

--

OFFICIAL COMMENT: Shabal

Subject: OFFICIAL COMMENT: Shabal

From: Søren Steffen Thomsen <S.Thomsen@mat.dtu.dk>

Date: Wed, 8 Apr 2009 14:09:52 +0200

To: "hash-function@nist.gov" <hash-function@nist.gov>

CC: "hash-forum@nist.gov" <hash-forum@nist.gov>

Dear all,

we (Lars Knudsen, Krystian Matusiewicz, and myself) made some observations on the keyed

permutation used in Shabal, including fixed points and key-collisions in constant time.

The observations do not seem to contradict any security claims made by the designers of

Shabal.

Details in this note: http://www.mat.dtu.dk/people/S.Thomsen/shabal/shabal.pdf.

Best regards,

Søren.

Søren Steffen Thomsen
Postdoctoral researcher
DTU Mathematics

Technical University of Denmark
Department of Mathematics
Matematiktorvet 303S
Building 303S
2800 Kgs. Lyngby
Direct +45 4525 3010
Mobile +45 2290 5443
S.Thomsen@mat.dtu.dk
www.mat.dtu.dk/

4/8/2009 2:46 PM1 of 1

http:www.mat.dtu.dk
mailto:S.Thomsen@mat.dtu.dk
http://www.mat.dtu.dk/people/S.Thomsen/shabal/shabal.pdf
mailto:hash-forum@nist.gov
mailto:hash-forum@nist.gov
mailto:hash-function@nist.gov
mailto:hash-function@nist.gov
mailto:S.Thomsen@mat.dtu.dk

 OFFICIAL COMMENT: Shabal

Subject: OFFICIAL COMMENT: Shabal

From: Jean-Philippe Aumasson <jeanphilippe.aumasson@gmail.com>

Date: Tue, 14 Apr 2009 11:39:04 -0400

To: Multiple recipients of list <hash-forum@nist.gov>

We (Atefeh Mashatan, Willi Meier, and myself) made some observations
on Shabal, including

* a related-key distinguisher for its permutation with any number of rounds

* non-trivial pseudo-collisions for a variant of Shabal that makes 24N
iterations in the final loop of the permutation instead of 36, for any
integer N>1

More details can be found in
http://www.131002.net/data/papers/AMM09.pdf

1 of 1 4/20/2009 9:19 AM

http://www.131002.net/data/papers/AMM09.pdf
mailto:hash-forum@nist.gov
mailto:jeanphilippe.aumasson@gmail.com

Sara Caswell

From: hash-forum@nist.gov on behalf of Anne Canteaut [Anne.Canteaut@inria.fr]
Sent: Wednesday, May 06, 2009 2:11 AM
To: Multiple recipients of list
Subject: OFFICIAL comment: Shabal

Follow Up Flag: Follow up
Flag Status: Red

Attachments: distinguishers.pdf

distinguishers.pdf

(324 KB)

We (the Shabal team) have some new results on the security of Shabal's mode of
operation, which point out that the round keyed permutation of Shabal does not need to be
an ideal cipher to achieve the SHA-3 security requirements. The attached document actually
provides with a new indifferentiability proof for Shabal's mode of operation where the
keyed permutation is not assumed to be an ideal cipher anymore, but complies with a
distinguishing property.
Most interestingly, we prove that the recent related-key distinguishers for Shabal's keyed
permutation due to Knudsen et al. and to Aumasson et al. do not weaken the security of
Shabal.

The Shabal team.

1

mailto:Anne.Canteaut@inria.fr
mailto:hash-forum@nist.gov

Indiferentiability with Distinguishers: Why Shabal Does

Not Require Ideal Ciphers

Emmanuel Bresson, Anne Canteaut, Benoit Chevallier-Mames, Christophe Clavier,

Thomas Fuhr, Aline Gouget, Thomas Icart, Jean-Fran<ois Misarsky,

Maria Naya-Plasencia, Pascal Paillier, Thomas Pornin, Jean-Rene Reinhard,

Celine Thuillet, Marion Videau

May 6, 2009

Abstract

Shabal is based on a new provably secure mode of operation. Some related-key distin-
guishers for the underlying keyed permutation have been exhibited recently by Aumasson et
al. and Knudsen et al., but with no visible impact on the security of Shabal. This paper then
aims at extensively studying such distinguishers for the keyed permutation used in Shabal,
and at clarifying the impact that they exert on the security of the full hash function. Most
interestingly, a new security proof for Shabal's mode of operation is provided where the keyed
permutation is not assumed to be an ideal cipher anymore, but observes a distinguishing
property i.e., an explicit relation verifed by all its inputs and outputs. As a consequence
of this extended proof, all known distinguishers for the keyed permutation are proven not to
weaken the security of Shabal. In our study, we provide the foundation of a generalization of
the indiferentiability framework to biased random primitives, this part being of independent
interest.

1 Introduction

Shabal is one of the fastest unbroken candidate to the NIST hash competition. It is based on a
new mode of operation, which is in some sense intermediate between the classical Merkle-Damgard
construction and the sponge construction, and which is provably secure. In this mode of operation,
depicted on Figure 1, the internal state is split into three parts A, B and C of respective sizes £a,
£m and £m. At each message round, a new message block M of size £m is processed and the new
internal state is obtained by

(A, B) ← PM,C (A ⊕ W, B E M)
(A, B, C) ← (A, C 8 M, B)

where W is a 64-bit counter, and P is a keyed permutation over the set of (£a + £m)-bit elements.
Notation E (resp. 8) corresponds to the wordwise addition (resp. subtraction) modulo 232.
Once the whole padded message has been processed, three fnal additional rounds are performed

without incrementing the counter, and the hash value corresponds to the (truncated) C-part of
the internal state. The parameter set used in the function submitted to NIST is £a = 384 bits and
£m = 512 bits.

Shabal's mode of operation belongs to the class of supercharged mode of operation introduced
by Stam [6]. The underlying design idea was to adapt the provably secure mode of operation of
the sponge construction in order to use a permutation over a smaller set, which can be faster.
This mode of operation has been proven secure in the ideal cipher model in [3, Chapter 5] in the

£a+£m
2following sense: it is indiferentiable from a random oracle up to 2 evaluations of P or P−1.

1

A

B

C

P

M1
W

++

P

M2
W

++

P

M3
W

++

P

M4
W

++

Figure 1: Shabal's mode of operation (message rounds)

Moreover, similar results concerning the provable (second) preimage-resistance are given in [3,
Chapter 5].
Recently, some properties of the keyed-permutation P used in Shabal have been observed by

Aumasson et al. and by Knudsen et al. [1, 2, 4]. These three works point out the existence of
related-key distinguishers for P, but all of them conclude that the given observations do not seem
extensible to the full hash function, and have therefore no visible impact on the security of Shabal.
The impracticality of exploiting related-key distinguishers for attacking the Shabal hash function
(which was still mentioned in [3, Ch. 12]) tends to show that behaving like an ideal cipher is not
a necessary property for the keyed permutation. Assuming that this can be confrmed by formal
means (this is what this paper is about), this observation sensibly difers from the properties of the
Merkle-Damgard construction. One can advocate that this diference is not surprising in the sense
that Shabal's mode of operation stands somewhere between the plain Merkle-Damgard construction
and the sponge construction where no key is involved. For instance, a related-key distinguisher is
used in [2] to construct pseudo-collisions for a weakened variant of Shabal. However, the relevance
of pseudo-collisions for other (than the Merkle-Damgard construction) modes of operations is very
questionable: a huge number of trivial pseudo-collisions for any sponge function can be exhibited
at no cost since the internal state is updated by applying a fxed permutation to the XOR of the
IV and the message block. Thus, there is clearly a need for clarifying the impact of such properties
for non-Merkle-Damgard constructions.
In this paper, we frst show even stronger related-key distinguishers for the keyed permutation,

which are more powerful than those put forward in [1, 2, 4]. Then, we clarify the impact that
such distinguishers exert on the security of Shabal: a new security proof for Shabal's mode of
operation is provided where the keyed permutation is not assumed to be an ideal cipher anymore,
but complies with a (standard model) distinguishing property. This new result underlines that
the round keyed permutation of Shabal does not need to be ideal to achieve the SHA-3 security
requirements. Most interestingly, the distinguishers for P put forward in [1, 2, 4] are proven not
to weaken the security of Shabal.

2 Related-key distinguishers for P

2.1 The concept of related-key distinguishers

In order to avoid any ambiguity on the notion of non-pseudorandomness, we frst discuss the con-
cept of related-key distinguishers presented in [1, 2, 4]. Such a distinguisher exists if an adversary
is able to distinguish P from an ideal cipher when playing the following game:

1. The challenger randomly chooses the input (A, B) and the parameters (M, C).

2. The adversary makes a number of queries PM,C (A, B) where a part of (M, C) is unknown
and the other part is freely and adaptively chosen.

3. From the responses to its queries, the adversary distinguishes P from an ideal cipher.

2

Therefore, this notion is quite diferent from the notion of "non-pseudorandomness of the
round permutation", which would mean that for a given value of the key, the permutation P is
not pseudorandom. The "non-pseudorandomness of the compression function" is not the relevant
notion either: the compression function in Shabal's mode of operation is not pseudorandom since
it is proven collision-free (see [3, Th 6, Page 122]). Thus, the appropriate formulation of the
consequence of related-key distinguishers is that the keyed permutation can be distinguished from
an ideal cipher.

2.2 New distinguishers for P and P−1

We frst recall the defnition of the keyed permutation P. In Shabal, the choice of parameters p
and r are p = 3 and r = 12.

Input: M, A, B, C

Output: A, B

for i from 0 to 15 do

B[i] ← B[i] « 17
end for

for j from 0 to p − 1 do

for i from 0 to 15 do

A[i + 16j mod r] ← U A[i + 16j mod r] ⊕ C[8 − i mod 16] ⊕V(A[i − 1 + 16j mod r] « 15)

A[i + 16j mod r] ← A[i + 16j mod r] ⊕ M [i]

A[i+16j mod r] ← A[i+16j mod r]⊕ B[i+13 mod 16]⊕ (B[i+9 mod 16]∧B[i + 6 mod 16])

B[i] ← (B[i] « 1) ⊕ A[i + 16j mod r]

end for

end for

// fnal update

for j from 0 to 35 do

A[j mod r] ← A[j mod r] + C[j + 3 mod 16]

end for

Efcient distinguishers for P−1 have been presented in Shabal's submission document [3]. A
much more expensive distinguisher based on a cube tester was then presented by Aumasson in [1],
 it is worth noticing that the description given in [1] is erroneous since this distinguisher also
requires the knowledge of C (otherwise the fnal update on A cannot be inverted). The related-key
distinguisher exhibited in [4, 2] exploits the fact that, for some diferences Δ1, Δ2 ∈ {0, 1}Ym , the
images of any fxed input (A, B) for both pairs of parameters (M, C) and (M ⊕ Δ1, C ⊕ Δ2) are
equal. The interesting point here is that this property does not depend on the number of loops p.
The main property used in most of these related-key distinguishers, which has been discussed

in Shabal's submission document, originates from the structure of P−1 . In turn, the words of the
B-part of the output of P−1 do not depend on all the words of parameter M . Using the same tools
as in the distinguishers presented in Shabal's documentation and an exhaustive search, we have
found the best possible related-key distinguishers for p = 3. These distinguishers are all derived
from the following basic dependence relations.
The technique used for fnding the basic relations relies of the fact that two diferent types of

equations can be used for computing the output B of P−1:

A[i + 12] = U(A[i] ⊕ V(A[i + 11] « 15) ⊕ C[8 − i])
⊕B[i + 6]B[i + 9] ⊕ B[i + 13] ⊕ M [i] (1)

(B[i] « 1) = B[i + 16] ⊕ A[i + 12]. (2)

With those relations, we have been able to compute each word of B without having to know
the whole message, M . Those relations are summarized in Table 1, where 1 (resp. 0) at the

3

intersection of row B[i] and column M [j] means that B[i] depends (resp. does not depend) on
M [j]. The next example shows how the dependencies for B[15] are determined.

M [0] M [1] M[2] M[3] M[4] M [5] M [6] M [7] M [8] M[9] M[10] M [11] M[12] M[13] M [14] M[15]

B[15] 0 0 0 0 0 0 I I 0 0 0 I 0 I 0 0
B[14] 0 0 0 0 0 I I 0 0 0 I 0 I 0 0 I
B[13] 0 0 0 0 I I 0 0 0 I 0 I 0 0 I I
B[12] 0 0 0 I I 0 0 0 I 0 I 0 0 I I I
B[11] 0 0 I I 0 0 0 I 0 I 0 0 I I I I
B[10] 0 I I 0 0 0 I 0 I 0 0 I I I I I
B[9] I I 0 0 0 I 0 I 0 0 I I I I I 0
B[8] I 0 0 0 I 0 I 0 0 I I I I I 0 I
B[7] 0 0 0 I 0 I 0 0 I I I I I 0 I I
B[6] 0 0 I 0 I 0 0 I I I I I 0 I I I
B[5] 0 I 0 I 0 0 I I I I I 0 I I I I
B[4] I 0 I 0 0 I I I I I 0 I I I I 0
B[3] 0 I 0 0 I I I I I 0 I I I I 0 I
B[2] I 0 0 I I I I I 0 I I I I 0 I I
B[1] 0 0 I I I I I 0 I I I I 0 I I I
B[0] 0 I I I I I 0 I I I I 0 I I I I

Table 1: Dependence relations between the words of the B-part of the output of P−1 and the
words of M .

Example: a relation for B[15]. Here, we show how B[15] can be computed from the inputs
of P−1 , AI and BI, and given C and only four words of M :

•	 From C and AI, we can invert the fnal update of A and compute the 12 words A[48], ..., A[59].

•	 Using Equation (2) for i from 36 to 47, we compute B[36], . . . , B[47].

•	 Now we use Equation (1).

From (1) for i = 38 we obtain that A[38] depends on A[49], A[50], B[44], B[47], B[51], C[2], M [6].

From (1) for i = 39 we obtain that A[39] depends on A[50], A[51], B[45], B[48], B[52], C[1], M [7].

From (1) for i = 43 we obtain that A[43] depends on A[54], A[55], B[49], B[52], B[56], C[13], M [11].

From (1) for i = 45 we obtain that A[45] depends on A[56], A[57], B[51], B[54], B[58], C[11], M [13].

•	 Now using (2) for i = 33, we obtain B[33] from B[49] and A[45].

Using (2) for i = 31, we obtain B[31] from B[47] and A[43].

Using (2) for i = 27, we obtain B[27] from B[43] and A[39].

•	 We apply (1) for i = 27, in order to compute A[27] which depends on A[38], A[39], B[33],
B[36], B[40], C[13], M [11].

• Using (2) for i = 15, we fnally obtain B[15] from B[31] and A[27].

Thus, B[15] depends on M [6], M [7], M [11], M [13] only.

A related-key distinguisher for P−1. With the previously shown algorithm, we can build a
distinguisher on P−1 in a trivial way which works with a single query, since an adversary is able
to compute some words of the output of P−1 without calling P.

1. The challenger chooses (AI, BI) and (M, C). .

2. The adversary knows C and the four words M [6], M [7], M [11], M [13] only. He makes the
query P−1 (AI, BI).M,C

3. From	 (AI, BI) and four known words of M , he computes B[15] and checks whether this
corresponds to the value of B[15] obtained in the response.

4

A distinguisher for P. We also have a distinguisher for P with makes two queries in the
following model:

1. The challenger chooses randomly (A, B) and two sets of parameters (M, C), (M I, C I) with
M [i] = M I[i] for i ∈ {6, 7, 11, 13}.

2. The adversary knows C, C I and M [6], M [7], M [11], M [13]i the other part of M and M I is
unknown. He makes the queries PM,C (A, B) and PM ',C' (A, B).

3. From the responses, he computes B[15] and checks whether he gets the same value.

By using the previous independence relationships, it appears that from any value (AI, BI, C),
it is possible to choose some M in such a way that certain words of B are equal to a target value.
Then, we can show that the highest number of words of B before the message insertion which can
be fxed to a target value is equal to 7. However, extending this property to the whole compression
function is much more difcult, because of the fnal update of A. Moreover, these distinguishers
have no impact on the security of Shabal, as shown later on. We also comment that in the context
of (second)-preimage attacks, when computing forwards, the value of C used in the permutation
is fxed. But when computing backwards the value of C will be BI + M . If we want to use the
previous property to fx say, 7 words of B, then we must know C before being able to determine
M . As a result, and because C depends on M , we cannot apply the observed property.

2.3 Distinguishers on the compression function R

When considering not only P, but the whole function RP : (A, B, C, M) → (AI, BI, C I) defned by

(AI, C I) = PM,C (A, B E M)
BI = C 8 M,

no distinguisher has been presented so far. Now, when computing backwards, it is impossible
to determine some word of B from the knowledge of (AI, BI, C I) and of some words of M only.
The reason is that P−1 is parameterized by C = BI E M which depends on M , and this C is
used in the fnal update of A (i.e., in the frst operation in P−1). Even if computing each B[i]
involves all words of M , it may involve fewer information words of M only. For instance, B[15]
is completely determined by M [1, 2, 3, 5, 6, 7, 9, 10, 11, 13, 14, 15] and by M [4] E M [8] E M [12] and
M [0]EM [4]EM [12]. We have performed an exhaustive search, based on this fnal update, in order
to determine the number of information bits of M which are involved for computing each word of
B. Using the previously described technique, we obtain that only the three words B[15], B[14] or
B[11] do not depend of all information words of M . It is worth noticing that the independencies of
these three words are diferent, implying that computing the triple (B[11], B[14], B[15]) requires
the knowledge of all information words of M .
This type of distinguishers afects the resistance of the hash function to (second) preimage

attacks. As explained in [3, Ch. 12], the attacker is able, by computing backwards, to choose
several message blocks which lead to a given target value for three words of B. Therefore, a

£a+2£m−3×32 £a+2£m
2	 2(second)-preimage attack on Shabal with complexity 2 , instead of 2 , might be

mounted. However, this complexity is still much higher than for the generic attack for the largest
size of the message digest £h which is 512 bits. Since no better distinguisher of this type has been
found by an exhaustive search, this is the best attack which could be performed on Shabal using
this type of distinguishers.

3	 Indiferentiability with distinguishers: why Shabal does
not require ideal ciphers

This rest of this document considers the following question. Assume that we are given a hash
function CP which is made of an operating mode C making calls to an internal primitive P.

5

Assume further that C is proven to be indiferentiable from a random oracle, which in turn means
that CP behaves ideally assuming that P behaves ideally. Now when specifying an instantiation of
the hash construction, one has to select a functional embodiment for P and provide a full-fedge
description of the primitive P. Assume now that the specifed primitive does not behave ideally (or
at least not in the sense required by the indiferentiability proof for C). This can be reformulated by
saying that there exists some non-trivial statistical relation R which connects inputs and outputs
of P. It seems at frst sight that the indiferentiability result on C does not constitute a security
argument anymore since the basic requirement of the proof (P behaves ideally) is obviously not
obeyed. The question we ask is whether CP can still be considered as a good hash function.
At a higher level, the question relates to a more general paradigm: can we prove that a

construction CP behaves ideally even though P does not? More generally, we may ask ourselves
to which extent CP difers from an ideal hash function when P difers from an ideal primitive.
Obviously, it is desirable that a construction C remain close to ideal even when P is far from
ideal. One may think of this notion as a form of robustness: even if a weakness is discovered on
the full-fedge primitive P in the future, the hash function CP would remain almost equally ideal.
Thus our motivation is driven by practical considerationsi robust indiferentiable constructions
answer the quest for more durable hash constructions.
We provide a proof that the hash construction Shabal is robust in the above sense. We give a

proper defnition of robustness for Shabal and fully describe an extended proof methodology in the
indiferentiability framework which captures this notion. Our results show that Shabal behaves
ideally even when powerful distinguishers are known on the inner keyed permutation P. We
provide a precise and quantitative security bound as a function of the statistical biases introduced
by the distinguisher on P.

3.1 Capturing distinguishers into indiferentiability proofs

The indiferentiability framework. We focus on the indiferentiability proof of Shabal's mode
of operation. Recall that the concept of indiferentiability [5] specifes a security game played
between an oracle system Q and a distinguisher D. Q may contain several components, typically
a cryptographic construction CP which calls some inner primitive P. Construction C is said to be
indiferentiable up to a certain security bound if the system Q = (CP , P) can be replaced by a
second oracle system QI = (H, SH) with identical interface in such a way that D cannot tell the
diference (see Figure 2). Here H is a random oracle and S is a simulator which must behave like
P. In the case of Shabal's mode of operation, S corresponds to a simulator of both P and P−1 .

H SH

CP P

D

Figure 2: The cryptographic construction CP has oracle access to P. The simulator SH has oracle
access to the random oracle H. The distinguisher interacts either with Q = (CP , P) or with
QI = (H, SH) and has to tell them apart.

In its interaction with the system Q or QI, the distinguisher makes left calls to either CP or H
and right calls to either P or SH . We will call N the total number of right calls i.e., the number

6

of calls received by P when D interacts with Q regardless of their origin which may be either
CP or D. We defne the advantage of distinguisher D as

Adv(D) =
 Pr

DQ = 1 | Q = (CP

 , P) − Pr DQ = 1 | Q = (H, SH)

where probabilities are taken over the random coins of all parties. Obviously Adv(D) is a function
of N . The indiferentiability proof therefore consists in constructing an appropriate simulator of
P and P−1 and in estimating the advantage of the corresponding distinguisher.

Capturing distinguishers in the indiferentiability framework. In our extended indifer-
entiability framework, the distinguishing algorithm D is also submitted to a random experiment
where D interacts with the oracle system Q. However, the ideal primitive P is not considered as be-
ing ideal anymore: instead of being a keyed permutation uniformly selected from the space PERM
of all keyed permutations, P is now randomly selected from some subspace PERM[R] ⊆ PERM.
The subspace PERM[R] is defned as the collection of all keyed permutations (k, x) → P(k, x) = y
such that

R(k, x, y) = 1

holds for any tuple (k, x, y), for some explicitly given relation R. It is understood that R is some
formula that relates inputs, parameters and outputs of P and that R has nothing to do with an
oracle: it is an explicit predicate that D knows and which can be "hardwired" in the code of D.
We comment that R provides a test to decide whether a given function P ← PERM belongs or
not to PERM[R]i one simply evaluates P or P−1 once on random values to get a tuple (k, x, y)
and tests whether the predicate holds for these values. Hence we view R as a distinguishing
algorithm for PERM[R] and we alternately refer to R as a distinguisher on P. Remind that this
distinguisher has nothing to do with the distinguisher D: D tells apart the two oracle systems Q
and QI, whereas R captures a statistical constraint (i.e., a bias) on the input-output behavior of
P.
Let us now assume that the relation R is fxed and given. We consider the above security game

where instead of defning a "perfect" ideal cipher for P, P is replaced with a "biased" ideal cipher
in the sense that P is drawn uniformly at random from PERM[R] (instead of PERM) during the
game. This defnes a new security game where the advantage of D becomes

Adv(D, R) =
 Pr

DQ = 1 | Q = (CP

 , P) − Pr DQ = 1 | Q = (H, SH)

where probabilities are taken over the random coins of all parties (this is again some function of
N but which now depends on R as well). We say that C is indiferentiable with respect to R when
D's advantage remains negligibly small.
It is important to note that distinguishers arising from a known input-output relation R are

a special class of distinguishers on P. In the general case, a distinguisher on P is a probabilistic
algorithm which adaptively interacts with an oracle instantiated with either P or an ideal version
of P and eventually outputs a guess on the instantiation. To do so, the distinguisher attempts to
detect that a relation holds (with some extra probability) over a series of input-output data, parts
of which have been chosen adaptively. Here, we consider a class of particularly strong distinguishers
on P which are based on a direct and explicit relation which always holds on any input-output
tuple. Although we feel that indiferentiability can be extended to take general distinguishers on
P into account, we are mostly interested in strong distinguishers since we actually know examples
of such relations R preserved by the specifc primitive P of Shabal. We therefore focus on this
only case, noting that our extension of indiferentiability is also simpler to defne.

Defning the bias of R. We need a metric to tell "how severe" is the constraint imposed on
P by the given relation R, as opposed to an arbitrary, unconstrained choice of P in the space
PERM. There may be several ways to defne such a metrici we adopt two that are strong enough
for our purposes. In Shabal, the keyed permutation P takes an input (A, B) ∈ {0, 1}Ya × {0, 1}Ym

and parameter (M, C) ∈ {0, 1}Ym ×{0, 1}Ym and outputs a pair (AI, BI) ∈ {0, 1}Ya ×{0, 1}Ym . Let

7

R(M, A, B, C, AI, BI) be an input-output relation for P and consider that M, A, B, C, BI are fxed.
Let us consider the set

PERM[R, M, A, B, C, BI] ⊆ PERM[R]

of all keyed permutations P such that PM,C (A, B) = (AI, BI) for some AI ∈ {0, 1}Ya . We will say
that ForSampR is a (forward) sampling algorithm for R when on any input tuple (M, A, B, C, BI),
ForSampR(M, A, B, C, BI) selects a keyed permutation P ← PERM[R, M, A, B, C, BI] uniformly
at random and outputs AI . We will assume wlog that given a relation R, one can construct such
a sampling algorithm ForSampR and that ForSampR can be implemented efciently. We view
ForSampR as an algorithmic representation of R and the related-key distinguishers discussed in
the previous sections can be reformulated by making their sampling algorithm explicit.

Defnition 1 (Forward bias of R). R is said to have forward bias τ ∈ (0, £a) if for any choice of
M, A, B, C and AI, it holds that

≤ 2−(Ya−τ)Pr BI ← {0, 1}Ym : ForSampR(M, A, B, C, BI) = AI

where the probability is taken over the uniform choice of BI ← {0, 1}Ym and the internal coins of
the algorithm ForSampR in the random selection of P ← PERM[R, M, A, B, C, BI].

As soon to be discussed, we also need to defne a backward bias for R. However in this case,
the bias is simpler to defne. We consider a second sampling algorithm BacSampR which, taking
as input a tuple (M, AI, BI, C), randomly selects a keyed permutation P ← PERM[R] (with

P−1uniform distribution) and outputs the pair (A, B) = (AI, BI). Again, algorithm BacSampRM,C
is a reformulation of the Boolean relation R and we assume that it can always be made explicit.
The backward bias is defned as the statistical bias of BacSampR:

Defnition 2 (Backward bias of R). R is said to have backward bias λ ∈ (0, £a + £m) if for any
choice of M, AI, BI, C and A, B it holds that

+Ym−λ)Pr [BacSampR(M, AI, BI, C) = (A, B)] ≤ 2−(Ya

where the probability is taken over the internal random choice of P ← PERM[R].

We leave it as an open problem to analytically link the two biases τ and λ in the general
case. However, we comment that a careful study of a given relation R (e.g., the related-key
distinguishers discussed above) should provide at least numerical values for τ and λ. We then give
a quantitative security bound that tells how far from a random oracle the mode of operation of
Shabal behaves as a function of the two biases introduced by the relation R. The following sections
expose the original security proof [3] of Shabal and extend the proof to encompass distinguishers
on P. This can be seen as a generalization of the original proof to distinguishing relations with
non-zero bias τ and λ. We end up with a simple extension of the indiferentiability bound that
includes non-zero forward and backward bias and which we state as a Theorem.

3.2 The original security proof in the plain ideal cipher model

A general game-based indiferentiability proof technique is presented in [3]. In order to analyze the
mode of operation in a more fuent fashion within the proof, we view the current message block as
a part of the current internal state. The set of all possible internal states, which we denote by X
contains all the (3£m +£a)-bit strings. In this presentation, we simplify Shabal's mode of operation
by removing the infuence of the counter and the three fnal rounds (all these features are taken
into account in the original proof). It is easily seen that the proof can be extended to take these
into account and that they have little infuence on the security bound. Thus, we assume that the
i-th message round executes two subroutines: message insertion Insert[Mi] defned as

Insert[Mi](Mi−1, A, B, C) = (Mi, A, C 8 Mi−1 E Mi, B)

8

and P. The initial internal state is the initialization vector x0 = (0, A0, B0, C0). We will sketch
the proof and rely on [3] for a detailed exposition of the methodology. The simulator of (P, P−1)
is obtained by dynamically constructing a graph G = (X, Y, Z) ⊆ X × X × X 2 where X ∪ Y is
the set of nodes and Z the set of edges. Y is the set of queries to P received by S and X the
set of responses returned by S (completed with the M -part and the C-part of their preimage to
yield a proper internal state ∈ X). X also contains the input queries to P−1 in which case their

P→ x.
path from the initial state x0 to x ∈ X in the graph is a non-empty list of £m-bit message blocks
outputs are appended to Y . An edge between y and x in the graph is denoted by y A

µ = (M1, . . . ,Mk) such that there exist k edges in the graph of the form yi
P→ xi, 1 ≤ i < k, and

yk−1 → x satisfying
Insert[Mi+1](xi) = yi+1 , 0 ≤ ∀i < k .

A path to y ∈ Y is defned in a similar fashion, the path of y being defned as the path of the only

P

→ x.
keeping generating associations y → P(y) and x → P−1(x) for inputs x, y ∈ X chosen by D which
are consistent with the values output by H. Again we refer to [3] for details on the overall proof
technique.
The following result holds:

Theorem 1. Assume P is an ideal cipher and let H be a random oracle. Then, the simulator S
defned as per Figure 3 is such that for any distinguisher D totalling at most N right calls to P
and P−1 ,

· 2−(Ya+YmAdv(D) ≤ Pr [Abort1] + Pr [Abort2] + Pr [Abort4] + Pr [Abort5] + N) .

N(N−1) 2−(Ya+Ym)Moreover, all four probabilities Pr [Aborti] are upper-bounded by .2

We now discuss the above result in more detail. The original proof, taken away the fnal rounds
and the counter W , shows that

P

N(N − 1) N(N − 1)
Pr [Abort1] ≤ · p1 , Pr [Abort2] ≤ · p2 , (3)

2 2
N(N − 1) N(N − 1)

Pr [Abort4] ≤ · p4 , Pr [Abort5] ≤ · p5 , (4)
2 2

where p1, p2, p4, p5 are probability bounds defned as follows.

Probability bound p1. Let us fx ˜ M, ˜ B, C̃) ∈ X as well as y = (M, A, B, C) ∈ X , and x = (˜ A, ˜
let us consider the distribution

D(y) = {(M, AI, BI, C) | (AI, BI) ← {0, 1}Ya × {0, 1}Ym } .

Then, taking probabilities over the uniformly random selection x ← D(y) we defne

x ∈ X such that y We use the simulator S defned in Figure 3. The goal of S consists in

p1(x̃, y) = Pr ∃ m, m̃ ∈ {0, 1}Ym : Insert[m](x) = Insert[m̃](x̃) ⎡ ⎤
m = m̃

AI ˜= A⎢⎢⎣ ⎥⎥⎦ = Pr ∃ m, m̃ ∈ {0, 1}Ym :
BI ˜= B

˜C 8 M E m = C 8 M̃ E m̃
= Pr A, ˜ · δ = C̃ 8 ˜(AI, BI) = (˜ B) C 8 M M

We then upper bound p1(x̃, y) by
p1 = max Pr A, ˜(AI, BI) = (˜ B)

Ã,B̃

2−(Ya+Ym)and it is obvious that p1 = . We remind that δ [E] returns 1 when event E is realized
and 0 otherwise.

9

Initialization of S

No input, no output

1.	 set X = Y = Z = ∅

Simulation of P

Input: y = (M, A, B, C) ∈ X

Output: (A', B')

1.	 add node y to Y

2. if there exists an edge y → x ∈ Z

(a) return (A', B') where x = (M, A', B', C)

3.	 if y has a path µ in graph G

(a) compute M = unpad(µ)

(b) call H to get h = H(M)

(c) set B' = h

(d) randomly select A' ← {0, 1}£a

4.	 else

(a) randomly select B' ← {0, 1}£m

P

(b) randomly select A' ← {0, 1}£a

P→ x

6.	 if for some x̃ ∈ X one has Insert[M̃](x̃) = Insert[M](x) for some M and M̃
(event Abort1), then abort.

7.	 if x admits a path in G and ∃ỹ ∈ Y such that Insert[M](x) = ỹ for some M
(event Abort2), then abort.

8.	 return (A', B')

5. add node x = (M, A', B', C) to X and edge y to Z

Simulation of P−1

Input: x = (M, A, B, C) ∈ X

Output: (A', B')

1.	 add node x to X

2. if there exists an edge y
P→ x ∈ Z

(a) return (A', B') where y = (M, A', B', C)

P

B' ← {0, 1}£m

4. add node y = (M, A', B', C) to X and edge y → x

A' ← {0, 1}£a3. randomly select and

to Z
P

6.	 if ∃x̃ ∈ X such that Insert[M](x̃) = y for some M (event Abort5), then abort

7.	 return (A', B')

(event Abort4), then abort 5. if ∃˜ ˜ such that yx ∈ X, x = x → x̃ ∈ Z

Figure 3: Original simulator S for P and P−1 in the plain ideal cipher model.

Probability bound p2. Let us now fx ˜ M, ˜ B, C̃) ∈ X as well as y = (M, A, B, C) ∈ X .y = (˜ A, ˜
Then, taking probabilities over the uniformly random selection x ← D(y) we defne

⎡
p2(ỹ, y) = Pr ∃ m ∈ {0, 1}Ym : Insert[m](x) = ỹ

= Pr
⎢⎢⎣∃ m ∈ {0, 1}Ym :

˜m = M
AI ˜= A

˜C 8 M E m = B
BI ˜= C

⎤ ⎥⎥⎦

= Pr A, ˜ · δ C 8 M E M̃ = B̃(AI, BI) = (˜ C)

10

An upper bound for p2(ỹ, M, C) is then

p2 = max Pr A, ˜(AI, BI) = (˜ C)
Ã,C̃

and again it is obvious that p2 = 2−(Ya+Ym).

Probability bound p4. Let us fx ˜ = (˜ A, ˜ C) ∈ X and y (M, A, B, C) ∈ X .x M, ˜ B, ˜ = Taking
probabilities over the random selection x ← D(y) we set

p4(ỹ, y) = Pr [x = x̃] ⎡ ˜M = M
AI ˜= A
BI ˜= B

˜C = C

⎤ ⎥⎥⎦
⎢⎢⎣ = Pr

= Pr A, ˜ · δ M = M̃ ∧ C = C̃(AI, BI) = (˜ B)

and an upper bound for p4(ỹ, y) is then

)p4 = max Pr A, ˜ = 2−(Ya+Ym .(AI, BI) = (˜ B)
Ã,B̃

Probability bound p5. Again we fx ˜ = (˜ A, ˜ C) ∈ X and x = (M, A, B, C) ∈ X , and x M, ˜ B, ˜
consider the following probability taken over the random selection y ← D(x):

⎡
p5(ỹ, x) = Pr ∃ m ∈ {0, 1}Ym : Insert[m](x̃) = y ⎤

m = M

= Pr
⎢⎢⎣ A = ∃ m ∈ {0, 1}Ym :

˜ AI ⎥⎥⎦˜ BIC 8 M̃ E m =
B̃ = C

= Pr (AI, BI) = (˜ C 8 M̃ E M) · δ B̃ = CA, ˜

Then we bound p5(ỹ, x) again by

)p5 = max Pr A, C̃ 8 M̃ E M) = 2−(Ya+Ym(AI, BI) = (˜ .
˜ C, ˜A, ˜ M,M

Combining these results, we get an indiferentiability bound of

Adv(D) ≤ N(2N − 1) · 2−(Ya+Ym)

which shows that the mode of operations of Shabal (in this simplifed version) behaves like a
(£a+£m)

2random oracle up to roughly 2 = 2448 calls to its primitive P, since £m = 512 and £a = 384.

3.3 Extending the proof to biased permutations P

We now assume that P is not an ideal cipher anymore i.e., randomly selected from PERM but
that there exists some biased relation R for P. In particular, there exists a set of known Boolean
relations which hold for all pairs ((M, A, B, C), (AI, BI)) with (AI, BI) = PM,C (A, B) and which
can be computed without any call to P. In the following, Im(R) denotes the set of all tuples
(M, A, B, C, AI, BI) satisfying the predicate R. As discussed above, we assume that we are given
efcient subroutines comprising

11

•	 a sampling algorithm ForSampR which samples all possible outputs A
I such that (M, A, B, C, AI, BI) ∈

Im(R) over a random choice of P ← PERM[R, M, A, B, C, BI], for any inputs (M, A, B, C, BI)i

•	 a sampling algorithm BacSampR which samples all possible inputs (A, B) such that (M, A, B, C, AI, BI) ∈
Im(R) over a random choice of P ← PERM[R] for any inputs (M, AI, BI, C).

We then consider the second simulator S for P and P−1 as depicted on Fig. 3. The new
simulator is similar to the one given in the plain ideal cipher model, excepted that we apply the
three following modifcations:

•	 Line 3(d) in the simulation of P, AI is sampled by ForSampR instead of taking a uniformly

random £a-bit stringi

•	 Line 4(b) in the simulation of P, AI is also sampled by ForSampRi

•	 Line 3 in the simulation of P−1 , (AI, BI) are sampled by BacSampR.

These modifcations lead to the new simulator defned on Figure 4.
Using the sampling algorithms to get AI or (AI, BI) modifes the probability that an adversary

succeeds in making our simulator abort during the game. Even though the above Theorem is still
applicable, the probabilities of events Aborti for i ∈ [1, 5] must be analyzed with greater care here.

N(N −1)It is easily seen that the inequalities Pr [Aborti] ≤ · pi still holdi however the bounds pi2
must be recomputed. We now reevaluate these one by one.

New probability bound p1. Remind that we fxed ˜ = M, ˜ B, ˜ as well as y =x (˜ A, ˜ C) ∈ X
(M, A, B, C) ∈ X . We now consider the distribution of outputs x of P(y) as generated by the new
simulator

D(y) = {x = (M, AI, BI, C) | BI ← {0, 1}Ym , AI ← ForSampR(M, A, B, C, BI)} .

Then, taking probabilities over the uniformly random selection x ← D(y) we connect Abort1 to

∃ m, m̃ ∈ {0, 1}Ymp1(x̃, y) = Pr : Insert[m](x) = Insert[m̃](x̃) ⎡ ⎤
m = m̃

AI ˜= A⎢⎢⎣ ⎥⎥⎦∃ m, m̃ ∈ {0, 1}Ym= Pr :
BI ˜= B

˜C 8 M E m = C 8 M̃ E m̃

AI ˜ BI ˜ C̃ 8 ˜= Pr = A · Pr = B · δ C 8 M = M

We then upper bound p1(x̃, y) by

AI ˜ BI ˜ ≤ 2−(Ya−τ) · 2−Ymp1 = max Pr = A · Pr = B	 .
Ã,B̃

New probability bound p2. We now fx ˜ M, ˜ B, C̃) ∈ X as well as y = (M, A, B, C) ∈y = (˜ A, ˜
X . Taking probabilities over the selection x ← D(y), expressing Abort2 boils down to evaluating

⎡ ⎢⎢⎣
p2(ỹ, y) = Pr ∃ m ∈ {0, 1}Ym : Insert[m](x) = ỹ

∃ m ∈ {0, 1}Ym

⎤ ⎥⎥⎦

˜m = M
AI ˜= A

Pr := ˜C 8 M E m = B
BI ˜= C

AI ˜ BI ˜	 ˜= Pr = A · Pr = C · δ C 8 M E M̃ = B

An upper bound for p2(ỹ, y) is then

˜ ˜ ≤ 2−(Ya−τ)p2 = max Pr AI = A · Pr BI = C · 2−Ym .
Ã,C̃

12

Initialization of S

No input, no output

1.	 set X = Y = Z = ∅

Simulation of P

Input: y = (M, A, B, C) ∈ X

Output: (A ' , B ')

1.	 add node y to Y

2.	 if there exists an edge y → x ∈ Z

(a) return (A ' , B ') where x = (M, A ' , B ' , C)

3.	 if y has a path µ in graph G

(a) compute M = unpad(µ)

(b) call H to get h = H(M)

(c) set B ' = h

P

(d) run ForSampR(M, A, B, C, B ') to get A '

4.	 else

(a) randomly select B ' ← {0, 1}£m

(b) run ForSampR(M, A, B, C, B ') to get A '

5. add node x = (M, A ' , B ' , C) to X and edge
P

y → x to Z

6.	 if for some x̃ ∈ X one has Insert[M̃](x̃) = Insert[M](x) for some M and M̃
(event Abort1), then abort.

7.	 if x admits a path in G and ∃ỹ ∈ Y such that Insert[M](x) = ỹ for some M
(event Abort2), then abort.

8.	 return (A ' , B ')

P−1Simulation of

Input: x = (M, A, B, C) ∈ X

Output: (A ' , B ')

1.	 add node x to X
P

2.	 if there exists an edge y → x ∈ Z

(a) return (A ' , B ') where y = (M, A ' , B ' , C)

3.	 run BacSampR(M, A, B, C) to get (A ' , B ')

4. add node y = (M, A ' , B ' , C) to
P

X and edge y → x to Z
P

6.	 if ∃x̃ ∈ X such that Insert[M](x̃) = y for some M (event Abort5), then abort

7.	 return (A ' , B ')

∃x̃ ∈ X, x̃ = x → x̃ ∈ Z Abort4),5. if such that (event then aborty

Figure 4: New simulator S for P and P−1 in the "biased" ideal cipher model. The simulator
makes calls to an internal subroutine ForSampR that samples the relation R with a certain bias
τ ≥ 0. When τ = 0, the sampling algorithm is reduced to a uniform selection over £a-bit strings
and we recover the original simulator.

13

New probability bound p4. We now fx ˜ = (˜ A, ˜ C) ∈ X and y = (M, A, B, C) ∈ X .x M, ˜ B, ˜
Taking probabilities over x ← D(y) we get

p4(ỹ, y) = Pr [x = x̃] ⎡ ˜M = M
AI ˜= A
BI ˜= B

˜C = C

⎤ ⎥⎥⎦
⎢⎢⎣ = Pr

AI ˜ BI ˜ ˜ ˜= Pr = A · Pr = B · δ M = M ∧ C = C

which gives an upper bound for p4(ỹ, y) as

AI ˜ BI ˜ ≤ 2−(Ya−τ) · 2−Ymp4 = max Pr = A · Pr = B .
Ã,B̃

New probability bound p5. Here we fx ˜ = (˜ A, ˜ C) ∈ X and x = (M, A, B, C) ∈ X x M, ˜ B, ˜
and consider the following probability taken over the random selection y ← D(x):

p5(ỹ, x) = Pr ∃ m ∈ {0, 1}Ym : Insert[m](x̃) = y ⎡ ⎤

= Pr
⎢⎢ Y0 1∃ ∈ { } mm ,⎣ :

m = M
Ã = AI

˜ BIC 8 M̃ E m =
B̃ = C

⎥⎥⎦

= Pr A, C̃ 8 M̃ E M) · δ B̃ = C .(AI, BI) = (˜

Then we bound p5(ỹ, x) by

+Ym−λ)p5 = max Pr A, ˜ M E M) ≤ 2−(Ya .(AI, BI) = (˜ C 8 ˜
˜ C, ˜A, ˜ M,M

Wrapping it up. Putting it altogether, we fnally get the following security bound.

Theorem 2. Assume that the keyed permutation P is taken uniformly at random in the space
PERM[R] of all keyed permutations which observe a certain Boolean relation R holding with
probability one on their input, parameter and output. Assume further that R has a forward bias
τ ∈ (0, £a) and backward bias λ ∈ (0, £a + £m). Then the (simplifed) mode of operation of Shabal
is indiferentiable from a random oracle. More precisely,

3N(N − 1) N(N − 1)
2−(Ya+Ym−τ) + 2−(Ya+Ym−λ) + N2−(Ya+Ym)Adv(D, R) ≤ .

2 2

−τ) −λ)We see that one of the two terms N22−(Ya +Ym and N22−(Ya+Ym must dominate the
adversary's advantage when τ, λ > 0. If one assumes to always have λ < τ , the security bound (in
bits) decreases linearly as τ ranges from 0 to £a. Ultimately when τ = £a, we reach the limit of
N = O(2

£m) adversarial observations and the mode of operation of Shabal has no security margin 2

anymore (but remains ideal). Conversely if λ > τ then the term N22−(Ya+Ym−λ) dominates and
the mode of operation does not behave ideally anymore if £a + £m − λ ≤ £h (recall that Shabal
truncates the B-part of the last internal state to its £h leftmost bits). We therefore confrm that
distinguishing relations can indeed be used to break Shabal, but at the condition that

λ > £a + £m − £h = 384

in the most favorable case (£h = 512). We leave it as an open challenge to come up with a
related-key distinguisher for p = 3 that features a backward bias at least equal to 384.

14

References

[1] J.-P. Aumasson. On the pseudorandomness of Shabal's keyed permutation. Public comment
on the NIST Hash competition, 2009.

[2] J.-P.	 Aumasson, A. Mashatan, and W. Meier. More on the pseudorandomness of Shabal's
permutation. Public comment on the NIST Hash competition, 2009.

[3] E. Bresson, A. Canteaut, B. Chevallier-Mames, C. Clavier,	 T. Fuhr, A. Gouget, T. Icart,
J.-F. Misarsky, M. Naya-Plasencia, P. Paillier, T. Pornin, J.-R. Reinhard, C. Thuillet, and
M. Videau. Shabal, a submission to NIST'cryptographic hash algorithm competition. Submis-
sion to the NIST Hash competition, 2008.

[4] L. Knudsen, K. Matusiewicz, and S.S. Thomsen. Observations on the Shabal keyed permuta-
tion. Public comment on the NIST Hash competition, 2009.

[5] U. Maurer, R. Renner, and C. Holenstein.	 Indiferentiability, impossibility results on reduc-
tions, and applications to the random oracle methodology. In Theory of cryptography TCC
2004, volume 2951 of LNCS, pages 21 39. Springer, 2004.

[6] M. Stam.	 Blockcipher based hashing revisited. In Fast Software Encryption - FSE 2009,
Lecture Notes in Computer Science. Springer, 2009. To appear.

15

