
WAMM: A CANDIDATE ALGORITHM FOR THE
SHA-3 COMPETITION

JOHN WASHBURN

Abstract. The WaMM algorithm is a candidate algorithm sub-
mitted to the US National Institute of Standards and Technology
(NIST) as part of the SHA-3 Competition. The SHA-3 Compe-
tition seeks to find a replacement for the current Secure Hash
Algorithm (include hyper-link to FIPS). WaMM is the author’s
submission to this contest.

The algorithm uses matrix multiplication as the mixing oper-
ator. The algebraic structure consists of two binary operations,
{�, +} which operate on bytes and the integer values they repre-
sent. Byte values are integers in the range, [0 · · · 255]. The addition
operator, + is addition modulo 256 and forms an Abelian group
over byte values. The only property possessed by the multiplica-
tion operator, �, is closure on byte values.

The lack of higher algebraic structure provides the algorithm the
necessary properties of irreversibility, non-linearity, and collision
resistance.

Date: October 30, 2008.
Key words and phrases. Cryptography, Secure Hash Algorithm, Hashing, SHA-

3, WaMM, Matrix Multiplication .
1

http://csrc.nist.gov/groups/ST/hash/sha-3/index.html�

2 JOHN WASHBURN

Contents

1. Introduction 3
2. Hashing 101 3
3. Definitions 4
3.1. Bit 5
3.2. Byte 5
3.3. Byte values 5
3.4. Vector 5
3.5. Matrix 6
3.6. Addition modulo 256 7
3.7. XOR of Bits 7
3.8. XOR of Bytes 7
3.9. XOR of Vectors 8
3.10. WaMM Multiplication 8
3.11. Squaring with Matrix Multiplication 11
3.12. Addition of Vectors 11
4. Input and Output 12
5. The WaMM Algorithm 14
5.1. Internal State of WaMM Algorithm 15
5.2. Initializing the Internal State 16
5.3. Read Data 16
5.4. Updating the State Matrix 17
5.5. The Count Vector, VC 17
5.6. Post Processing 17
5.7. Tapping the State Matrix 17
6. Design Considerations 20
7. Alternate Designs 23
8. Pros and Cons of WaMM 24
9. Known Attacks 25
10. Peformance 25

WAMM: A CANDIDATE ALGORITHM FOR THE SHA-3 COMPETITION 3

1. Introduction

This hashing algorithm is a proposed replacement for the Secure
Hash Algorithm. The working name is name is WaMM, which derives
from (Wa)shburn: (M)atrix (M)ultiplication. Matrix multiplication
using a non-invertible and non-linear binary operator is the mechanism
used to resist collisions and to create a one-way function.

The algorithm limits itself to operations that are particularly fast
on current implementations of silicon: Table lookup, Addition mod-
ulo 256, Addition modulo 1024, Addition modulo 2256 and bit-wise
exclusive-OR (XOR).

2. Hashing 101

Figure 1. Merkle-Damgard Construction

Figure 1 illustrates the Merkle-Damgard construction of hashes. Nearly
all modern hashes use this construction in order to process a message
of arbitrary length into a fixed-sized hash value.

The message, M , is broken down into a sequence of fixed length
blocks,

M0,M1,M2, . . . , Mn−3,Mn−2,Mn−1.

The number of message blocks, n, is given by n =
⌊

Message Length
Message Block size

⌋
;

where bc is the floor function. The floor function of a real number x,

4 JOHN WASHBURN

bxc, is the largest integer less than or equal to x. In this case n is the
largest integer less than or equal to Message Length

Message Block size
. In Figure 1 the

complete message and the message blocks are in blue.
It is an usual message where n = Message Length

Message Block size
. For the more

common situation where n 6= Message Length
Message Block size

there will a short message

block, Mn, which must be padded in some fashion to the full length of
a message block. In Figure 1 the short message block is in cyan and
the message padding is in gray.

Each of the message blocks is operated on by a compressor function.
The compressor function takes two inputs; the message block and some
form of state information. The compressor function creates one output;
the state information to transfer to the next iteration of the message
processing. The output of the final iteration of the compressor function
is used as an input to the post processing and ultimately the hash value
generated. In Figure 1 the compressor functions are colored yellow.

Consider two messages which are identical except for the contents of
the short message block and the resulting message padding. What if
the extra bits of the longer message exactly mimic the padding scheme?
If this happens, you have the situation where two different messages
result in the same hash value. Because of the necessity of padding,
there must be some form of finalization in order to distinguish between
the pathological situation where the few extra bits of the longer mes-
sage mimic the padding. The most common forms of finalization used
involve the length of the message.

Once the finalization is complete, the hash value is generated from
the state information available.

The Merkle-Damgard construction is so common because it can be
proven that if the compressor function (yellow boxes) is collision resis-
tant, then the resulting hash value (green box) is also collision resistant.
The WaMM algorithm is also a Merkle-Damgard construction, with an
internal state of 8192 bits. The compressor function used in the WaMM
hashing algorithm is more similar to the round function of a block ci-
pher than it is to the compressor functions of other Merkle-Damgard
hashes (e.g. SHA-1, SHA-2, MD5, etc.). The internal state of the
algorithm which passed from one iteration of the compressor function
to the next is a 32x32 matrix, SM, called the State Matrix. Both the
message padding and the processing of the message length are slightly
different than other Merkle-Damgard constructions as well.

3. Definitions

The data structures used by the WaMM algorithm are:

WAMM: A CANDIDATE ALGORITHM FOR THE SHA-3 COMPETITION 5

• Bits,
• Bytes,
• Byte values,
• Vectors, and
• Matrices

.
The operations used by the WaMM algorithm are:

• Addition modulo 256,
• XOR bits,
• XOR of bytes,
• XOR of vectors,
• WaMM multiplication,
• Squaring with matrix multiplication,
• Addition of Vectors (addition modulo 2256)

.

3.1. Bit. Bit retains its common meaning as a single unit of binary
information. A bit is an integer and a member of the set: {0, 1}.
3.2. Byte. A byte retains its common meaning as a collection of eight
bits. A byte consists of eight bits arranged from the most significant
bit to the least significant bit. As per the requirements of the NIST,
the eight bits of byte, B, are designated

B = {b0, b1, b2, b3, b4, b5, b6, b7}
where b0 is the most significant bit of the byte and b7 is the least
significant bit of the byte.

A byte also represents an integer value, N , in the range: [0 . . . 255].
The conversion of a byte from a collection of ordered bits to an integer
is given by the formula:

(1) NB =
7∑

k=0

bk2
7−k

3.3. Byte values. Byte values are integers in the range [0 . . . 255].

3.4. Vector. A vector consists of 32 bytes arranged from the least
significant byte to the most significant byte. The 32 bytes of vector,
V , are designated:

V = {B0, B1, B2, . . . , B29, B30, B31}
The byte, B0, is the first and most significant byte of the buffer. The
byte, B31, is the last and least significant byte of the buffer.

6 JOHN WASHBURN

A vector also represents an integer value, N , in the range: [0 . . . 2256 − 1].
The conversion of a vector from a collection of ordered bytes to an in-
teger is given by the formula:

(2) NV =
31∑

k=0

NBk
28(31−k)

where NBk
is the integer value of byte Bk as defined by (1).

A vector can be represented as string of 64 hexadecimal digits; two
digits per byte. In order to improve readability, the string of hexadeci-
mal digits is written in one of three forms; 32 sub-strings of two digits
each, or 16 sub-strings of 4 digits each, or as 8 sub-strings of 8 digits
each. The sub-strings are separated by a space and the prefix is only
for the whole string of 64 digits. The first hexadecimal digit represents
the four (4) most significant bits, {b0, b1, b2, b3}. The second hexadec-
imal digit represents the four (4) least significant bits, {b4, b5, b6, b7}.
Below is the a vector represented as a string of hexadecimal digits in a
variety of ways.

0x48 AF 34 34 98 B2 A9 23 E6 23 F2 73 8B E2 AA 72 77 92 73 2E 13 23 11 DD 1C EE 17 01 00 99 3B 23

0x48AF 3434 98B2 A923 E623 F273 8BE2 AA72 7792 732E 1323 11DD 1CEE 1701 0099 3B23

0x48AF3434 98B2A923 E623F273 8BE2AA72 7792732E 132311DD 1CEE1701 00993B23

0x48AF343498B2A923E623F2738BE2AA727792732E132311DD1CEE170100993B23

The most significant byte of the vector, B0, is 0x48. The least signif-
icant byte of the vector, B31, is 0x23. The 16 most significant bits of
the vector,
[b0, b1, b2, b3, b4, b5, b6, b7, b8, b9, b10, b11, b12, b13, b14, b15],
are:
[0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 1, 1, 1].
The 16 least significant bits of the vector,
[b241, b242, b243, b244, b245, b246, b247, b248, b248, b249, b250, b251, b252, b253, b254, b255],
are:
[0, 0, 1, 1, 1, 1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 1].

3.5. Matrix. A matrix is a collection of bytes arranged as 32 rows,
each with 32 bytes. The 1024 bytes of matrix, M , are designated:

M =




B0,0 B0,1 B0,2 · · · B0,29 B0,30 B0,31

B1,0 B1,1 B1,2 · · · B1,29 B1,30 B1,31

B2,0 B2,1 B2,2 · · · B2,29 B2,30 B2,31
...

...
...

. . .
...

...
...

B29,0 B29,1 B29,2 · · · B29,29 B29,30 B29,31

B30,0 B30,1 B30,2 · · · B30,29 B30,30 B30,31

B31,0 B31,1 B31,2 · · · B31,29 B31,30 B31,31




The byte, Bj,k, is byte found in column k of row j of the matrix.

WAMM: A CANDIDATE ALGORITHM FOR THE SHA-3 COMPETITION 7

A matrix is also a collection of 32 vectors arranged as rows of the
matrix. The 32 vectors of matrix, M , are designated:

M =




V0

V1

V2
...

V29

V30

V31




3.6. Addition modulo 256. Addition modulo 256, designated by the
symbol +, is a binary operation between two bytes. Given two bytes,
Bj and Bk, the result, Bm = Bj + Bk, is defined as the byte, Bm, such
that

(3) NBm =
(
NBj

+ NBk

)
mod 256

where 0 ≤ NBm < 256 and NBm , NBj
, and NBk

are the integer values
given by (1). Addition modulo 256 retains its customary meaning when
two bytes are added together and the carry is discarded.

3.7. XOR of Bits. XOR, designated by the symbol ⊕, is a binary
operation between two bits. XOR has the following truth table.

A⊕B
A

0 1

B
0 0 1
1 1 0

3.8. XOR of Bytes. Bitwise XOR of two bytes is also designated by
the symbol ⊕. Given two bytes, X and Y , the bits of the 2 bytes are
designated as:

X = {x0, x1, x2, x3, x4, x5, x6, x7}
Y = {y0, x1, y2, y3, y4, y5, y6, y7}

The bits of the result, Z, of the operation Z = X ⊕ Y are designated
as

Z = {z0, x1, z2, z3, z4, z5, z6, z7}
and the bits of Z = X ⊕ Y are defined as follows:

Zk = Xk ⊕ Yk

where ⊕ is the XOR operation described in 3.7. Bit-wise XOR of two
bytes retains its customary meaning.

8 JOHN WASHBURN

3.9. XOR of Vectors. Bitwise XOR of two vectors is also designated
by the symbol ⊕. Given two vectors, X and Y , the bytes of the 2
vectors are designated as:

X = [X0, X1, X2, · · · , X29, X30, X31]

Y = [Y0, Y1, Y2, · · · , Y29, Y30, Y31]

The bytes of the result, Z, of the operation Z = X ⊕ Y are designated
as

Z = [Z0, Z1, Z2, · · · , Z29, Z30, Z31]

and the bytes of Z = X ⊕ Y are defined as follows:

Zk = Xk ⊕ Yk

where ⊕ is the XOR operation described in 3.8. Bit-wise XOR of the
32 bytes of two vectors retains its customary meaning.

3.10. WaMM Multiplication. WaMM Multiplication, designated by
�, is a binary operator operating on two bytes. The operator, �, is
closed. The operator, �, is is not associative. In general ((x� y)� z 6= x� (y � z))
The operator, �, is is not commutive. In general (x� y 6= y � x). The
operator, �, has no identity element and, thus, no inverse.

The operation is defined by a truth table containing 65,536 byte
values arranged as a matrix of 256 rows, each with 256 byte values.
The truth table for the � operator is contained in Appendix A. The
left hand operand determines the row of the truth table to use for the
current operation. The right hand operand determines the column of
the truth table to use for the current operation.

Appendix A contains the truth table. The table is arranged as 256
separate printed grids of byte values, one grid for each row of the truth
table.

Appendix A contains the truth table. The true table is as 256 sep-
arate printed grids of byte values, one grid for each row of the truth
table. A given row is identified by the label (e.g. 0xA4 � B) in the
upper left corner cell of its grid. Each grid contains 16 rows and 16
columns of byte values. The 256 values in a single row of the truth ta-
ble are arranged in the corresponding grid as 16 rows and 16 columns
of byte values. The four most significant bits of the right hand operand
determine which row of the grid to use for the current operation. The
four least significant bits of the right hand operand determine which
column of the grid to use for the current operation.

Demonstrating that the operator is not associative will illustrate the
arrangement of the truth table values in the grids printed found in
Appendix A.

WAMM: A CANDIDATE ALGORITHM FOR THE SHA-3 COMPETITION 9

(0xA6� 0x07)� 0x83 =

0x71� 0x83 = 0x42

0xA6� (0x07� 0x83) =

0xA6� 0x01 = 0xA5

0xA6�B
Four Least Significant Bits of B

0x00 0x01 · · · 0x06 0x07 0x08 0x09 · · · 0x0E 0x0F

B
it

s
of

B

0x00 0xDC 0xA5 · · · 0xDE 0x71 0xFD 0x87 · · · 0xC7 0xC3
0x10 0x16 0x05 · · · 0x43 0x09 0xF9 0x06 · · · 0x51 0xFC
0x20 0xFB 0x8A · · · 0x49 0x98 0x42 0x66 · · · 0x80 0xB1
0x30 0x20 0x10 · · · 0xCA 0xAA 0x67 0xBC · · · 0x5D 0xB3
0x40 0xF0 0xD4 · · · 0x7F 0x02 0x69 0x01 · · · 0x2D 0x45
0x50 0xEC 0x8E · · · 0xBD 0x1D 0xB4 0xAF · · · 0xFA 0xA9

...
...

...
...

...
...

...
...

...
...

...
Table 1. (0xA6� 0x07)

0x07�B
Four Least Significant Bits of B

0x00 0x01 0x02 0x03 0x04 · · · 0x0C 0x0D 0x0E 0x0F

B
it

s
of

B

0x00 0xA9 0x72 0xD4 0x8B 0x60 · · · 0x6E 0x5D 0x94 0x90
0x10 0xE3 0xD2 0xA8 0x59 0x91 · · · 0xB5 0x11 0x1E 0xC9
0x20 0xC8 0x57 0xF1 0x93 0x3C · · · 0x7A 0x0E 0x4D 0x7E

...
...

...
...

...
...

. . .
...

...
...

...
0x70 0x43 0x0D 0x2E 0xC2 0xD7 · · · 0xD8 0x96 0x58 0xA7
0x80 0x13 0xD0 0x66 0x01 0xA5 · · · 0x4A 0x15 0x82 0x2D
0x90 0x6D 0x44 0xF0 0x27 0x9C · · · 0xF8 0x06 0x35 0x75

...
...

...
...

...
...

. . .
...

...
...

...
Table 2. (0x07� 0x83)

The value of (0xA6� 0x07) was determined by finding the grid in
Appendix A labeled: 0xA6 � B. The 4 most significant bits of 0x07
are 0x00. This value determines the row of the grid to use for the
operation. The 4 least significant bits of 0x07 are 0x07. This value
determines the column of the grid to use for the operation. The byte
value in this cell of the printed grid is 0x71.

The value of (0x07� 0x83) was determined by finding the table in
Appendix A labeled: 0x07 � B. The 4 most significant bits of 0x83
are 0x80. This value determines the row of the grid to use for the
operation. The 4 least significant bits of 0x83 are 0x03. This value

10 JOHN WASHBURN

0x71�B
Four Least Significant Bits of B

0x00 0x01 0x02 0x03 0x04 · · · 0x0C 0x0D 0x0E 0x0F
B

it
s

of
B

0x00 0xEA 0xB3 0x15 0xCC 0xA1 · · · 0xAF 0x9E 0xD5 0xD1
0x10 0x24 0x13 0xE9 0x9A 0xD2 · · · 0xF6 0x52 0x5F 0x0A
0x20 0x09 0x98 0x32 0xD4 0x7D · · · 0xBB 0x4F 0x8E 0xBF

...
...

...
...

...
...

. . .
...

...
...

...
0x70 0x84 0x4E 0x6F 0x03 0x18 · · · 0x19 0xD7 0x99 0xE8
0x80 0x54 0x11 0xA7 0x42 0xE6 · · · 0x8B 0x56 0xC3 0x6E
0x90 0xAE 0x85 0x31 0x68 0xDD · · · 0x39 0x47 0x76 0xB6

...
...

...
...

...
...

. . .
...

...
...

...
Table 3. (0x71� 0x83)

0xA6�B
Four Least Significant Bits of B

0x00 0x01 · · · 0x06 0x07 0x08 0x09 · · · 0x0E 0x0F

B
it

s
of

B

0x00 0xDC 0xA5 · · · 0xDE 0x71 0xFD 0x87 · · · 0xC7 0xC3
0x10 0x16 0x05 · · · 0x43 0x09 0xF9 0x06 · · · 0x51 0xFC
0x20 0xFB 0x8A · · · 0x49 0x98 0x42 0x66 · · · 0x80 0xB1
0x30 0x20 0x10 · · · 0xCA 0xAA 0x67 0xBC · · · 0x5D 0xB3
0x40 0xF0 0xD4 · · · 0x7F 0x02 0x69 0x01 · · · 0x2D 0x45
0x50 0xEC 0x8E · · · 0xBD 0x1D 0xB4 0xAF · · · 0xFA 0xA9

...
...

...
...

...
...

...
...

...
...

...
Table 4. (0xA6� 0x01)

determines the column of the grid to use for the operation. The byte
value in this cell of the printed grid is 0x01.

The same process is used to look up the values of (0x71� 0x83) and
(0xA6� 0x01).

Using a truth table as the definition of a binary operator is cum-
bersome when laid out on paper as is done in Appendix A. The prac-
tical matter is the truth table would be implemented in 64 kilobytes
of memory as a lookup table arranged as a two dimensional array, T .
The lookup into the truth table, T , for the result of the operation
Z = (X � Y) is given by: Z = T [X] [Y].

The whole truth table would conveniently fit on a single chip such as
the M27C512-12F1. The 8 bits of the right operand and the 8 bits of
the left operand are used to form the signals to the 16 address lines of
the memory chip. Depending on the exact chip set used, the result of
the operation is found 70-200 nanoseconds later on the 8 output lines

WAMM: A CANDIDATE ALGORITHM FOR THE SHA-3 COMPETITION 11

of the memory chip. If this algorithm is selected as the standard, then
the truth table could be a mass-produced IC with pin outs and data
sheets similar to a 64K x 8 (512 Kbit) memory chip currently on the
market.

3.11. Squaring with Matrix Multiplication. Squaring with Ma-
trix Multiplication is a unitary operator operating on a matrix to pro-
duce a second matrix. Given a matrix, X, the resultant matrix, Y is

Figure 2. Squaring with Multplication

given by: 


X







X




=




Y




where:

(4) Yij =
31∑

k=0

Xik �Xkj

The summation is addition modulo 256 and the multiplication is the
� operator described in 3.10.

3.12. Addition of Vectors. Addition of 2 vectors is designated by
the symbol + and is a binary operation between two vectors. Using
(2) it is possible to consider a vector as a 256-bit integer. As integer
values, two vectors can then be added modulo 2256. Given two vectors,
X and Y , the result Z = X + Y , is defined as the vector, Z, such that

(5) NZ = (NX + NY) mod 2256

where 0 ≤ NZ < 2256 and NX , NY , and NZ are the integer values of
the vectors: X, Y , and Z as given by (2).

12 JOHN WASHBURN

4. Input and Output

A message to be hashed comes in two basic forms; bit streams and
byte streams. Bit streams are message that have a natural frame of
a single bit. Bit streams are message that admit a frame of a byte.
Along with the statement, ”The next 256-bit block of the message is
read.” , there must be a precise definition of how bits from the message
are transferred into the internal state of the hash algorithm.

For messages with bit framing, the bits are sequenced in the following
manner:

b0, b1, b2, b3, · · · , bn−3, bn−2, bn−1

where n is the length of the message in bits and
Bit b0 is the first bit of the message. Bit b1 is the second bit of the
message. Bit b2 is the third bit of the message. Bit bn−1 is the last bit
of the message.

For messages with simple byte framing, the bytes are sequenced in
the following manner:

B0, B1, B2, B3, · · · , Bn−2, Bn−1

where B0 is the first byte of the message. Byte B1 is the second byte
of the message. Byte B2 is the third byte of the message. Byte Bn−1

is byte n of the message. Byte Bn is byte n + 1 of the message. where
n is the length of the message in bytes. Byte b0 is the first byte of the
message. Byte b1 is the second byte of the message. Byte b2 is the
third byte of the message. Byte bn−1 is the last byte of the message.
Within each byte there is a least significant bit and a most significant
bit. As per the NIST requirements, the most significant bit of a byte
is b0 and the least significant bit is b7.

Messages can also have word framing where the number of bits in
the word more than 8. If so, the message admits byte framing. For
messages with a word framing, the words of the message are sequenced
in the following manner:

W0,W1,W2,W3, · · · ,Wn−2,Wn−1

where W0 is the first word of the message. Word W1 is the second
word of the message. Word W2 is the third word of the message. Word
Wn−1 is the last word of the message. Within each word there is a least
significant bit and a most significant bit. As per the NIST requirements
the most significant bit of a word is w0 and the least significant bit is
wr−1 for a word length of r bits.

Vectors are the data structure used to accept bits from the message.
The 256 bits of a vector, v0, v1, v2, . . . , v253, v254v255, are arranged as 32

WAMM: A CANDIDATE ALGORITHM FOR THE SHA-3 COMPETITION 13

bytes, B0 - B31. The bit n of the vector, vn, is located in bit k of byte
j such that:

n = 8j + k(6a)

j =
⌊n

8

⌋
(6b)

k = n mod 8(6c)

where
⌊

n
8

⌋
is the largest integer less than or equal to n

8
; i.e.

⌊
n
8

⌋ ≤ n
8

<⌊
n
8

⌋
+ 1.

For bit framed messages, the WaMM algorithm processes the mes-
sage in blocks of 256-bits. If the message length is not a multiple of
256 bits, then message is implicitly padded with zeros. This implicit
padding will be discussed in more detail in 5. Bit n of the message
block is transferred to bit n of the vector using (6).

For byte framed messages, the WaMM algorithm processes the mes-
sage in blocks of 32 bytes. If the message length is not a multiple of
32 bytes, then message is implicitly padded with zeros. This implicit
padding will be discussed in more detail in 5. Byte n of the message
block is transferred to byte n of the vector.

For word framed messages, the WaMM algorithm processes the mes-
sage in blocks of T words where T is a function of the word size. If the
word size evenly divides 256, then the mapping from words to vectors is
simple. But, if the word size does not evenly divide 256, the bits, bytes,
and words of the message can still be transferred to a set of vectors in
a precise manner. This is because, regardless of word size, there exists
within each word a least significant bit and a most significant bit.

Assume the word size is R bits. Find, C, the least common multiple
of R and 256. There will be T = C

r
words which map to N = C

256
vectors. Bit k of word t maps to bit i of byte j in vector n vector by
the mapping formula:

Rt + k = 256n + 8j + i(7a)

n =

⌊
(Rt + k)

256

⌋
(7b)

j =

⌊
(Rt + k)− 256n

8

⌋
(7c)

i = (Rt + k) mod 8(7d)

where 0 ≤ m < T and 0 ≤ n < N .
An example will clarify this. For a word size of 48 bits the least

common multiple of 48 and 256 is 768. Thus, the bits of 16, words
map to the bits of 3 vectors using (7). From (7), m is in the range

14 JOHN WASHBURN

0 ≤ m ≤ 15 and n is in the range 0 ≤ n ≤ 2. The WaMM algorithm
will process the message in blocks of 16-words each. The 3 vectors
created from the 16 words will be processed by the WaMM algorithm
in this order. Vector V0 is processed first. Vector V1 is processed second.
Vector V2 is processed third. Then the next block (16 words) of the
message is processed.

If the message length is not a multiple of T words, then the message
is implicitly padded with zeros. This implicit padding will be discussed
in more detail in 5. If the number of words remaining in the message
is less than T (a short block), then the message will be padded out to
the next multiple of 256. In the above example, if the bit length of the
message was 1024, the 16 words of the message are mapped to three
(3) vectors. The remaining 256 bits are mapped to a single vector and
processed.

5. The WaMM Algorithm

The WaMM Hash Algorithm as pseudo-code:
Decide on, N , the size of the hash value in bytes; where 24 ≤ N ≤

128 is the size of the hash value in bytes and N is is a multiple of 4.
Initialize the internal state of the WaMM Algorithm (Section 5.2)
Break the message, M , into a series of 256-bit blocks, with a possible

short block. (Section 5.3)
For Each message block

Transfer the 256-bit block to the Input Vector, Vin

Update the State Matrix, SM with the Input Vector, Vin

End For Each
If the Message has a remainder (short message block) then

Transfer the 256-bit block to the Input Vector, Vin

Update the State Matrix, SM with the Input Vector, Vin

end if
Set the Count Vector, VC, to the message length in bits
Transfer the Count Vector, VC, to the Input Vector, Vin (Section 5.5)

Transfer the 256-bit block to the Input Vector, Vin

Update the State Matrix, SM with the Input Vector, Vin

Determine the prime numbers, Pt and Ps, used for the tapping se-
quence. (Section 5.7)

Determine the number of bytes, N , in the hash value, H.
For n = 0 to N do

an = (Ptn + Ps) mod 1024
j =

⌊
an

32

⌋
k = an mod 32

WAMM: A CANDIDATE ALGORITHM FOR THE SHA-3 COMPETITION 15

Hn = SM [j] [k]
end for

Figure 3. Internal State of the WaMM Algorithm

5.1. Internal State of WaMM Algorithm. The internal state of
the WaMM algorithm consists of:

• A matrix, SM, called the State Matrix.
• A vector, Vin, called the Input Vector.
• A vector, VC , called the Count Vector. The count vector con-

tains the number of bits in the message.
• The lookup table, T , which contains the truth table for �. The

lookup table, T , is arrange such that T [X] [Y] = X � Y .
• A table of 1 and the first 256 primes,

{1, 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, . . . , 97, 101, 103, 107, 109, 113, 127} .

designated in the customary fashion as:

{P0, P1, P2, P3, P4, P5, P6, P7, P8, P9, P10, . . . , P26, P27, P28, P29, P30, P31, P32} .

16 JOHN WASHBURN

The odd primes are used to tap the State Matrix, SM, for the
hash value, H.

• A buffer, H, for the resultant hash value. The WaMM Hash
Algorithm produces a hash value with at least 128 bits and
no more than 1024 bits. The buffer, H, is between therefore
between 16 and 128 bytes in length.

The internal state of the WaMM algorithm occupies 65 1
8

kilobytes.
If the look up table is excluded, the internal state is 1056 bytes. The
bulk of this memory footprint is the 64K needed for the storage of the
truth table for the operator, �, in the lookup table, T . The State
Matrix, SM, occupies 1 kilobyte.

5.2. Initializing the Internal State. The look up table, T , con-
taining the truth table for � is assumed to be available from message
to message and, thus, does not need any special initialization prior to
hashing a message. The table of primes is assumed to be available from
message to message and, thus, does not need any special initialization
prior to hashing a message.

Before a message is hashed, the internal state of the WaMM Hash
Algorithm must be initialized.

(1) The Input Vector, Vin, is initialized zero. (Every bit is set to
zero.)

(2) The Count Vector, VC , is initialized zero. (Every bit is set to
zero.)

(3) The State Matrix, SM, is initialized such that SM [j] [k] = j�k

5.3. Read Data. The WaMM Hashing Algorithm processes messages
of indefinite length by processed the message in 256-bit blocks. A 256-
bit block is read into the Input Vector, Vin. How the bits (bytes or
words) of the incoming message are mapped to the Input Vector Vin

is described in section 4. Transferring a block of 256-bits from the
message to the Input Vector, Vin, consists of three steps:

(1) Set the input vector, Vin, to zero. Every bit of Vin is set to zero.
(2) Map the bits of the 256-bit block of the message are mapped to

the Input Vector, Vin, as described in section 4.
(3) If the block of the message is less than 256 bits, then the bits

of the short block are mapped to the Input Vector, Vin in the
same manner for a 256-bit block. Because the Input Vector Vin

is initialized to zero, the short block is zero padded to fill out
the 256 bit block.

WAMM: A CANDIDATE ALGORITHM FOR THE SHA-3 COMPETITION 17

5.4. Updating the State Matrix. The State Matrix, SM, is updated
by XOR’ing the the current row with the Input Vector, Vin. The current
row of the State Matrix, SM, is incremented

If the current row of the State Matrix, SM, is wraps back to zero,
then the State Matrix, SM, is squared twice.

5.5. The Count Vector, VC. The Count Vector, VC , contains the
bit length of the message modulo 2256. The bit length is the length of
the message without padding. While the Count Vector, VC , contains
the message length modulo 2256, message lengths greater than 2256 bits
are unlikely. Therefore, it should not cause any confusion to say the
Count Vector, VC , contains the message length in bits of the unpadded
message. The value in the Count Vector, VC , can be maintained and
updated in any manner provided that when the last block of the mes-
sage is processed, the Count Vector, VC , accurately contains the bit
length of the message processed.

5.6. Post Processing. If the the message is not an even multiple of
256 bits, the remaining bits of the message are read into the Input
Vector, Vin. The State Matrix, SM is updated with the Input Vector,
Vin and possibly squared twice.

Once every bit of the message has been processed, the length of the
message is processed in the same manner as a 256 bit message block.
The Count Vector, VC , contains the number of bits in the unpadded
message.

• The Count Vector, VC , is transferred to the input vector, Vin.
• The State Matrix, SM, is updated, and possibly squared twice.
• If the updating of the State Matrix, SM, did not cause the

State Matrix to be squared twice, then the State Matrix, SM,
is squared twice.

5.7. Tapping the State Matrix. With the post processing of the
message length completed, the State Matrix, SM, can be tapped to
produce the hash value. The WaMM Hash Algorithm can produce a
hash value, H, of any bit length where the bit length of the hash value
is a multiple of 32 and the bit length of the hash value is in the range
192 ≤ L ≤ 2048. Given a bit length of L, the hash value, H, will
contain N bytes; where N = L

8
. The N bytes of the hash value, H,

are an ordered sequence of bytes selected from among the 1024 bytes
available in the State Matrix, SM. The formula for mapping the N

18 JOHN WASHBURN

bytes of the State Matrix, SM to the hash value, H, is given by:

Hn = SM [j] [k](8a)

s =
L

32
=

Hash Length

HashLengthModulus
(8b)

t = s− 2(8c)

r = (nPt + Ps) mod (N2 = 322 = 1024)(8d)

j =
⌊ r

32

⌋
(8e)

k = r mod 32(8f)

where Pt and Ps are prime numbers.
For example for a hash length of 192 bits, L = 192. The number

of bytes, N , in the hash value, H, is N = 192
8

= 24. The values of s

and t are 6
(
s = 192

32
= 6

)
and 4 (t = s− 2 = 4); respectively. The two

prime numbers of the arithmetic sequence, r = (nPt + Ps) mod 1024,
are P6 = 13 and P4 = 7. The resulting arithmetic sequence, r =
(7n + 13) mod 1024 is :
(9)
rn = {13, 20, 27, 34, 41, 48, 55, 62, 69, 76, 83, 90, 97, 104, 111, 118, 125, 132, 139, 146}

WAMM: A CANDIDATE ALGORITHM FOR THE SHA-3 COMPETITION 19

For a hash value of 160 bits, the State Matrix, SM, is tapped as follows:

H0 = SM [0] [13]

H1 = SM [0] [20]

H2 = SM [0] [27]

H3 = SM [1] [2]

H4 = SM [1] [9]

H5 = SM [1] [16]

H6 = SM [1] [23]

H7 = SM [1] [30]

H8 = SM [2] [5]

H9 = SM [2] [12]

H10 = SM [2] [19]

H11 = SM [2] [26]

H12 = SM [3] [1]

H13 = SM [3] [8]

H14 = SM [3] [15]

H15 = SM [3] [22]

H16 = SM [3] [29]

H17 = SM [4] [4]

H18 = SM [4] [11]

H19 = SM [4] [18]

H20 = SM [4] [25]

H21 = SM [5] [0]

H22 = SM [5] [7]

H23 = SM [5] [14]

The most significant bits of the Hash value, H, are in first byte, H0.
The least significant bits of the Hash value, H, are in last byte, HN−1.

The use of an arithmetic sequence to tap the State Matrix, SM, is
to insure the hash values for various bit lengths (WaMM-128, WaMM-
160, WaMM-192, · · · , WaMM-960, WaMM-992, WaMM-1024) are as
unrelated to each other as possible.

20 JOHN WASHBURN

6. Design Considerations

The first design consideration was was mixing operator and how
much state information should be retained from message block to mes-
sage block. The author decided on matrix multiplication for the fol-
lowing reasons:

(1) Matrix multiplication is an efficient, but expensive mixing op-
eration because each bit in the column or row affects every
element of the result.

(2) The operation of multiplying a square matrix with an arbirtrary
multiplication operator is intrinsically hard to invert.

The size of the state information was selected so that there would
be sufficient state material available to tap in order that hash values of
one size would not leak information abut hash values of a different size.
The danger posed by this scheme is that a great deal of information
internal state of the WaMM algorithm is leaked if the same message is
hashed, but hash values of several sizes are generated from the same
internal state. Using the arithmetic sequence having prim numbers as
the difference and initial value insures the 1024 bytes of the internal
state are tapped in distinct ways without any common byte sequences.
There may be some bytes in common between hash values of different
sizes, but no two, consecutive bytes are common between and two hash
values. generated from the same internal state.

There is no reason why the state matrix, SM, could not be extended
to 64 rows of 64 bytes each. The vectors would also increase to 64
bytes. But the cost of the operation is O (n3). The reason 32 was
select was for space considerations. The dimension is large enough to
create significant mixing. The presence of a 64K byte look-up table
for the WaMM multiplication operator, �, is a sizable imposition. Re-
quiring 41

4
for the internal state (4K for the State matrix, SM , and

1
4
K for the 4 vectors) was deem to be too great. A second, competing

consideration regarding the size of the state matrix, SM, was computa-
tional load. The number of table lookups (WaMM multiplications) is
a function of N3 where N is the number of bytes in a row of the State
Matrix, SM. Doubling the size of SM, increases the computational
load of the algorithm by a factor of eight. A size of 32 bytes seemed
to be a reasonable trade off between making the State Matrix, SM, as
large as possible (in order to tap the matrix without overlaps) and the
computation load.

The repeating the sqauring operation insures, that even a single bit
change affects every bit in every byte of the resulting matrix.

WAMM: A CANDIDATE ALGORITHM FOR THE SHA-3 COMPETITION 21

Matrix multiplication requires two operators; multiplication and ad-
dition. The natural choice for the operations would be multiplication
and addition modulo 256. This choice though leads to a great deal of al-
gebraic structure because the two operations and the set of byte values
form a field. Such a structure opens up the possibility of attacking the
round function by linearizing the operations. In order to diminish the
structure created by a field, multiplication modulo 256 was replaced by
the WaMM multiplication operator, �. The other problem with using
the naivé field of multiplication and addition modulo 256 is that 256 is
not a prime number. Because of this both multiplication and addition
modulo 256 of non-zero operands can create a result of zero. Once the
value of zero is achieve, multiplication modulo 256 will propagate the
zero value. This includes a bias in the system for the results to tend to
zero slightly. Such a bias interferes with the diffusion of information.

The WaMM multiplication operation, �, was select to minimize
auto-correlation and to minimize cross-correlation between the WaMM
multiplication operator and the flat operator. The flat operator is
defined as: j � k = (j + k) mod 256. A high cross-correlation with
the flat operator means there exist a high correlation with and affine
transformation of j and k. An affine transformation of j and k is
j � k = (Aj + Bk + C) mod 256 for some integers A, B, and C.

The candidate operators were treated as two dimensional arrays of
256 rows of 256 integers each. The auto and cross correlations were then
calculated using the Fast Walsh-Hademard Transformation (FWHT)
for two dimensions and its inverse transformation. The result of the
transformations were two matrices consisting of 256 rows of 256 bytes.
One matrix contained correlation values of the operator with shifted
versions of itself. One matrix contained correlation values of the op-
erator with shifted versions of flat operator. Each matrix of 65,536
correlation values was reduced to a single large number by using the
sum of the square of each matrix element. Scaled version of these two
numbers (the sum of squares of the auto and cross correlations) were
added together to form the fitness measure. The scaling was to insure
the auto and cross correlation would have equal weight in determining
if one operator was better than another. An operator with a smaller
fitness measure (lower auto correlation and/or lower cross correlation)
was deemed ”better” than an operator with a larger fitness measure.

A candidate operator tested for improvement by swapping one pair
of rows or swapping one pair of columns. If the new operator with
the swap had a lower fitness measure than the original operator, the
new operator with the swap was kept. The testing for improvement
continued until no row swap or column swap would reduced the fitness

22 JOHN WASHBURN

measure of the operator. If no single row swap and no single column
swap would reduced the fitness measure of the operator, the operator
is called a locally optimal operator because the operator is at a lo-
cal optimum relative to the fitness measure. Once the operator was
found to be locally optimal, the operator was saved, shuffled, and the
search for a new locally optimal operator was begun. The operator
was shuffled by shuffling the 256 rows of the operator matrix and then
shuffling the 256 columns of the operator matrix. By swapping and
shuffling whole rows and whole columns the closure of the operator is
maintained. From all the locally optimal operators found, the locally
optimal operator with the lowest fitness measure was then selected to
be the WaMM multiplication operator.

The C# application which performed this search is available among
the Supplemental Materials.

The author considered defining both multiplication and addition via
truth tables. This would have degraded the algebraic structure further
and would eliminate the bias toward zero still present with addition
modulo 256. The slight bias toward zero present with addition modulo
256 is offset by:

(1) The computational simplicity of addition modulo 256
(2) opportunity to mix bits via two unrelated processes; addition

modulo 256 and substitution via a complex set of 8-bit to 8-bit
substitution boxes (S-Boxes).

(3) Avoiding a second, 64K of storage for the truth table of the the
WaMM Addition Operator, ¢

The number of iterations of matrix multiplication during the WaMM
round function was set at 8 because this is 4 times the number of
iteration needed for either a single bit change in the Input Vector, Vin

or a single bit change in the State Matrix, SM, to propagate to every
bit of the result, VL ⊕ VR. The statement; Every bit in the result:
VL ⊕ VR is affected. is not the same as the statement: Every bit in the
result: VL ⊕ VR tends to an expected value of 1

2
. Eight (8) iterations

of matrix multiplication was deemed an acceptable trade off between
computational effort (more iteration; more effort) and the expectation
that every bit tend to 1

2
(more iteration; the closer the asymptotic

approach). There is a point of diminishing returns where the slight
improvement of the expected values to tend to 1

2
is not worth the

extra effort required to get the improvement. Eight was the somewhat
arbitrary cutoff where the improvement in diffusion did not justify the
addition effort.

WAMM: A CANDIDATE ALGORITHM FOR THE SHA-3 COMPETITION 23

7. Alternate Designs

An alternate design was to replace the basic unit of the internal state
from bytes to words of either 16, 32, or 64 bits. If a word size larger than
a byte is used the an operation similar to the WaMM multiplication
operator, �, because the truth table impractically large. For a word
size of N bits, the truth table would require 2N rows of 2N words each.
The number of bits in the truth table is N2(2N). A word size of 8 bits
(one byte) is the practical upper limit for a truth-table implementation
of a binary operator.

The naivé selection of operators would be multiplication and addition
modulo 2R where R is the length of the word in bits; R ∈ {16, 32, 64}.
For the reasons outlined in Section 6, the fact that two non-zero ele-
ments can be multiplied to produce a zero results is significant problem.
The alternative to multiplication modulo 2R is to do the multiplication
and addition using the Galois Field, GF

(
2R

)
for some irreducible poly-

nomial of order R. The tapping of the state material would still be at
the byte level using a more complex version of the tapping sequence
defined in Eq. (8). For the purposes of tapping the state matrix words
would treated a collection of bytes.

The author likes this approach. The benefits are:

(1) The word size is flexible.
(2) The operation of bitwise-XOR, addition in GF

(
2R

)
, is fast and

easily implemented.
(3) The the shift and XOR algorithm for multiplication in GF

(
2R

)
,

is not as fast as table lookups, but is reasonably fast.
(4) The larger the word size the fewer computational operations are

required for matrix multiplications. The computational effort
of a multiplication in GF

(
2R

)
may be more than the effort for

a table lookup, but there are fewer multiplications in GF
(
2R

)
required.

The drawbacks are:

(1) The mathematics has a high degree of algebraic structure. This
opens up the possibility the round function can be attacked by
treating the round function as set of simultaneous, algebraic
equations.

(2) Identity elements exist for both operations and inverses exist
for every element so inversion is possible.

(3) Because inverses exist it is possible one iterations may be the
inverse of prior iteration. Leaving open the possibility of weak

24 JOHN WASHBURN

hashes because the mixing in one step is undone by the mixing
operation of a later step.

The author believes the risks posed by the Galois field, GF
(
2R

)
are

too great. The WaMM operator, �, can be thought of a 256 S-Boxes
which map eight bits to eight bits. The left hand operand of j � k
selects the S-Box. The right hand operator of j � k is the input to the
S-Box. The output of the S-Box is the result of j � k.

The measurement and attacks on the non-linearity of S-Boxes are
well understood. The attacks are differential analysis of the S-Box,
linear approximation of the Boolean functions, and linear approxima-
tion of the whole S-Box. The measurements are the strict avalanche
criterion and auto correlation of the 8 boolean functions which make
up bytes of the S-Box. Using a fitness measure which minimizes auto
correlation hardens the S-Box against attacks using differential analy-
sis. Using a fitness measure which minimizes cross correlation to affine
transformations hardens the S-Box against attacks using linear approx-
imation.

The author acknowledges his preference for using S-Boxes over using
algebraic constructions for introducing non-linearity to a cryptographic
system. Linear analysis is a powerful tool and highly structured alge-
braic components only aid the possible effectiveness of an attack using
linear analysis. Differential analysis is also a powerful tool against S-
Boxes but one for which the hardening is well understood.

8. Pros and Cons of WaMM

Simultaneously the biggest drawback and strength of the WaMM
hash algorithm is the choice to use matrix multiplication as the mixing
operator. From a computation point of view, matrix multiplication is
an expensive operation. The number of operations needed to square a
matrix once are:

(1) N3 table lookups (WaMM multiplications); where N is the di-
mension of the square matrix.

(2) N3 table additions modulo 256; where N is the dimension of
the square matrix.

Matrix multiplication though is great operator for mixing the infor-
mation in the bits of the message block across the 8192-bit sub-blocks
of the message. With only two squarings, the information in a single
message bit affects all of the bits of the state matrix (i.e. the 8192-bit
sub-block of the message).

The expense of the repeated squaring is mitgated because the oper-
ation is perfomed infrequently; once every 8192 bits.

WAMM: A CANDIDATE ALGORITHM FOR THE SHA-3 COMPETITION 25

The second drawback is the requirement for a 64K lookup table for
the WaMM multiplication operator, �. For the reasons described in
Section 6, it is believed the advantages deliberate non-linearity out-
weigh this memory requirement.

9. Known Attacks

Because of the design of the WaMM multiplication operator, �, the
operator is resistant to both differential and linear cryptanalysis. Dif-
ferential and linear cryptanalysis are two most powerful techniques for
attacking encryption and hashing algorithms.

Message extension is a problem endemic to hashes using the Merkle-
Damgard construction. The WaMM algorithm blunts message length
padding because the number of bits making up the internal state of
the hash far exceed the number of bits in the hash value. Because of
this excess of state information, knowing the hash value and length of
a target message does not provide enough information to construct a
second message such that:

H (M ||M∗) = H (M)

where || is concatenation. This makes the WaMM hash algorithm pre-
image and second pre-image resistant even if using the message exten-
sion to attack the hash.

10. Peformance

On the NIST reference platfom, the WaMM algorithm can hash one
gigabyte of data in 150 seconds. The hash time is independent of the
hash length. This is a rate of approximately 7.1 megabytes per second.

26 JOHN WASHBURN

Appendix A

Here is the truth table for the � operator used in the WaMM algo-
rithm.

The operator has measures of: [0x051A5134891F23E0, 0x000000088AF8CC40,
0x00000491A1A7C51F, 0x000023E0]

N128W12795 Highland Road, Germantown, WI 53022
URL: http://www.WashburnResearch.org
E-mail address: crypto@WashburnResearch.org

