the number of table lookups remains unchanged. The final form of the

expression is the following:

a8 = a1 ⊕ a4 [1.1]

a9 = a0 ⊕ a5 [1.2]

a10 = a3 ⊕ a6 [1.3]

a11 = a2 ⊕ a7 [1.4]

a12 = a2 ⊕ a5 [2.1]

a13 = a4 ⊕ a7 [2.2]

a14 = a1 ⊕ a6 [2.3]

a15 = a0 ⊕ a3 [2.4]

a16 = a0 ⊕ a10 [3.1]

a17 = a2 ⊕ a9 [3.2]

a18 = a4 ⊕ a11 [3.3]

a19 = a6 ⊕ a8 [3.4]



a9 ⊕ a10 ⊕ a7 ⊕ x · { a8 ⊕ x · { a19 ⊕ x · { a12 ⊕ a3 } } }

a0 ⊕ a19 ⊕ a7 ⊕ x · { a12 ⊕ x · { a11 ⊕a5 ⊕ x · { a10 ⊕ a4 } } }

a9 ⊕ a11 ⊕ a1 ⊕ x · { a10 ⊕ x · { a16 ⊕ x · { a13 ⊕ a5 } } }

a16 ⊕ a1 ⊕ a2 ⊕ x · { a13 ⊕ x · { a8 ⊕a7 ⊕ x · { a9 ⊕ a6 } } }

a8 ⊕ a11 ⊕ a3 ⊕ x · { a9 ⊕ x · { a17 ⊕ x · { a14 ⊕ a7 } } }

a17 ⊕ a3 ⊕ a4 ⊕ x · { a14 ⊕ x · { a1 ⊕a10 ⊕ x · { a0 ⊕ a11 } } }

a8 ⊕ a10 ⊕ a5 ⊕ x · { a11 ⊕ x · { a18 ⊕ x · { a15 ⊕ a1 } } }

a18 ⊕ a5 ⊕ a6 ⊕ x · { a15 ⊕ x · { a9 ⊕a3 ⊕ x · { a8 ⊕ a2 } } }



Table 6.1: MDS Matrix of Sarmal in 8-bit

Required Memory (Byte): 256

# of table lookups: 24

# of 8-bit XOR (⊕): 64

Table 6.2: S-box in 8-bit

Required Memory (Byte): 10

# of table lookups: 6

# of 8-bit XOR (⊕): 2

32-bit Optimization

Let I0||I1 be the input value for the g-function in the 32-bit implementation of Sarmal (Both I0 and I1

are 32-bit values) and O0||O1 be the output value (Similarly, both O0 and O1 are 32-bit values). The g-function
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can be defined through the following matrix multiplication:

 O0

O1

 =

 A0 A1

A1 A0

 ·
 I0

I1




O0[0]

O0[1]

O0[2]

O0[3]

O1[0]

O1[1]

O1[2]

O1[3]



=



01x 06x 08x 09x 06x 09x 05x 01x

01x 01x 06x 08x 09x 06x 09x 05x

05x 01x 01x 06x 08x 09x 06x 09x

09x 05x 01x 01x 06x 08x 09x 06x

06x 09x 05x 01x 01x 06x 08x 09x

09x 06x 09x 05x 01x 01x 06x 08x

08x 09x 06x 09x 05x 01x 01x 06x

06x 08x 09x 06x 09x 05x 01x 01x



·



S (I0[0])

S (I0[1])

S (I0[2])

S (I0[3])

S (I1[0])

S (I1[1])

S (I1[2])

S (I1[3])


The expanded form of the above expression is given below. The results of the operations in the

shaded area of the matrix are stored in the lookup table LT0. Similarly, the remaining blocks are stored in the

tables LTi where i = 1, 2, · · · , 7, which are also presented below.



01x · S (I0[0]) ⊕ 06x · S (I0[1]) ⊕ 08x · S (I0[2]) ⊕ 09x · S (I0[3]) ⊕ 06x · S (I1[0]) ⊕ 09x · S (I1[1]) ⊕ 05x · S (I1[2]) ⊕ 01x · S (I1[3])

01x · S (I0[0]) ⊕ 01x · S (I0[1]) ⊕ 06x · S (I0[2]) ⊕ 08x · S (I0[3]) ⊕ 09x · S (I1[0]) ⊕ 06x · S (I1[1]) ⊕ 09x · S (I1[2]) ⊕ 05x · S (I1[3])

05x · S (I0[0]) ⊕ 01x · S (I0[1]) ⊕ 01x · S (I0[2]) ⊕ 06x · S (I0[3]) ⊕ 08x · S (I1[0]) ⊕ 09x · S (I1[1]) ⊕ 06x · S (I1[2]) ⊕ 09x · S (I1[3])

09x · S (I0[0]) ⊕ 05x · S (I0[1]) ⊕ 01x · S (I0[2]) ⊕ 01x · S (I0[3]) ⊕ 06x · S (I1[0]) ⊕ 08x · S (I1[1]) ⊕ 09x · S (I1[2]) ⊕ 06x · S (I1[3])

06x · S (I0[0]) ⊕ 09x · S (I0[1]) ⊕ 05x · S (I0[2]) ⊕ 01x · S (I0[3]) ⊕ 01x · S (I1[0]) ⊕ 06x · S (I1[1]) ⊕ 08x · S (I1[2]) ⊕ 09x · S (I1[3])

09x · S (I0[0]) ⊕ 06x · S (I0[1]) ⊕ 09x · S (I0[2]) ⊕ 05x · S (I0[3]) ⊕ 01x · S (I1[0]) ⊕ 01x · S (I1[1]) ⊕ 06x · S (I1[2]) ⊕ 08x · S (I1[3])

08x · S (I0[0]) ⊕ 09x · S (I0[1]) ⊕ 06x · S (I0[2]) ⊕ 09x · S (I0[3]) ⊕ 05x · S (I1[0]) ⊕ 01x · S (I1[1]) ⊕ 01x · S (I1[2]) ⊕ 06x · S (I1[3])

06x · S (I0[0]) ⊕ 08x · S (I0[1]) ⊕ 09x · S (I0[2]) ⊕ 06x · S (I0[3]) ⊕ 09x · S (I1[0]) ⊕ 05x · S (I1[1]) ⊕ 01x · S (I1[2]) ⊕ 01x · S (I1[3])


LT0(x) = 01x · S (x) || 01x · S (x) || 05x · S (x) || 09x · S (x)

LT1(x) = 06x · S (x) || 01x · S (x) || 01x · S (x) || 05x · S (x)

LT2(x) = 08x · S (x) || 06x · S (x) || 01x · S (x) || 01x · S (x)

LT3(x) = 09x · S (x) || 08x · S (x) || 06x · S (x) || 01x · S (x)

LT4(x) = 06x · S (x) || 09x · S (x) || 08x · S (x) || 06x · S (x)

LT5(x) = 09x · S (x) || 06x · S (x) || 09x · S (x) || 08x · S (x)

LT6(x) = 05x · S (x) || 09x · S (x) || 06x · S (x) || 09x · S (x)

LT7(x) = 01x · S (x) || 05x · S (x) || 09x · S (x) || 06x · S (x)

Once the lookup tables are obtained, the output of the g-function (O0||O1) can be calculated in the following

way:

O0 = LT0(I0[0])⊕ LT1(I0[1])⊕ LT2(I0[2])⊕ LT3(I0[3])⊕ LT4(I1[0])⊕ LT5(I1[1])⊕ LT6(I1[2])⊕ LT7(I1[3])

O1 = LT4(I1[0])⊕ LT5(I1[1])⊕ LT6(I1[2])⊕ LT7(I1[3])⊕ LT0(I0[0])⊕ LT1(I0[1])⊕ LT2(I0[2])⊕ LT3(I0[3])

64-bit Optimization

Let I = I[0 · · · 7] be the input value for g-function and O = O[0 · · · 7] be the output value. The

g-function can be defined through the following matrix multiplication, whose expanded form is also presented

below:
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Table 6.3: G-function Operations in 32-bit

Required Memory (KB): 8

# of table lookups: 32

# of XOR (⊕): 40

# of Addition (�): 6

# of Subtraction (�): 6

Table 6.4: Number of Operations Used in Sarmal

Sarmal-224/256

Required Memory (KB): 8

# of table lookups: 1024

# of XOR (⊕): 1312

# of Addition (�): 192

# of Subtraction (�): 192

Sarmal-384/512

Required Memory (KB): 8

# of table lookups: 1280

# of XOR (⊕): 1632

# of Addition (�): 240

# of Subtraction (�): 240
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

O[0]

O[1]

O[2]

O[3]

O[4]

O[5]

O[6]

O[7]



=



01x 06x 08x 09x 06x 09x 05x 01x

01x 01x 06x 08x 09x 06x 09x 05x

05x 01x 01x 06x 08x 09x 06x 09x

09x 05x 01x 01x 06x 08x 09x 06x

06x 09x 05x 01x 01x 06x 08x 09x

09x 06x 09x 05x 01x 01x 06x 08x

08x 09x 06x 09x 05x 01x 01x 06x

06x 08x 09x 06x 09x 05x 01x 01x



·



S (I[0])

S (I[1])

S (I[2])

S (I[3])

S (I[4])

S (I[5])

S (I[6])

S (I[7])




01x · S (I[0]) ⊕ 06x · S (I[1]) ⊕ 08x · S (I[2]) ⊕ 09x · S (I[3]) ⊕ 06x · S (I[4]) ⊕ 09x · S (I[5]) ⊕ 05x · S (I[6]) ⊕ 01x · S (I[7])

01x · S (I[0]) ⊕ 01x · S (I[1]) ⊕ 06x · S (I[2]) ⊕ 08x · S (I[3]) ⊕ 09x · S (I[4]) ⊕ 06x · S (I[5]) ⊕ 09x · S (I[6]) ⊕ 05x · S (I[7])

05x · S (I[0]) ⊕ 01x · S (I[1]) ⊕ 01x · S (I[2]) ⊕ 06x · S (I[3]) ⊕ 08x · S (I[4]) ⊕ 09x · S (I[5]) ⊕ 06x · S (I[6]) ⊕ 09x · S (I[7])

09x · S (I[0]) ⊕ 05x · S (I[1]) ⊕ 01x · S (I[2]) ⊕ 01x · S (I[3]) ⊕ 06x · S (I[4]) ⊕ 08x · S (I[5]) ⊕ 09x · S (I[6]) ⊕ 06x · S (I[7])

06x · S (I[0]) ⊕ 09x · S (I[1]) ⊕ 05x · S (I[2]) ⊕ 01x · S (I[3]) ⊕ 01x · S (I[4]) ⊕ 06x · S (I[5]) ⊕ 08x · S (I[6]) ⊕ 09x · S (I[7])

09x · S (I[0]) ⊕ 06x · S (I[1]) ⊕ 09x · S (I[2]) ⊕ 05x · S (I[3]) ⊕ 01x · S (I[4]) ⊕ 01x · S (I[5]) ⊕ 06x · S (I[6]) ⊕ 08x · S (I[7])

08x · S (I[0]) ⊕ 09x · S (I[1]) ⊕ 06x · S (I[2]) ⊕ 09x · S (I[3]) ⊕ 05x · S (I[4]) ⊕ 01x · S (I[5]) ⊕ 01x · S (I[6]) ⊕ 06x · S (I[7])

06x · S (I[0]) ⊕ 08x · S (I[1]) ⊕ 09x · S (I[2]) ⊕ 06x · S (I[3]) ⊕ 09x · S (I[4]) ⊕ 05x · S (I[5]) ⊕ 01x · S (I[6]) ⊕ 01x · S (I[7])


LT0(x) = 01x · S (x) || 01x · S (x) || 05x · S (x) || 09x · S (x) || 06x · S (x) || 09x · S (x) || 08x · S (x) || 06x · S (x)

LT1(x) = 06x · S (x) || 01x · S (x) || 01x · S (x) || 05x · S (x) || 09x · S (x) || 06x · S (x) || 09x · S (x) || 08x · S (x)

LT2(x) = 08x · S (x) || 06x · S (x) || 01x · S (x) || 01x · S (x) || 05x · S (x) || 09x · S (x) || 06x · S (x) || 09x · S (x)

LT3(x) = 09x · S (x) || 08x · S (x) || 06x · S (x) || 01x · S (x) || 01x · S (x) || 05x · S (x) || 09x · S (x) || 06x · S (x)

LT4(x) = 06x · S (x) || 09x · S (x) || 08x · S (x) || 06x · S (x) || 01x · S (x) || 01x · S (x) || 05x · S (x) || 09x · S (x)

LT5(x) = 09x · S (x) || 06x · S (x) || 09x · S (x) || 08x · S (x) || 06x · S (x) || 01x · S (x) || 01x · S (x) || 05x · S (x)

LT6(x) = 05x · S (x) || 09x · S (x) || 06x · S (x) || 09x · S (x) || 08x · S (x) || 06x · S (x) || 01x · S (x) || 01x · S (x)

LT7(x) = 01x · S (x) || 05x · S (x) || 09x · S (x) || 06x · S (x) || 09x · S (x) || 08x · S (x) || 06x · S (x) || 01x · S (x)

The results of the operations in the columns are saved in eight lookup tables, namely LTi, where i = 0, 1, · · · , 7.

Utilizing the lookup tables, the output value O is calculated as follows:

O = LT0(I[0])⊕ LT1(I[1])⊕ LT2(I[2])⊕ LT3(I[3])⊕ LT4(I[4])⊕ LT5(I[5])⊕ LT6(I[6])⊕ LT7(I[7])

Table 6.5: G-function Operations

Required Memory (KB): 16

# of table lookups: 16

# of XOR (⊕): 20

# of Addition (�): 2

# of Subtraction (�): 2
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Table 6.6: Number of Operations Used in Sarmal

Sarmal-224/256

Required Memory (KB): 16

# of table lookups: 512

# of XOR (⊕): 656

# of Addition (�): 64

# of Subtraction (�): 64

Sarmal-384/512

Required Memory (KB): 16

# of table lookups: 640

# of XOR (⊕): 800

# of Addition (�): 80

# of Subtraction (�): 80

6.2 Performance

We provide the sofware performance of Sarmal on different platforms whose details are given in

Table 6.7 case by case. The software performance is measured in Table 6.8 at each architecture depending on

the data size. Namely, starting from hashing 1 byte of message we increase the message size up to 105 bytes.

The preformance is given by cycles per byte in Table 6.8.

Table 6.7: Implementation Platforms

Properties Case I Case II Case III

Processor Core 2 Duo Core 2 Duo Core 2 Duo

CPU Frequency 2.0 GHz 1.6 GHz 2.0 GHz

FSB / L2 Cache 800 MHz/ 4-MB 800 MHz / 4-MB 800 MHz / 4-MB

RAM 2-GB DDR2 667 MHz 2-GB DDR2 667 MHz 2-GB DDR2 667 MHz

Operating System Windows Vista 32-bit Mac OS X 10.5.5 Ubuntu 8.04.1 64-bit

Compiler Visual Studio 2005 GNU C Compiler (GCC) v4.0.1 GNU C Compiler (GCC) v4.2.4

Properties Case IV Case V Case VI

Processor Core 2 Duo Core 2 Duo AMD Athlon(tm)64 X2

CPU Frequency 1.8 GHz 1.8 GHz 2.4 GHz

FSB / L2 Cache 800 MHz / 2-MB 800 MHz / 2-MB 2000 MHz / 1-MB

RAM 1-GB DDR2 667 MHz 1-GB DDR2 667 MHz 2-GB DDR2 333 MHz

Operating System Windows Vista 64-bit Ubuntu 8.04.1 32-bit Ubuntu 8.04.1 64-bit

Compiler Visual Studio 2005 GNU C Compiler (GCC) v4.2.4 GNU C Compiler (GCC) v4.2.4
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Table 6.8: Software Performance of Sarmal

Case I

Data Length(bytes) 1 10 100 1 000 10 000 100 000

Sarmal-224 2640 263 25.70 19.08 18.68 19.18

Sarmal-256 2670 267 26.00 19.08 18.67 19.20

Sarmal-384 3150 315 31.00 23.13 22.66 23.33

Sarmal-512 3160 317 31.10 23.17 22.67 23.33

Case II

Data Length(bytes) 1 10 100 1 000 10 000 100 000

Sarmal-224 9496 949.60 94.40 58.34 56.41 63.59

Sarmal-256 9568 955.20 94.96 58.42 56.30 56.16

Sarmal-384 13552 1353.60 134.64 92.26 90.70 89.87

Sarmal-512 15968 1348.80 130.08 92.43 91.23 89.96

Case III

Data Length(bytes) 1 10 100 1 000 10 000 100 000

Sarmal-224 1580 157 14.00 10.23 10.00 10.05

Sarmal-256 1580 156 14.00 10.26 10.05 10.04

Sarmal-384 1930 192 17.40 12.96 12.71 12.67

Sarmal-512 1930 192 17.40 12.96 12.68 12.66

Case IV

Data Length(bytes) 1 10 100 1 000 10 000 100 000

Sarmal-224 1386 139.50 13.14 9.68 9.50 9.43

Sarmal-256 1386 138.60 12.96 9.62 9.44 9.38

Sarmal-384 1602 162.90 15.30 11.36 11.16 11.07

Sarmal-512 1593 161.10 15.39 11.18 10.98 10.90

Case V

Data Length(bytes) 1 10 100 1 000 10 000 100 000

Sarmal-224 5850 584 57.51 37.85 36.50 36.03

Sarmal-256 5625 567 55.62 37.82 36.44 36.02

Sarmal-384 10989 1114.20 109.71 84.20 83.56 83.09

Sarmal-512 11133 1094.40 109.44 84.49 83.78 79.21

Case VI

Data Length(bytes) 1 10 100 1 000 10 000 100 000

Sarmal-224 2223 220.10 19.50 14.20 13.89 13.84

Sarmal-256 2207 218.10 19.32 14.16 13.86 13.83

Sarmal-384 2721 269.10 24.42 18.18 17.83 17.76

Sarmal-512 2715 268.80 24.37 18.20 17.83 17.74
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6.3 Remarks

The suitability of Sarmal to be used for ubiquitious devices (including Voice Satellite applications)

which have constrained environments can be given depending on the processor on which Sarmal is imple-

mented. As Sarmal can be implemented efficiently in software on 8/32/64-bit processors with sufficient paral-

lelism, it is well suited for that kind of sensitive applications. The only limitations and the drawbacks of Sarmal

on 8/32-bit processors are w-bit oriented structure of the compression function. However, the main workload

is to implement the subround function g which is highly suitable for all kind of processors. The remaining

operations, although they are defined on w-bit, are simple and easy to handle for all kind of processors as they

consist XOR, modular addition and subtraction.

We did not perform any hardware implementation for Sarmal. An upper bound for the area estimates

can be given according to the number of operations given in this chapter. The memory requirements can be

given as 616-bytes for all digest sizes and 376-bytes for a specific digest size. These values are given excluding

the code size. We expect to implement Sarmal in different architectures in the later stages of the competition.

However, we expect that Sarmal fits at most 1KB which is tolerable for many devices.
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Appendix A

S-box of Sarmal

Table A.1: S-box
00x 01x 02x 03x 04x 05x 06x 07x 08x 09x 0Ax 0Bx 0Cx 0Dx 0Ex 0Fx

00x 3Ax 5Bx F2x 0Fx E4x ADx 29x 91x C5x 47x B8x 63x 8Cx 10x DEx 76x

10x 2Cx 75x 89x 40x A3x E1x 32x 6Dx BBx 0Ex C6x 94x FAx DFx 17x 58x

20x 61x D0x A4x B5x 82x FCx 93x 2Ax 4Fx C8x 07x 39x EDx 7Bx 56x 1Ex

30x E7x 44x 90x 79x 3Bx 26x AFx F8x D3x 5Ax 11x 85x 6Ex B2x CCx 0Dx

40x 45x ECx 16x 21x 5Ex 70x 08x BFx 6Ax 33x 99x C7x DBx FDx 84x A2x

50x F6x B9x 35x D4x 9Fx 67x 8Bx EEx 72x 1Dx 5Cx A0x 28x 43x 01x CAx

60x D9x 66x 0Cx F7x CDx B4x 1Ax 73x E8x 8Fx A5x 51x 42x 2Ex 30x 9Bx

70x 9Dx 1Fx E3x CBx F9x 8Ax 64x 3Cx 00x B6x 4Ex 22x A1x 55x 78x D7x

80x 12x 98x 4Ax 8Ex B1x C3x DCx 54x A6x F0x EBx 7Dx 09x 37x 2Fx 65x

90x 88x C2x 2Bx 13x 60x 9Ex F5x A7x 59x D1x 7Ax EFx 36x 04x 4Dx BCx

A0x 53x 3Ex BDx A8x 4Cx 02x 71x 19x 87x E5x FFx DAx C4x 96x 6Bx 20x

B0x 74x 27x C1x E6x 0Ax 49x 5Dx D2x FEx ABx 80x 1Cx B3x 68x 95x 3Fx

C0x CFx 8Dx 7Ex 9Ax D6x 1Bx B7x 05x 31x 69x 23x 48x 50x ACx E2x F4x

D0x AEx 03x 6Fx 52x 25x 38x E0x 86x 14x 7Cx DDx FBx 97x C9x BAx 41x

E0x B0x F1x 57x 6Cx 18x D5x CEx 4Bx 2Dx 92x 34x 06x 7Fx EAx A9x 83x

F0x 0Bx AAx D8x 3Dx 77x 5Fx 46x C0x 9Cx 24x 62x BEx 15x 81x F3x E9x
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