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From: hash-forum@nist.gov on behalf of Chang, Shu-jen H. [shu-jen.chang@nist.gov]
 

Sent: Thursday, October 15, 2009 11:52 AM
 

To: Multiple recipients of list
 

Subject: FW: OFFICIAL COMMENT: Fugue (Round 2)
 

FYI 

The official comment shown below was not sent to hash-forum. I’d like to inform you that we have received an 
update package of Fugue and have posted it on the NIST site as an update. We don’t plan to accept future 
updates unless for a very good reason. Submitters are advised to send OFFICIAL COMMENT and post 
corrections on their web site. 

Regards, 
Shu-jen 

From: Charanjit Jutla [mailto:csjutla@us.ibm.com]  
Sent: Friday, October 02, 2009 4:50 PM 
To: hash-function@nist.gov 
Subject: OFFICIAL COMMENT: Fugue (Round 2) 

Dear all, 

1.  Stefan Tillich (of Graz University of Technology) has        found a bug in the 

__implementation__ of Fugue's padding. In particular, for messages which are not of 

byte-multiple length, the implementation erroneously zeroes the last incomplete 

byte. The bug is in all implementations, including reference, and the way the KAT 

files were generated. As a result, the KATs for non-byte-confirming messages are 

wrong.
 

2. We will correct the implementation, and post new KAT files and the 

implementations on the IBM site next week.

The link will be posted here again. We will see how/when/if it can be incorporated

into NIST's posted version.
 

3. To emphasize, the bug is NOT in the Fugue padding specification, but in the 

implementation. The specification remains unchanged.
 

4. The implementations submitted to eBASH remain unchanged, as they are for byte 

length messages only.
 

5. We appreciate the fact that Stefan contacted us first, rather than posting 

directly on the forum.
 

6. For those who are curious, the bug is not in Fugue.c, but in the wrapper file 

SHA3api_ref.c. Line 62 reads:
 

10/20/2009
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memset ((uint8*)state->Partial+((state->TotalBits&31)/8), 0, need/8); 

It should instead be: 

memset ((uint8*)state->Partial+(((state->TotalBits&31)+7)/8), 0, need/8); 

7. Thanks for your patience, 

The Fugue Team 

10/20/2009
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From: Charanjit Jutla [csjutla@us.ibm.com] 
Sent: Thursday, August 12, 2010 5:07 PM 
To: ha sh-function@nist.gov 
Subject: OFFICIAL COMMENT: Fugue (Round 2) 

Dear all, 

Jean-Philippe Aumasson has been kind enough to point out a confusing statement about the diffusion tables in 
the Fugue document, and we report it here. 

In Section 4.3, "Diffusion in the TIX-less rounds G1", the  text correctly states what the corresponding table 6 on 
diffusion properties of final round stage G1 shows. However, in section 11 on External collisions this information is 
worded wrongly.  This has no impact on the proof in that section, except that the wording can be confusing. 

Specifically, section 4.3 para two states, and I quote 
"Starting right after the last TIX step and ending after the end of G1, the table shows how many initial bytes 
influence each of the final bytes". 

Here the "last TIX step" is from the last input round, and this is where the adversary may supply input to that 
round. After this TIX step, there are two SMIX rounds. So, the final round effectively starts right after the last TIX 
step. 

BTW, these diffusion tables and round G1 are just acting as tolerance  buffers, and the proof of improbability of 
collisions is really about final round stage G2, which starts after G1. 

Thanks, 

Fugue Team 

8/16/2010
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From: Charanjit Jutla [csjutla@us.ibm.com]
	
Sent: Tuesday, August 24, 2010 2:31 AM
	

To: ha sh-function@nist.gov
	

Cc: h ash-forum@nist.gov
	

Subject: OFFICIAL COMMENT: Fugue (Round 2)
	

Dear all,
	

We have written a note
	
"Weak Ideal Functionalities for Designing Random Oracles
	
with Applications to Fugue".
	

The note is attached. It will be expanded to a full paper shortly,
	
when we will post it here again.
	

Thanks,
	

Charanjit
	

9/1/2010
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Weak Ideal Functionalities for Designing Random Oracles with
 
Applications to Fugue
 

Shai Halevi William E. Hall Charanjit S. Jutla Arnab Roy
 
IBM T.J. Watson Research Center
 

August 24, 2010
 

Introduction 

Fugue is a variable input length (VIL) hash function which maps arbitrary length input messages 
to a fixed length output, e.g. 256-bit. As opposed to traditional designs Fugue has “light-weight” 
input rounds, which cannot be claimed to be random permutations or ideal ciphers. This approach 
was first embodied in the hash function Grindahl. 

The main idea behind this design approach is that hash functions (as opposed to block ciphers) 
do not have an inversion oracle; or in other words, in the security definition of a hash function 
the adversary does not have access to an inversion oracle, and hence it can be securely realized 
by components which themselves do not have any inversion oracles. If one tries to build hash 
functions using components which are required to be secure against inversion oracles, one may 
not get an optimal speed/security tradeoff. Fugue capitalizes on this observation, along with 
many other such practical issues regarding full security of a hash function, and focuses instead on 
proving the full hash function to be resistant to known cryptanalytic techniques like differential 
attacks, and linear cryptanalysis. For collision resistance, Fugue is actually proven to be resistant 
to differential attacks under very reasonable assumptions (rather than very ideal assumptions). 

In this paper, we formalize this intuition, and show that one can build variable input length 
(VIL) hash functions, which are indifferentiable [1] from VIL Random Oracles (VIL-RO), from 
ideal functionalities which do not have inversion oracles. Currently, this ideal functionality is 
still a VIL functionality, but in a forthcoming work, we will show how to do this with a fixed 
input length (FIL) ideal functionality. Normally, this would not be a difficult task, but we also 
want to make these ideal functionalities as weak as possible, so that one can actually argue that 
Fugue’s components (or some other hash function) actually realize these ideal properties. Thus, 
we will also argue that given the concrete proofs of security already given for Fugue (e.g. collision 
resistance to differential attacks), one can say with high confidence that Fugue’s components 
realize these idealize functionalities. 

So, coming back to the formalization, one may wonder that since it is obvious that from a 
VIL collision resistant functionality and a FIL-RO one can realize a VIL-RO, then what is new to 
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prove here. However, given the focus of Fugue to be not un-necessarily trying to defend against 
internal properties which are not needed in the full realization of a secure VIL-RO, one needs to 
take a different approach to prove Fugue to be VIL-RO. For example, no adversary has access 
to the final transformation by itself; the only access it has is via the input rounds, i.e. the only 
input that can be supplied to the final transformation is what the adversary can produce from 
the input rounds. To capture this intuition, one does not define two different ideal functionalities, 
but just one ideal functionality with its public interface having two functions one for the input 
rounds, and one for the final transformation. But, they have a shared storage. 

The next step is to let the two functions not necessarily split into just input rounds and final 
transformation, but the final transformation may be required to have a few input rounds as well 
(unless the input itself is tiny). 

So, the overall approach in the rest of the paper is going to be as follows. 

1. First an ideal functionality I is defined. 

2. Next, in the I-hybrid model a real-world realization called Hash of VIL-RO is given, i.e. 
Hash employing I is shown indifferentiable [2] from VIL-RO. 

3. A functionality Fugue-I is defined which has the same interface as I but which is imple
mented using Fugue’s components, e.g. Fugue’s input round R and final transformation G. 
It is shown that Hash using Fugue-I is exactly the same as actual full Fugue. 

4. It is argued using already known proofs about Fugue’s collision resistance (and partial 
collision resistance) that it is extremely realistic to assume that Fugue-I realizes I. This 
is to be contrasted with the approach most hash function designs take where they assume 
that their component realizes a strong ideal functionality such as ideal cipher or random 
permutation based only on heuristic bounds/analysis of differential attacks. 

Ideal Functionality I for Fugue-like designs 

. 

The ideal functionality I has two public functions: I−prefix and I−final. It also has two 
tables pstore and cstore. The store pstore has entries of the kind (m, |m|, t), where t is 
supposedly a 960-bit internal state, and m is supposedly a prefix of a message. The store cstore 
has entries of the kind (t, prefix-len, m, r), where as before t is a 960-bit internal state supposedly 
obtained by running the input rounds on a prefix of a message of prefix length “prefix-len”, and 
when this state is continued on with a suffix m, the final 256-bit returned is supposedly r. 

Some of the arguments to I−prefix and I−final are optional, and when not supplied are 
represented by ’*’. 

Here is the definition of I−prefix. It takes two arguments, (i) a message m of arbitrary length 
(in words) but say, bounded by 2128, and (ii) a value t-fake for the intermediate state, say 960-bits. 
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On input m and t-fake, I−prefix computes and returns the following: 

•	 If m is in pstore, then return the intermediate state associated with m. Else, 

–	 If t-fake is already the intermediate state of some entry in pstore, then return ⊥. 
Else, 

–	 Let t be t-fake. if t-fake is not supplied, let t be a random 960-bit value. If t is already 
the intermediate state of some entry in pstore, then abort, and return ⊥. Else, insert 
entry (m, |m|, t) in pstore. Return t. 

Here is the definition of I−final. It takes four arguments, (i) a message m of length 8 or fewer 
words, purportedly the suffix of the actual full message, (ii) a prefix-len, supposedly the length of 
the prefix of the actual full message, (iii) a 960-bit intermediate state t, and (iv) a 256-bit value 
r-fake. 

Here is how I−final computes. There are two main cases: if the prefix-len is zero and if the 
prefix-len is not zero. So, lets first see how I−final computes if prefix-len is zero. 

•	 If |m| ≥ 8, return ⊥. Else, 

–	 If (0, 0, m, r) is in cstore for some value r, then return r. Else, 

–	 Set r to a random 256-bit value. Insert (0, 0, m, r) in cstore. Return r. 

Now, let’s see how I−final computes if prefix-len is not-zero. 

•	 If |m|  8, return ⊥.= Else, 

–	 If (p, |p|, t) is in pstore for some message p, then 

∗	 if (t, prefix-len, m, r) is in cstore for some r, then return r, else 

∗	 choose a 256-bit r at random, insert (t, prefix-len, m, r) in cstore, and return r. 

–	 Else, insert (t, prefix-len, m, r-fake) in cstore. 

Realizing VIL-RO using I 

For any message P of arbitrary bit length, let Hash(P ) be computed as follows. First let, m be 
defined by first extending P with zero bits to a word boundary, and then appending it with two 
words of length of P in bits. Next, 

•	 If |m| < 8, return I−final(m,0,*,*). Else, 

" "	 "• let m = m"||m ", where |m "| == 8. Let t= I−prefix(m", *). If t = ⊥, return I−final(m " , |m"|, t, ∗), 
else return ⊥. 
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The ideal functionality VIL-RO is straightforward. It has a public interface with one function 
RO(m), for any message m of arbitrary length. VIL-RO has a store, in which it keeps pairs of 
the kind (m, r), where m are arbitrary length messages and r are 256-bit values. On any query 
RO(m), it first checks if m is already in its store, and if so, it just returns the associated r. 
Otherwise, it generates a fresh random 256-bit value r, inserts (m, r) in the store and returns r. 

Theorem 3.1 The function Hash above using ideal functionality I is indifferentiable from VIL

RO. 

Proof : We will show that there exists a simulator S, such that no adversary making q calls 
2can distinguish between HashI and S[VIL-RO], with probability greater than 2−960 · q . The 

simulator S is actually a dummy, and just passes the values directly to VIL-RO. 

If the adversary calls the two scenarios with a message P of length less than 6 words, then 
Hash calls I−final(m, 0, ∗, ∗), where m is P appended with two words of count. Note that I−final 
returns a fresh random value (unless m was called before). Similarly, in this case, S just passes 
through the input and output, and the returned value is random. 

If the adversary calls the two scenarios with a message P of length greater than or equal to 
6, note that the padding scheme of Hash would result in a m of length 8 or greater. In this case 

"" " " m = m "||m . First, I−prefix is called with m and *, which results in (m , |m " |, t) value being 
2stored in pstore, where t is a random 960-bit value. There is a probability of q · 2−960, that ⊥ 

was returned, as when the random t collides with an earlier t. If ⊥ is not returned, then I−final 
"" is called with m and t, which then returns a 256-bit random value r. Thus, the only discrepancy 

comes from t colliding. � 

Defining functionality Fugue-I using Fugue’s components 

First, let’s define Fugue-I−prefix, which takes two arguments m and t-fake. Set the initial 960-bit 
state to the IV prescribed by Fugue. Iterate Fugue’s input round R on m, word by word. Return 
the resulting 960-bit internal state. The argument t-fake is ignored. 

Now, let’s see how Fugue-I−final is defined, which takes four arguments: m, prefix-len, 960-bit 
s, and 256-bit r-fake. Again, r-fake is ignored. 

• If prefix-len is zero, and |m| ≥ 8, then return ⊥. 
If prefix-len is zero, and |m| < 8, then set s to the prescribed Fugue IV. Iterate Fugue’s 
input round R on state s with input m, and then apply the final Fugue transformation G 
to the resulting state, and return the 256-bit output. 

• Else, if prefix-len is not zero, set s to the prescribed IV, and iterate Fugue’s input round R 
on input m (word by word), and return the resulting state. 

It is easy to see that Hash defined in the previous section when using Fugue-I computes exactly 
the same function as Fugue-256. 

4
 



5 Arguing Fugue-I is indifferentiable from I 

In the indifferentiability paradigm [1], an adversary (or Environment) is given access to two 
public functionalities, an ideal public functionality, say I, and a real-world public functionality, 
say Fugue-I . The ideal functionality I is indifferentiable from Fugue-I if there is a simulator S 
such that any adversary A cannot differentiate between Fugue-I and S[I] (i.e. S sits between 
adversary and I). We will conjecture that it takes time close to 2128 Fugue-256 evaluations to 
differentiate between the two with high probability. 

The simulator S works as follows. It saves the history of all the calls the adversary makes. 
On calls of the kind I−prefix (and Fugue-I−prefix), the simulator actually calls real Fugue, and 
whatever real Fugue returns, it passes that as t-fake. Thus, the behavior will be same on both 
sides. Next, on calls to I−final (and Fugue-I−final), if the Simulator determines that the call is 
with a state s which was not legitimate, i.e. not returned earlier by some call to I−prefix, it calls 
real Fugue with that internal state and message to get a 256-bit value, and it then passes that as 
r-fake. Thus again, the simulation is perfect. 

Thus, there are are two ways that the adversary may notice a difference 

• when the functionalities return ⊥, 

• when I returns random and independent values. 

When for “syntactic” reasons the functionalities return ⊥, the simulation is perfect, so the 
only difference could be when in I−prefix the functionality I determines that t-fake is already 
the intermediate state of some entry in pstore, and it returns ⊥. This can happen if the 
Simulator S called real Fugue, and it returned a collision (i.e. same intermediate internal state) 
for two different messages. However, in the Fugue document it is proven that internal collisions 
are improbable to achieve with differential attacks (i.e. prob < 2−128), and hence it is a reasonable 

assumption, that no internal collisions can be obtained by adversary in time less than 2128 . 

As for returning random and independent values, the only places that I returns random 256-bit 
values are when 

• prefix-len not zero, and |m| == 8, and (p, |p|, t) is in pstore for some message prefix p and 
the supplied internal state t, 

• prefix-len is zero, and |m| < 8. 

For the second case, the claim is that the output for all messages of length less than 8, and 
starting from the Fugue IV, are random and independent of all other outputs. For there to be any 
dependence, these short messages either have to obtain a collision or a partial collision after one 
round of G1. However, it is shown that both these cases are improbable with differential attacks, 
and hence it is reasonable to assume that the outputs are random and independent. 

For the first case, since we already assumed there are no internal collisions, the further claim 
is that if Fugue actually returned an internal state t on some prefix message p starting from a 
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valid Fugue IV, then for all m of length 8 extending this message p (and state) the returned value 
is random and independent. 

Now, if we have two prefixes (of messages) p1 and p2 with resulting internal states t1 and 
t2, (D = t1 ⊕ t2 = 0), then the Fugue document proves that even partial collisions within the 
final round G1 are improbable, and hence it is reasonable to assume that final round G2 leads to 
random and independent behaviour. 

If p1 and state t is itself extended by two different m1 and m2, then this case is similar to 
starting from initial IV, hence again it is reasonable to assume that the output values are random 
and independent. 

References 

[1] U. Maurer, R. Renner, and C. Holenstein. Indifferentiability, impossibility results on reduc
tion, and applications to the random oracle methodology. Theory of Cryptography, TCC 
2004, LNCS 2951. 

[2] J. Coron, Y. Dodis, C. Malinaud and P. Puniya. Merkle-Damgard revisited: How to construct 
a hash function. Advances in Cryptography, Crypto 2005, LNCS 3621. 
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From: Charanjit Jutla [csjutla@us.ibm.com] 
Sent: Monday, September 20, 2010 11:02 PM 
To: ha sh-function@nist.gov 
Cc: h ash-forum@nist.gov 
Subject: OFFICIAL COMMENT: Fugue (Round 2) -- in response to John Kelsey's ECRYPT presentation 

This was mailed to John Kelsey (regarding his talk at ECRYPT, and specifically  
related to Fugue). 

Dear John, 

1.
	
We would like to point out that Fugue is **directly** defined to be a variable input length PRF (and hence a MAC).

 This is in reference to slide 11, where you mention some other functions with additional properties. 

This definition of Fugue PRF is given in section 4.5 titled
	
"Pseudo Random Function PR-Fugue-256", and it obviates the need to use HMAC.
	

Further,  in section 4.7 we show that Fugue can be used as a direct drop in replacement for SHA-256 in many 

other modes including randomized hashing and HMAC.
	

2. Speed. 

The slides under-represent Fugue in S/W as well as ASIC speed, especially in  
comparison to other AES S-Box based designs  (particularly Shasvite, Grostl, ECHO -- 
see below for more details). (This is mostly the case for the 256 bit version, and for 512-bit versions we do not 
argue that  much about speed, as long as it is reasonably good.) 
Also, on x86 and many other architectures, our speed handily beats many other functions as well. ANSI-
C implementations bring out the best and the worst in some of the candidates. See ebash one to one 
shootout at the following link 

http://bench.cr.yp.to/xweb-hash/long-fugue256.html 

If one looks at these four 256-bit designs (i.e. Shavite, Grost, ECHO and Fugue), it can be seen that  Fugue-256 
requires 2 SMIXES per input word (4 bytes), which is equivalent to 2 AES rounds  + 2 additional linear mixings. 

Whereas all other designs are at least  4 AES rounds per input word (see below for specifics). Since the 
additional mixing in Fugue is generally cheaper than an AES round (it becomes 2 times cheaper by SSE4), 
Fugue-256  is faster than all of these. 

This is clearly reflected in most results on x86-32 and x86-64, as well as micro-controllers, including ARM. Please 
see eBash and the micro-controller talks from 2nd SHA-3 conference. Fugue also beats them in  pure ANSI-C 
code on all x86-32 and x86-64 architectures. 

The only places where these designs beat Fugue is  if (1) there is an AES instruction, (2) older Intel architectures, 
where the designers have submitted dedicated assembly code... we are pretty confident that  those highly 
optimized assembly code can be copied to Fugue to achieve better results. 

9/29/2010
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As for the AES instruction, we mentioned at the 2nd SHA-3 conference that Fugue just needs a  128 bit (16 byte) 
to 128 bit (16 byte) linear mixing instruction to get to 3 to 4 cycles per byte speed.  This should be relatively easy 
for Intel to implement given that they have implemented 6 instructions for AES. 

We just need one more instruction, and that too in the usual SSE format, i.e. 16 bytes to 16 bytes. It mostly 
requires shift and shuffle operations, and should be relatively easy for Intel, given that they already have micro-
code for such instructions. 

"More specific performance numbers for other AES -based designs showing better performance of Fugue as 
mentioned above": 

ECHO-256 requires 16/3 AES rounds per input word (4 bytes).

   SHAVITE-256 : 4 AES rounds per input word (4 bytes)... this includes 3 AES per    word in 
block cipher, and 1 AES per word in message expansion. 

Grostl-256  - requires 2*10*64 AES S-Box lookups for 512 bit input, 
this is equivalent to 5 AES rounds per input word. 

Given these facts, it is safe to say that Fugue should be clubbed with Cubehash and  Keccak in your slide 35. If 
you see the Ebash link mentioned above, we do beat Keccak on most x86 architectures. Moreover, in ANSI-C 
implementations we handily beat Cubehash, JH and SIMD. 

-Fugue Team 

9/29/2010
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From: hash-forum@nist.gov on behalf of Charanjit Jutla [csjutla@us.ibm.com] 
Sent: Friday, October 22, 2010 10:21 AM 
To: Multiple recipients of list 
Subject: OFFICIAL COMMENT: Fugue (Round 2) 

Dear All, 

You can now access the program used to compute the rank (and minimum weight) of all the linear codes used in 
Fugue; in particular the ranks of codes  used in the proof of differential attack resistance. You may modify the 
program for further analysis/cryptanalysis work, as long as it remains opensource. 

Currently, the program uses Victor Shoup's NTL library for finite field arithmetic, so you will need to install that to 
use this program. 

The link is 

http://domino.research.ibm.com/comm/research_projects.nsf/pages/fugue.codes.html 

Thanks, 

Fugue Team 

10/26/2010
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From: hash-forum@nist.gov on behalf of Charanjit Jutla [csjutla@us.ibm.com] 

Sent: Wednesday, December 08, 2010 3:38 PM 

To: Multiple recipients of list 

Subject: OFFICIAL COMMENT: Fugue (Round 2) : Upcoming Tweaks to Fugue 

Dear All,
 

Here are the tweaks we are planning to propose for the next round (if selected).
 
Although, we do not expect NIST to consider these tweaks in making their decision,
 
this should indeed be seen as our confidence in the extra-ordinary security  (and efficiency) provided by Fugue.
 

Over the last one year we have been able to come up with new proofs which drastically enhance the upper 

bounds on differential attacks on the current embodiment of Fugue.  With these proofs, we can now confidently 

tweak Fugue parameters so that Fugue-256 runs at twice the speed (in hardware and software) for long 

messages. For messages of size 512 bits the speed will remain the same for Fugue-256. This means we have 

added 150% more G1 rounds to Fugue-256. This alleviates any concern which Aumasson-Phan  (and
 
Gauravaran et al) analysis had, even though we have shown (because of our proofs on partial collisions) that that 

leads to no attacks. For this reason, in Fugue-224 we do not add many more G1 rounds, and hence Fugue-224 

will run faster than before for smaller messages.
 

The new parameters for different Fugues are as follows:
 

There are 5 parameters : n,k,r,s,t as specified in the Fugue document.
 
n: number of words of output 
k: number of SMIX per input word 
s: internal state size 
r: number of G1 rounds...total of rk SMIX 
t : number of G2 rounds...total of t * ceil(n/4) SMIX 

new Fugue-224
 
n = 7 , k = 1, s = 30, r = 15, t = 13.  (note, rk = 15)
 
old Fugue-224 

n= 7, k = 2, s= 30, r = 5, t= 13   (note, rk = 10)
 

new Fugue-256
 
n=8,  k = 1, s = 30, r = 26, t= 13  (note, rk = 26)
 
old Fugue-256
 
n = 8, k =2, s= 30, r = 5, t = 13 (note, rk = 10)
 

new Fugue-384
 
n = 12,  k = 2, s = 36, r = 14, t= 13
 
old Fugue-384
 
n = 12,  k = 3, s = 36, r = 6,  t= 13 (note rk = 18)
 

new Fugue-512
 

12/9/2010
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n = 16, k = 3,  s = 36, r= 14, t = 13
 
old Fugue-512
 
n = 16, k = 4,  s = 36, r = 8,  t=13  (note rk = 32)
 

Each of the Fugue's TMIX has also been tweaked. Rest of the specification remains exactly same.
 
The new TMIXes are as follows:
 
TMIX  (for 224 and 256) : S_4 += S_0; S_0 = Input, S_14 += S_0; S_20 += S_0; S_8 += S_1.
 

TMIX (for 384)  S_7 += S_0; S_0  = Input; S_10 += S_0; S_14 += S_0; S_4 += S_1.
 

TMIX (for 512)  S_10 += S_0; S_0= Input; S_7 += S_0; S_11 += S_0;  S_4 += S_1; S_22 += S_1.
 

A new weak Fugue will be specified which will consist of only 20 word state, and drastically shortened final round. 

Thanks, 

Fugue Team 

12/9/2010
 



 

________________________________________ 

From: hash-forum@nist.gov on behalf of Praveen Gauravaram [p.gauravaram@mat.dtu.dk] 
Sent: Tuesday, December 14, 2010 2:59 PM 
To: Multiple recipients of list 
Subject: RE: OFFICIAL COMMENT: Fugue (Round 2) : Upcoming Tweaks to Fugue 

Attachments: Fugue-analysis-NIST.pdf 

Dear all, 

Here we submit improved analytical results on the Fugue-256 and its weaker version as
submitted for the second round of the competition. 

Best regards,
Praveen 

From: hash-forum@nist.gov [hash-forum@nist.gov] On Behalf Of Charanjit Jutla
[csjutla@us.ibm.com]
Sent: Wednesday, December 08, 2010 21:37
To: Multiple recipients of list
Subject: OFFICIAL COMMENT: Fugue (Round 2) : Upcoming Tweaks to Fugue 

Dear All, 

Here are the tweaks we are planning to propose for the next round (if selected).
Although, we do not expect NIST to consider these tweaks in making their decision, this
should indeed be seen as our confidence in the extra-ordinary security (and efficiency)
provided by Fugue. 

Over the last one year we have been able to come up with new proofs which drastically
enhance the upper bounds on differential attacks on the current embodiment of Fugue. With 
these proofs, we can now confidently tweak Fugue parameters so that Fugue-256 runs at
twice the speed (in hardware and software) for long messages. For messages of size 512
bits the speed will remain the same for Fugue-256. This means we have added 150% more G1
rounds to Fugue-256. This alleviates any concern which Aumasson-Phan (and Gauravaran et
al) analysis had, even though we have shown (because of our proofs on partial collisions)
that that leads to no attacks. For this reason, in Fugue-224 we do not add many more G1
rounds, and hence Fugue-224 will run faster than before for smaller messages. 

The new parameters for different Fugues are as follows: 

There are 5 parameters : n,k,r,s,t as specified in the Fugue document.
n: number of words of output
k: number of SMIX per input word
s: internal state size 
r: number of G1 rounds...total of rk SMIX t : number of G2 rounds...total of t * ceil(n/4)
SMIX 

new Fugue-224
n = 7 , k = 1, s = 30, r = 15, t = 13. (note, rk = 15) old Fugue-224
n= 7, k = 2, s= 30, r = 5, t= 13 (note, rk = 10) 

new Fugue-256 
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------------------------------------------------------------------------------------------
------------------------------------------------------------------

------------------------------------------------------------------------------------------
------------------------------------------------------------------

n=8, k = 1, s = 30, r = 26, t= 13 (note, rk = 26) old Fugue-256

n = 8, k =2, s= 30, r = 5, t = 13 (note, rk = 10)
 

new Fugue-384

n = 12, k = 2, s = 36, r = 14, t= 13

old Fugue-384

n = 12, k = 3, s = 36, r = 6, t= 13 (note rk = 18)
 

new Fugue-512

n = 16, k = 3, s = 36, r= 14, t = 13

old Fugue-512

n = 16, k = 4, s = 36, r = 8, t=13 (note rk = 32)
 

Each of the Fugue's TMIX has also been tweaked. Rest of the specification remains exactly

same.
 
The new TMIXes are as follows:
 
TMIX (for 224 and 256) : S_4 += S_0; S_0 = Input, S_14 += S_0; S_20 += S_0; S_8 += S_1.
 

TMIX (for 384) S_7 += S_0; S_0 = Input; S_10 += S_0; S_14 += S_0; S_4

+= S_1.
 

TMIX (for 512) S_10 += S_0; S_0= Input; S_7 += S_0; S_11 += S_0; S_4 

+= S_1; S_22 += S_1.
 

A new weak Fugue will be specified which will consist of only 20 word state, and
drastically shortened final round. 

Thanks, 

Fugue Team 
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Improved security analysis of Fugue-256 and its weaker version
 

Praveen Gauravaram1, Nasour Bagheri2, and Lars R. Knudsen1 

1 Department of Mathematics, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark 
2 Shahid Rajaee Teacher Training University, Iran 

Abstract. Fugue is one of the fourteen candidate hash algorithms in the second round of NIST’s 
SHA3 competition. We consider Fugue-256, the 256-bit instance of Fugue and its weaker ver
sion called weakFugue-256. Fugue-256 updates a state of 960 bits with a round transformation 

R parametrized by a 32-bit message word. Twice in every state update, this transform invokes an 
AES like round function called SMIX. Fugue-256 relies on a final transformation G to output di
gests that look random which uses 18 rounds where each round invokes SMIX twice and finally the 
960-bit output of the G transform is mapped to a 256-bit digest. The hash function weakFugue-256 
has half the complexity of Fugue-256. 
In this paper, we improve some of the previous analytical results of these two designs. First we 
present a pseudo differentiability attack which distinguishes unpadded Fugue-256 from a random 
oracle for a probability of 1. This attack finds many input states for the unpadded Fugue-256 that 
differ on average in only 80 bits such that their digests remain fixed for all pairs found. In addition, 
we extend this attack to full Fugue-256 in less than birthday complexity where it is possible to find 
two pairs of initial states that differ on average in 332 bits with their digest difference remain fixed. 
This improves over the previous result of Aumasson and Phan whose attack on the G transform 
when extended to the unpadded Fugue-256 produces input states that differ on average in 194 bits 
and it does not extend to full Fugue-256 in less than birthday complexity. Next, we improve the 
meet-in-the-middle preimage attack of Fugue-256 and reduce its complexity to 2416 from 2480 time 
and memory. Next, we improve Aumasson and Phans’ integral distinguisher on the 5.5 rounds of 
the G transform to 16.5 rounds. Finally, we show a free start collision attack on weakFugue-256 for 
270 complexity when some other internal conditions hold showing that the designers’ claim that it 
is provably free-start collision resistant upto 296 is false and their analysis is incomplete. 
Keywords: Fugue, Hash function analysis, SHA3 competition. 

1 Introduction 

Fugue [6] is a cryptographic hash function designed by Halevi, Hall and Jutla and is one of the 
fourteen second round SHA-3 hash function candidates [13,14]. The Fugue design can be viewed 
as an enhancement to the Grindahl hash function designed by Knudsen et al. [9] in which a large 
evolving internal state is maintained and the message words inserted into the state are processed 
using a round transformation and the complete state is maintained. After all the message words 
are processed, an extensive final transformation is applied to the state and part of its output is 
used as the digest. 

The Fugue design has two main instances called Fugue-256, denoted F-256 and Fugue-512, 
denoted F-512 that produce digests of sizes 256 bits and 512 bits respectively and other instances 
such as Fugue-224 and Fugue-384 are related to these two designs. The designers of Fugue also 
proposed a weaker version of F-256 called weakFugue-256, denoted wF-256 [6] to encourage 
analysts to sink their teeth in. All versions of Fugue can hash messages of lengths upto 264 − 1 
bits. In the rest of this paper, we consider F-256 and wF-256. 

F-256 maintains an internal state S of 960 bits as a 4×30 matrix with each column containing 
a 32-bit word Si for i = 0, . . . , 29. It updates S by using a round transformation R parametrized 
by a message word of 32 bits. Once all input has been processed, the state undergoes through a 
final transformation G, composed of 5 rounds of G1 and 13 rounds of G2. Subsequently, eight 
words of the output state are used as the digest of F-256. The main component of F-256 is a 16 
byte to 16 byte permutation transformation called SMIX which consists of a substitution box 



SBox followed by a linear transformation SMIX-T resembling the round functions of the AES 
block cipher [3]. The structure of wF-256 is similar to F-256 except that it has half the number 
of SMIX-es per input message word and half the complexity of G1 and 5 rounds of G2. 

By using proof-oriented methods, the designers proved that mounting a collision attack on F
256 would require a work factor of at least 2128. They also claimed that the best second preimage 
and preimage attacks require a work factor of 2256 [6, § 1.2]. They also noted that since the round 
transformation and final transformation of F-256 are invertible, a generic meet in the middle 
attack can be applied to F-256 to find preimages with a work factor of 2480. The hash function 
wF-256 was claimed to have a 296 security against free-start collision attacks [6, § 1.2]. 

1.1 External analysis on Fugue 

To our knowledge, so far there are only two external analytical results published for the Fugue 
hash function. Khovratovich [7] showed a collision attack on the internal states of F-256 and 
F-512 hash functions with time and memory complexities of 2352 and 2480 respectively. Recently, 
Aumasson and Phan [1] showed a probability 1 differentiability attack on the final transformation 
G of F-256 which distinguishes it from a random function. In this attack, they showed pairs of 
input states to the G transform that differ on average in only 66 bits such that their digests are 
the same for all pairs found. They also showed an integral distinguisher on the 5.5 rounds of the 
G transform and on a tweaked variant of the G transform. 

1.2 Our contributions 

In this paper, we investigate the security of F-256 and wF-256 against some attacks consid
ered by the designers and improve those attacks. We also consider the analysis of Aumasson 
and Phan [1] on the G transform of F-256 and extend it to show some interesting differential 
properties of F-256. Our results and their impact are summarized as follows: 

1. Improved analytical results on F-256: 

(a) Pseudo differentiability attack: We show a method which finds pairs of initial states 
for F-256, without the provision of length-padding, that differ on average in only 80 
bits such that their digests are the same under F-256 for all pairs found. Our method 
makes use of a new probability 1 differential characteristic which propagates after the 
first SMIX of the G transform for upto 14.5 rounds of G and also to one round of the 
R transform without activating their respective SMIX-es. This differential property of 
F-256 is unknown until now. In addition, we extend this differentiator to full F-256 in 
about 297 work factor which is less than birthday complexity of 2128 . 

In comparison, when the differentiability attack of [1] on the G transform of F-256 is 
extended to one round of the R transform of F-256, pairs of input states (including 
message word) differ on average in 194 bits for their digests to be the same. Moreover, 
this attack extends to full F-256 in not less than birthday complexity. We remark that 
the designers of Fugue considered a variant of the portion of our differential path in the 
analysis of F-256 pseudo random function (PRF) to prove an upper bound probability 
of 2−142 to find partial collisions on the internal state. The designers noted that this 
argument also applies for a known or chosen key/Initial Value (IV) model of F-256 [5]. 
We remark that this argument also applies if our differential path is considered to find 
partial collisions on the internal state. Moreover, these partial collisions on the internal 
state are needed for our pseudo differentiability attack and they are not feasible with the 
current cryptanalytical techniques. 



(b) Meet-in-the-middle preimage attack: We improve the designers’ generic meet-in-the
middle preimage attack on any instance of Fugue with n-bit internal state from a com
plexity of 2n/2 to 2n/2−16. We then further improve our attack on F-256 by a factor of 248 

by showing a sophisticated technique that applies with a probability of 1 by exploiting 
the freedom available in the message words and in some words of the internal state. Thus, 
we reduce the complexity of the designers’ attack on F-256 from 2480 to 2416 . 

(c) Integral distinguisher for the G transform: We improve the previously known integral 
distinguisher [1] on the 5.5 rounds of the G transform of F-256 to 16.5 rounds. 

2. Improved analytical results on wF-256: 

(a) Free-start collision attack on wF-256: We show a 270 free-start collision attack on wF
256, assuming some other favorable internal conditions to hold. Since, this is the model in 
which wF-256 is proven to be resistant to collisions within 296 by the designers [6, § 14], 
the claim that wF-256 is provably resistant to collisions within 296 is FALSE. This claim 
was made in [6, § 1.2]. The discrepancy is resolved by noting that wF-256 uses a much 
weaker final transformation than F-256, and the designers have given no proof of external 
collision resistance for this weak final transformation. We show that a partial collision 
obtained in this model, goes on to produce an external collision. We remark that this 
just shows that the proof for full wF-256 is not complete, and we do not know (yet) how 
to obtain collisions for wF-256. 

The rest of the paper is organised as follows: In §2, we describe F-256 and wF-256 designs. 
In §3, we provide some notation and definitions that are later used in some analysis. In §4,§5, 
§6, §7 and §8, we present our improved security analysis of F-256 and wF-256 hash functions. 
Finally, we provide concluding remarks in §9. 

2 F-256 hash function 

F-256 parses the 256-bit initial value (IV ) as eight 4-byte words IV0, . . . , IV7. It initializes a state 
S of 30 4-byte words Si for i = 0, . . . , 29, as a 4 × 30 matrix by assigning Sj = 0 for j ∈ [0, 21] 
and Sj = IVj−22 for j ∈ [22, 29]. This state of F-256 is called inital state. Hereafter, we denote 
by Si∼j the consecutive words of a state S from the index i to j (including i and j). Streams 
of 4-byte message word inputs are processed from this state using a round transformation R. 
If the input message is not a multiple of 32 then F-256 pads the message with sufficient 0 
bits so that the padded message is a multiple of 32. The padded message is appended with an 
additional 64 bits (i.e two 4-byte words) that represent the binary encoding of the length of the 
unpadded message in big-endian notation. Once the length encoded message is processed with 
the R transform, a final transformation G is applied to the internal state to obtain an output 
state of 30 words. The eight words S1∼4,S15∼18 of the output state are used as the digest. The 
transforms R and G are discussed below where the addition + is addition of vectors of four 
bytes in GF(28), and hence is the same as 32-bit exclusive-or and for 4-byte vectors a and b, 
a+ = b means a = a + b. 

Round transformation (R). The R transform takes a state S and a 4-byte message word 
m as inputs and outputs a new thirty column state. The transformation R calls a sequence of 
functions: TIX(m), ROR3, CMIX, SMIX, ROR3, CMIX, SMIX. 

– The function TIX(m) has the following steps: 

• S10+ = S0; S0 = m 
• S8+ = S0; S1+ = S24 



–	 The function ROR3 rotates the state to the right by three columns, that is Si = Si−3 mod 30. 

–	 The column mix function CMIX has the following steps: 

•	 S0+ = S4; S1+ = S5; S2+ = S6 

•	 S15+ = S4; S16+ = S5; S17+ = S6 

–	 The SMIX transform operates only on the first four columns S0∼3 of the state S that 
are viewed as a 4 × 4 matrix of 16 words. Each byte of these columns first undergoes an 
SBox transform which is the one as in AES [3] and the resulting matrix undergoes an 
SMIX-T transform denoted by a 16 × 16 matrix N of 256 bytes. That is, S′ = N.(S0∼3)0∼3 
where N is multiplied (.) with a 16-byte 4 × 1 column matrix output of SBox. Similarly, 
(S0∼3) = N.(S′ ) where (S′ ) is a 16-byte 4 × 1 column matrix. 0∼3 0∼3

Final transformation (G). The G transform takes the output S of the R transform and 
produces a final state of 30 words. The function G consists of 5 rounds of G1, 13 rounds of G2 
and a binary addition of two state words. The five rounds of G1 are denoted by G11, . . . , G15 

and thirteen rounds of G2 are denoted by G21, . . . , G213. These operations on a state S are 
given by: 

–	 Function G1: It is a sequence of functions: ROR3, CMIX, SMIX, ROR3, CMIX, SMIX. 

–	 Function G2: It has the following steps: 

•	 S4+ = S0; S15+ = S0; ROR15; SMIX 

•	 S4+ = S0; S16+ = S0; ROR14; SMIX 

–	 S4+ = S0; S15+ = S0 

In the above, ROR15 and ROR14 mean rotations of the state S to the right by 15 and 14 
columns respectively. The resultant state is called final state. 

256-bit digest. After discarding the words S0,S5∼14 and S19∼29 from the final state, the con
catenation of the words S1∼4 and S15∼18 is used as the digest. This step of producing the digest 
from the G transform is denoted by τ(G(S)) where S is the input state of G. 

2.1 wF-256 hash function 

Similar to F-256, wF-256 maintains a 4 × 30 state S which is initialized by setting Sj = 0 for 
j = 0, . . . , 21 and S22+j = IVj where j = 0, . . . , 7. However, F-256 uses fewer rounds for the R 
and G transforms compared to F-256 and has different CMIX and TIX(m) functions. These 
transforms on a state S are defined below: 

–	 TIX(m) is a sequence of steps: S4+ = S0, S0 = m, S8+ = S0. 

–	 The CMIX transformation has the following steps: 

•	 S0+ = S4; S1+ = S5; S2+ = S6 

•	 S15+ = S4; S16+ = S5; S17+ = S6 

Round transformation (R). This transform takes a 4-byte message word m and a state S as 
inputs and outputs a new internal state. It is a sequence of functions: TIX(m), ROR3, CMIX, 
SMIX. 



Final transformation (G). This transform takes the output state of the R transform as its 
input and produces a final state. It consists of five rounds of G1, five rounds of G2 and a binary 
addition of two state words. Each round of these operations on a state S and the state word 
addition operation are described as follows: 

– Function G1: It is a sequence of steps: ROR3, CMIX and SMIX. 

– Function G2: It has the following steps: 

• S4+ = S0; S15+ = S0; ROR15; We call this step G2. SMIX. 

• S4+ = S0; S16+ = S0; ROR14; SMIX. We call this step G2′ . 

– S4+ = S0; S15+ = S0 

The five rounds of G1 are denoted by G11, . . . , G15 and those of G2 by G21,G2 ′ 1, . . . , G25,G2 ′ 5. 
The concatenation of the words S1∼4, S15∼18 of the final state is the digest of wF-256. 

3 Notation and Definitions 

In this section, we introduce some notation on F-256 and definitions that are used later in 
our analysis. Notation specific to some parts of the analysis will be introduced in the relevant 
sections. Notation used for the free-start collision attack on wF-256 is provided in §8. 

3.1 Notation 

In any round i of R, the internal state (also the starting state of Round i) is denoted by 
State-i and its words are denoted by Si , S1

i , . . . , Si , i.e, Si . The internal state words after 0 29 1∼29

the first SMIX in a round i are denoted by Si.5 , . . . , Si.5, i.e, Si.5 . In any round i of R, the 0 29 0∼29

internal state words after the first ROR3, CMIX and SBox transformations are denoted by 
′i ′i i i i ix0 , . . . , x 0, . . . , x and x̂0, . . . , x̂ respectively and those after the second ROR3, CMIX 29, x 29 29 

′i ′i i i i iand SBox transformations are denoted by y0 , . . . , y 0, . . . , y and ŷ0, . . . , ŷ respectively. 29, y 29 29 
We indicate any non-zero difference in the state words by placing δ before those words. For 
example, differences in the words of State-i are denoted by δS0

i , . . . , δSi , i.e, δSi . A message 29 0∼29

word inserted in the ith round of R is denoted by mi. Message words in the rounds from i to j 
are denoted by mi ∼ mj and differences in the message words in these rounds by δmi ∼ δmj . 

3.2 Distinguishers and Differentiators 

In a distinguishability attack on a hash function, an adversary distinguishes the hash function 
from a random oracle by querying the hash function as a black box. Instead of accessing the 
hash function as a black box, if the adversary accesses its internal components or the internal 
state to distinguish it from a random oracle then such an attack is called the differentiability 
attack following the indifferentiability notion for hash functions [2, 11]. These two attacks are 
also called a distinguisher and a differentiator respectively. For example, the well-known message 
extension attack [2, 10] on the popular Merkle-Damg̊ard hash function construction [4, 12] is a 
differentiability attack as an attacker uses the digest of a message without knowing the message 
except its length to compute the digest of a new message. Similarly, we can define these attacks 
for other components of a hash function such as the round and final transformations. If an 
adversary distinguishes a hash function with an initial state different from the one defined for 
the hash function or with two distinct states then we call such attacks the pseudo differentiators. 



4 Pseudo differentiator for unpadded F-256 

We present a pseudo differentiator for F-256 for a probability of 1 by finding pairs of states 
(S, S∗) for F-256 that differ on average in only 80 bits such that F-256(S,m)⊕F-256(S∗ ,m) 
remains fixed for all the pairs of (S, S∗) found. Our attack applies for the composition of 1 
round of R transform and full G transform and hence, does not include the length padding of 
F-256 as its provision requires at least three R transforms. The attack is outlined below: 

4.1 Differential property of SMIX-T 

Recall that SMIX-T is a linear transform represented as a 16 × 16 matrix N and N.(S0∼3) = 
(S′ ) and therefore, N.(S′ ) = (S0∼3) where (S0∼3) and (S′ ) are 4 × 1 column matrices. 0∼3 0∼3 0∼3

We note that it is easy to find an input difference (δS′ , δS′ , δS′ , δS′ ) to N such that we get 0 1 2 3

an output difference (δS0, δS1, δS2, δS3) where δS′ = 0, δS′ = 0 and δS3 = 0. That is, we can 0 3 
find a pair of inputs (S′ , S′ , S′ , S′ ) and (S′ , S′∗ , S′∗ , S′ ) to N that collide on the word S3 for 0 1 2 3 0 1 2 3

⊕ S′∗ ⊕ S′∗ any S′ and S′ where δS′ = S′ and δS′ = S′ . This attack can be precomputed and 0 3 1 1 1 2 2 2 
the solution for this attack is the solution to 8 linear equations in 8 unknowns which requires 
negligible computational cost. We can also fix 3 bytes in one of the differences of δS′ and δS′ 

1 2 
to zeroes which leads to solving 5 linear equations in 5 unknowns. As shown later in our attack, 
the difference δS′ propagates to more words in the input state of the R transform compared 1 
to δS′ . Hence, to minimise the number of active state input bits of our attack, we fix 3 bytes 2

of δS′ to a zero difference and vary the other word for a solution. By running an experiment 1 
for a minimum weight solution, we found δS′ = 0x 00000009 and δS′ = 0x 5042d427. These 1 2 
differences are fixed and we call them δ1 and δ2 respectively. 

4.2 Differentiability attack on the τ(G(S)) transform 

We can choose any intermediate state in the G transform and proceed forwards and backwards 
to compute its corresponding final and input states. This is called inside-out strategy [1] which 
we use to differentiate the τ(G(S)) transform from a random function with a probability of 1. 

Forwards from G211. We choose an internal state at the start of the round G211 such that 
the words S18 and S19 have the differences δ1 and δ2 computed in § 4.1 and the remaining words 
(S0∼17 and S20∼29) have the zero difference. The differences δ1 and δ2 activate SMIX-es in 
the rounds G211 and G212 respectively. The digest returned after the G transform depends on 
the differences δ1 and δ2 but not on all the state words at the start of the round G211. This 
observation allows us to find distinct pairs of states at G211 such that the difference of their 
respective digests is fixed for all pairs found. A closer analysis shows that the digest does not 
depend on the state words S8∼14 and S22∼29 at the start of the round G211. Hence, in the round 
G211 we can build many pairs of states by fixing the words S0∼7, S15∼17 and S20∼21 with the 
same actual value, the words S18 and S19 with some values that differ by δ1 and δ2 respectively 
and varying the remaining words with zero difference for all pairs of states to obtain digests that 
have the fixed difference. 

Backwards from G211. Consider any two internal states at the start of G211 that satisfy the 
above constraint of having the words S0∼7, S15∼17 and S20∼21 fixed with the same value (i.e, 
zero difference) and the words S18 and S19 fixed to some value but with the differences δ1 and δ2 

respectively. When we process these two states until the end of the round G12 in the backward 
direction, we get two intermediate states with the differences δ1 and δ2 appearing in the words 



S4 and S5. All other words have zero differences. When the second half of G11 is inverted, we 
obtain the difference δ1 (resp. δ2) in the words S1, S12 and S27 (resp. S2, S13 and S28). When 
we invert the remaining half of G11, the differences δ1 and δ2 in the state words S1 and S2 

activate SMIX creating uncontrolled differences in the words S0∼2 and zero difference in the 
word S3 as shown in § 4.1. Hence, we get the input state to the G transform with the difference 
δ1 (resp. δ2) in the words S9 and S24 (resp. S10 and S25) and uncontrolled differences in the 
words S27∼29. That is, only seven words of the input state to the G transform have differences. 
Recall that the differences δ1 and δ2 are not chosen arbitrarily and they are determined by the 
attack described in § 4.1. For our solution, δ1 and δ2 have the weights of 2 and 12 respectively, 
and the uncontrolled differences in the words S27∼29 have, on average, a weight of 48. Hence, we 
have shown a method which finds pairs of state inputs (S, S∗) to the G transform that differ, 
on average, in 76 bits such that the difference of τ(G(S)) and τ(G(S∗)) remains fixed for all 
such pairs found. 

4.3 Extending to differentiate unpadded F-256: Pseudo differentiability attack 

Following § 4.2, the differentiator for the τ(G(S)) transform has produced the difference δ1 in 
the words S9 and S24, difference δ2 in the words S10 and S25, random differences in the words 
S27 ∼ S29 and zero difference in the other words of the state of G. When this state is inverted 
through one round of R, the two SMIX-es of the R transform receive zero input difference and 
hence, they are not activated. Thus, we receive a message difference of zero (δm = 0) for the R 
transform. The difference δ1 (resp. δ2) appears in the words S3, S14, S18 and S29 (resp. S4, S19) 
and the uncontrolled differences appear in the words S21∼23 of the input state of R. Note that 
δ1 and δ2 have a weight of 2 and 12 respectively and the words S21∼23 have an average weight of 
48. Thus, we have shown a method which finds pairs of input states (S, S∗) for F-256 that differ, 
on average, in only 80 bits such that F-256(S,m)⊕F-256(S∗ ,m) is fixed for all pairs found. 

The differential path which demonstrates this attack is shown in Figure 1. This path shows 
the differences in the state words (represented as square cells) at the start and the end of every 
full round of the G and R transforms. The cells in Magenta color represent δ1, those in Blue 
color represent δ2 and those in Red color represent random differences. Cells in Green color are 
zero difference words chosen at the start of the Forwards phase of the attack with their actual 
values fixed from the round G211 and plain cells are zero differences whose values we vary in 
the attack. In Table 2 of Appendix A, we have shown experimental results of our attack. 

Remark 1. Our probability 1 pseudo differentiator on the unpadded F-256 does not extend to 
the full F-256 as F-256 reserves the last two rounds of R to process the 64-bit representation 
of the length of the unpadded message. Hence, the attack must be extended to a minimum of 
three R transforms in the Backwards from G211 step of the attack in such a way that the 
last two R transforms process the length encoding part of the input message. If we intend to 
extend the attack to 3 rounds of the R transform, then the second and last R functions must 
process the words 0x00000000 and 0x00000200 (representing 32-bit length message) respectively. 
However, since we have no control over the exact value of the message produced in the last round 
of R by the attack, it is difficult to force it to 0x00000200. Similarly, it is difficult to force the 
second message word to 0x00000000 for the pairs of states involved in the attack as SMIX-es 
are activated in the second round creating differences in the message word. 

5 Pseudo differentiator for full F-256 in less than birthday complexity 

Although the attack outlined in §4.2 does not let us to mount a probability 1 pseudo differentiator 
for the full F-256 hash function as noted in §1, we can still achieve this result in less than birthday 
complexity as follows: 
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Fig. 1. Differential path showing pseudo differentiability attack on unpadded F-256 



1. Obtaining 0x00000200 pad bits in the last round of R: Since there are no active SMIX
es in this last round of R, the message difference of this round is always zero as shown in 
§4.3. Hence, to match the padding bits of 0x00000200 in the last round input of R, we need 
to repeat the Backwards from G211 step of the attack for only 232 times by using the 
freedom available in the words S8∼14 and S22∼29 at the start of G211. That is, one out of 232 

pairs of states (S, S∗) for the unpadded F-256 whose digests remain fixed for all the pairs of 
(S, S∗) found would have m = 0x00000200. To produce two pairs of such states, we need to 
repeat Backwards from G211 step of the attack for 232 times more (i.e in total 233 times). 

2. A pair of states that have produced the same digest difference in Step 1 will have the padding 
bits of 0x00000000 in the second last round of R for a probability of 2−64 as SMIX-es are 
active in this round. Therefore, the Backwards from G211 step of the attack must be 
repeated for 296 times by using the freedom in the words S8∼14 and S22∼29 to obtain a pair 
of states that contain the correct padding bits (i.e 64 bits) and producing the same digest 
difference for F-256. The complexity of the attack is 297 in order to produce two such pairs 
of states. 

3. The two pairs of states from Step 2 can be further inverted for one more round of R to 
obtain two pairs of states for the full F-256 such that their digests remain fixed in 297 work 
factor. On average, we can obtain two pairs of input states that differ on average in 332 bits 
such that their digest difference is the same. In total, we can produce at most 31 such pairs 
of states that differ on average in 332 bits with their digest difference remain fixed in 2127 

work factor. 

This attack demonstrates insufficient diffusion in the full F-256. Further improvement can be 
made to this attack as pointed out in Appendix B. 

5.1 Comparison with the previous analysis of [1] and [6] 

Aumasson and Phan [1] showed a differentiator for the τ(G(S)) transform of F-256 by showing 
pairs of input states to the G transform that differ on average in only 66 bits such that the 
difference in the digests remain fixed for all the pairs found. In this attack, the state at the 
round G212 is chosen such that the word S18 has a difference δ and the remaining words have 
zero difference. This differential state propagates backwards for 15 rounds of G and then activates 
the SMIX of G1, leading to the difference δ in the words S10 and S25 and random difference 
in the words S0 and S27∼29 at the input state of G. When δ = 1, we can find pairs of input 
states to the G transform that differ on average in only 66 bits such that their digests are 
constant for all pairs found. When this attack is extended to one round of R, both SMIX-es 
in that round get activated leading to pairs of input states (including message word) to the 
unpadded F-256 that differ on average in 194 bits such that their digests remain fixed for all 
pairs found. In addition, the differentiator of [1] cannot be extended to the full F-256 for a 
complexity better than birthday attack due to the activation of SMIX-es in the last round of 
the R transformation. 

The differential characteristic of our pseudo differentiator can also be viewed as an improved 
variant of the characteristic considered by the designers in the analysis of the PRF mode of 
F-256 [6, §12.4.2]. The internal state they have considered at the start of the G transform for 
the partial collisions differ in the same words as ours and in an additional word of S0. They 
proved that the probability of obtaining this partial collision for the F-256 PRF is atmost 2−142 

and observed that this result also holds for F-256 with the chosen key/IV [5]. We remark that 
the designers’ argument is also applicable if we consider our differential characteristic for the 
partial collisions on the internal state. Firstly, as noted in Remark 1 extending our attack to 
the full F-256 with such a partial collision on the internal state is difficult for a probability of 



1. In addition, it is also difficult to obtain the partial collision on the internal state for a pair of 
chosen IVs by following the differentiator of §5 in less than birthday complexity because the first 
22 columns of the initial state would not end up with a zero difference (initial state is identical 
for the words S0∼21 regardless of the IV). Finally, the characteristic considered by the designers 
also has a similar drawback as that of Aumasson-Phan in differentiating full F-256 in less than 
birthday complexity. 

6 Improved meet-in-the-middle attacks on Fugue 

6.1 Generic meet-in-the-middle preimage attack on Fugue [6, p.77] 

The designers of Fugue noted the application of a generic meet-in-the-middle preimage attack 
on any t-bit instance of Fugue [6, p.77] with n-bit (n/32-word) internal state for 2n/2 time and 
memory complexity. For a given digest Y , this attack finds a preimage for Fugue as follows: 

1. Forward process: Choose 2n/2 messages of equal length and process them to the corresponding 
internal states at State-i of some round i of R from the initial state of Fugue. Store these 
messages and their internal states at State-i in a Table L1. 

2. Backward process: Fill the output state words S1∼4 and S15∼18 with the digest Y . Build 
2n/2 final states by choosing random values for the remaining 22 words and invert the final 
transformation G for these states and may also invert the round transformation R by using 
a few random message words (e.g. 2 words)3 to build 2n/2 internal states at State-i . Store 
these state values together with the corresponding message words in a Table L2. 

3. Due to birthday paradox, an internal state in L1 collides with an internal state in L2 with a 
good probability and this event is called a collision match. The internal state State-i at which 
the collision match occurs is called the middle state. Let M and M 

′ 

be the corresponding 
messages of the colliding internal states respectively. Finally, produce M�M 

′ 

as the preimage 
of Fugue for a given digest Y . 

The complexity of this preimage attack is influenced by the internal state size. On F-256 
and F-512, the time and memory complexity of this attack is 2480 and 2576 respectively. 

6.2 Improved generic meet-in-the-middle preimage attack on Fugue 

Let State-i’ be the internal state in any round i of the R transform after the step Si = Si ⊕Si 
10 0 10. 

This is a (n − 32)/32-word internal state without the word Si and except for the word Si in 0	 10 
the State-i’ all other words are the same as in the n/32-word State-i . The generic meet-in-the
middle attack on Fugue can be improved by inverting at least one round of the R transform 
for some random message in the backward process of the attack and using any State-i’ as the 
middle state for a collision match. The improved attack reduces the complexity of the generic 
attack on Fugue to 2n/2−16 which is 2464 and 2560 for F-256 and F-512 respectively. 

6.3 Improved meet-in-the-middle preimage attack on F-256 

We further improve the preimage attack on F-256 from § 6.2 by exerting control over 3 words 
of the 29-word middle state. This technique allows us to use a birthday attack to match only 26 
words of the middle state, thereby reducing the complexity of the attack to 2416 from 2464. Let 0 
be the round of the R transform at which we aim for a collision match. Let −1,−2,−3, . . . and 
1, 2, 3, . . . be the R transforms from the 0th round in the Forward process and Backward process 
of the attack. The attack is outlined below: 
3	 It is not necessary to invert any R transforms by using message words as the attacker can obtain enough 

degrees of freedom to invert the final state from the 22 truncated output words. 



1. We show that the words S0 and S0 in the middle state (i.e State-0’ ) can be controlled 17, S
0 

27 23 
such that the internal states evolving from the initial state and the final state of F-256 
can be matched in these words deterministically with a probability of 1 by solving a simple 
system of equations. We do this by first assigning fixed values4 to the words S0 and S0 

17, S
0 

27 23 
that are controlled by using the R transforms −3, −2 and −1 in the Forward process and 
the R transforms 3, 2 and 1 in the Backward process. In the Forward process, the desired 
value for the words S0 and S0 is obtained consecutively by using the freedom available 27, S

0 
17 23 

−3in the message words m , m−2 and m−1 of the R transforms −3, −2 and −1 respectively. 
In the Backward process, the desired values for the words S0 and S0 are obtained 17, S

0 
27 23 

consecutively by using the freedom available in the words S0
3 , S2 and S1 in the R transforms 0 0 

3, 2 and 1 respectively. Below we explain how the word S0 can be controlled and a similar 17
 
explanation follows for controlling the words S0 and S0
 

23 27. 

(a) Controlling the word S0 
17: Below we will show how we can obtain the desired word S0 

17 
of the middle state from the final state and initial state of F-256 through the Backward 
process and Forward process respectively. 

i. Backward process: The word S0 in the middle state of the 0th R transform will be 17 
′2 2 ′2 ′2the word S2 in the State-2’ of the 2nd R transform. Now x = = x ⊕ x29 2 S170 , x2 2 6 . 

2 2Now x̂ = SBox(x ). Note that (S2.5, S2.5, S2.5) = (S3, S3, S3). A final state of F-256 2 2 1 2 3 4 5 6 
inverted in the backward direction till the R transform 3, the State-3’ of the 3rd R 
transform is fixed. Therefore, we can only use S2.5 input to N to obtain the desired 0
 

2
x̂ and therefore, we can obtain the desired S0 . The matrix N has a property that by 2 17

controlling one of the input words, we can obtain one desired output word by solving 
a system of 4 equations in 4 unknowns for a negligible complexity. This property is 
also applicable for N. Hence, we can find a S2.5 such that N.(S2.5, S2.5, S2.5, S2.5)0 0 1 2 3 

2 2produces the desired word x̂2. This process also determines the message word m
2 2 ′2 ′2 2 2 2which is SBox(x̂ ) = x = x . Note that S2.5 = y = y , ŷ = SBox(y ) and the 3 3 3 0 3 3 3 3 

state words S3 of the state State-3’ are determined by the final state of F-256. 1∼29 
2Now we vary S3 such that N.(S3, S3, S3, S3) produces the desired ŷ . Once we have 0 0 1 2 3 3

′3found the candidate S3, we can determine S3 = S3 ⊕ x of the state State-3.0 10 0 13 
ii. Forward process: For an initial state of F-256 processed till the end of the −2nd R 

′−1transform, the State-(-1) of the −1th R transform is fixed. This implies that y17 
′−1has already been fixed. To obtain the desired value of S0 , we need to control y17 6 

′−1 ′−1which is y ⊕ S0 . The word y is the same as S−1.5. Note that the words S−1 
17 17 6 3 1∼29 

−1 −1 −1had already been fixed. Hence, we can determine the words (x̂ , x̂ , x̂ ), the first 0 1 2 
three word input to N, as follows: 

−1A. x̂ = SBox(S−1 ⊕ S−1 ⊕ S−1)0 27 1 24 
−1B. x̂ = SBox(S−1 ⊕ S−1)1 28 2 
−1C. x̂ = SBox(S−1 ⊕ S−1)2 29 3
 

−1 −1 −1
Having determined the words x̂ , x̂ and x̂ , we can use the freedom available 0 1 2 
−1 −1in the message word m to determine the candidate x̂ such that we obtain the 3 

−1 −1 ′−1desired S−1.5 = y and therefore, we obtain the desired word S0 = y ⊕ y in 3 6 17 6 17 
the middle state. 

Remark 2. It is difficult to exert control over more than 3 words in the middle state of the 0th R 
−3transform deterministically with a probability of 1 as the message word m from the −3rd R 

transform influences the starting internal state of the 0th R transform. This diffusion property 
of F-256 was also noted in [6, p.41]. 

4 These three words can have different values but they must be fixed. 



7 Integral distinguisher for the 16.5 rounds of the G transform of F-256 

Our integral attack is a first order integral attack. We follow the notation of [8] for the bytes 
included in the integral as follows: The symbol C (for Constant) in the ith byte means that the 
values of all ith bytes in the attack are equal. The symbol A (for All) means that all bytes in 
the attack are different, and the symbol S (for Sum) means that the sum of all ith bytes is 
predictable and we write ? when the sum of the bytes is not predictable. We count the rounds 
of the G transform from 0 to 17 and a state in any round i where i = 0, 0.5, 1, . . . , 16, 16.5, 17 is 
denoted by Si and the words of Si by Si 

0∼29. 

Integral distinguisher on the 5.5 rounds of the G transform [1]. Aumasson and Phan [1] 
presented an integral distinguisher for 5.5 rounds of the G function. Their distinguisher fixes all 
the bytes of the state S0 except for the first byte of S0 at the start of the G transform. All possible 2 
values are assigned to the first byte of S0. They have shown that for S0 = A�C�C�C one would 2 5 
receive S5.5 =?�?�?�?, S5.5 = A�?�?�?, S5.5 = A�?�?�?, S5.5 = S�?�?�? which presumably 0 1 2 3 
shows a non-randomness property in the first 5.5 rounds of the G function. In addition, this 
attack was extended to a tweaked version of G-function. We improve their attack on 5.5 rounds 
of G-function such that it can be applied to 16.5 rounds out of 18 rounds. 

7.1 Improved attack 

A closer analysis of integrals reveals that the values of the integral before the ROR functions 
of G2 play a crucial role on the success of the distinguisher. It turns out that this word remains 
unchanged through many rounds of G2 before being affected by other words. However, for the 

S5.5given integral, all bytes of are unknown (’?’) and out of control of the adversary. Hence, the 0 
integral of Aumasson and Phan does not seem to extend to more rounds of the G transform. 
Our analysis revealed an integral that runs for more rounds. The propagation of our integral 
has been depicted in Table 3. It should be mentioned that values with notation A and C in the 
integral are unchanged through SBox, but values with notation S are unknown (?) after SBox. 

In our integral, we fix whole state bytes of S0, except for the second byte of S0 where we 4 
consider all possible values. The word S4

0 propagates to S5 with probability 1. Hence, the ROR3 28 
transform in the 5th round of G1 (i.e 4th round of G) shifts this word as one of the inputs to 
the SMIX. Hence, we obtain S5.5 =?�?�S�?. It means that we know the sum of the values (S)0 
for this word. On the other hand, this word is propagated to S16 with probability 1. 4 

S16 In the next step, we have S16 + = which destroys our integral. However, after the ROR15 4 0 
function in the 16th round of G, S16 and S16 are propagated to S16 and S16 respectively. Now 0 4 15 19 
if we assume that the adversary has also access to S16 then he can combine S16 and S16 and 19 15 19 

S16.5 ⊕ S16.5retrieve the integral values as S16.5 = .4 15 19 
Hence, we have an integral which applies to 16.5 out of 18 rounds of the G transform. Our 

findings illustrate the weak diffusion of the G transform. 

8 A free-start collision attack on wF-256 

We first present some notation relevant for the free-start collision attack on wF-256. The rounds 
of the R transform are numbered . . . , −3,−2,−1, 0. At the start of a round i of R, the internal 
state and its difference are denoted by Si and δSi respectively. The words of Si and δSi are 
denoted by Si and δSi respectively. The message difference in a round i is denoted by 0∼29 0∼29 
δmi . In any round i of R, after the ROR3, CMIX and SBox transforms, the internal state 

′i ′i i i i iwords are denoted by x0 , . . . , x 0, . . . , x and ˆ0, . . . , ˆ respectively and the differences 29, x 29 x x29 

http:�?�S�?.It


i iare denoted by δx′

0 
i , . . . , δx′i 

0, . . . , δx
i and δx̂0, . . . , δx̂ respectively. The functions of R in 29, δx

i 
29 29 

a round i are denoted by TIXi, ROR3i, CMIXi SBoxi and Ni and their inverses by TIXi, 
ROR3i, CMIXi SBoxi and Ni. Let C be a linear code which models N and I be a set such 
that I ⊂ {0, 1, 2, 3}. By CI , we mean a subset of C such that the columns that are not included 
in I are set to zero and the rest are non-zero. For instance, C0 includes those inputs to N such 
that S0 � 0, S1 = 0, S2 = 0 and S3 = 0. Differences in the state and message words are indicated = 
by δ and those with “?” are unfixed whose freedom can be used in the attacks. 

Table 1. Distinguisher path for the composition of 1 round of R and G transforms of wF-256 

Si, i = 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 
S0 0 0 0 0 0 0 δ δ δ δ δ δ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

G11 0 0 0 0 0 0 0 0 0 δ δ δ δ δ δ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
G12 0 0 0 0 0 0 0 0 0 0 0 0 δ δ δ δ δ δ 0 0 0 0 0 0 0 0 0 0 0 0 
G13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 δ δ δ δ δ δ 0 0 0 0 0 0 0 0 0 
G14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 δ δ δ δ δ δ 0 0 0 0 0 0 
G15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 δ δ δ δ δ δ 0 0 0 
G21 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 δ δ δ δ δ δ 
G2 ′ 1 0 0 0 0 0 0 0 0 0 δ δ δ δ δ δ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
G22 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 δ δ δ δ δ δ 0 
G2 ′ 2 0 0 0 0 0 0 0 0 δ δ δ δ δ δ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
G23 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 δ δ δ δ δ δ 0 0 
G2 ′ 3 0 0 0 0 0 0 0 δ δ δ δ δ δ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
G24 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 δ δ δ δ δ δ 0 0 0 
G2 ′ 4 0 0 0 0 0 0 δ δ δ δ δ δ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
G25 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 δ δ δ δ δ δ 0 0 0 0 
G2 ′ 5 0 0 0 0 0 δ δ δ δ δ δ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Final state 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 δ δ δ δ δ δ 0 0 0 0 0 
Digest 0 0 0 0 0 0 0 0 

8.1 Free-start collision attack for wF-256 

The designers of Fugue [6, Sec. 14] proved that wF-256 is provably free-start collision resistant 
upto 296 by considering differentials with message differences that collide for the hash function 
through an internal state collision at the end of the R transform. In this section, we show a 
free-start collision attack on wF-256 for a reduced complexity of 270 by finding partial collisions 
on the internal state at the end of the R transform that extend to produce a collision for the 
hash function provided some other internal conditions hold. 

Our attack uses the observation (also noted in [6, Table 7.p 47]) that the digest of wF-256 
does not depend on the differences in the words S9∼14 of the internal state at the start of the G 
transform, showing that this transform is easily distinguishable from a random oracle. Hence, it 
is sufficient to show a free-start partial collision for the internal state of the G transform such 
that the words S0∼8 and S15∼29 collide and the words S9∼14 partially collide (i.e these words have 
some difference). The propagation of differences, denoted with δ, in the words S9∼14 through 
the G transform and its extension to one round of the R transform are shown in Table 1. 

The designers of Fugue considered an adversary which finds a collision for wF-256 if it can 
S′−5 ⊕ S−5find a δS−5 = and δm−5 ∼ δm0 such that δS0 �= 0 and the starting state of the G 

transform has zero difference, without control over the exact values of S−5 and S′−5. We improve 
this attack on wF-256 by using the distinguisher in Table 1 on the composition of round 0 of 
R and the G transform. Our adversary wins the game of finding a collision in wF-256 if it can 
find δS−5 and δm−5 ∼ δm0 such that δS0 �= 0 and δS0 = 0 and δS0 = 0, without control 0∼5 12∼29 
over the exact values of S−5 and S′−5. This implies a partial collision on the internal state after 
the R transform where there is a collision for the words S0∼8 and S15∼29 and differences in the 
remaining words. In our attack, we start with δS0 = 0 and δS0 = 0 at the start of round 0∼5 12∼29 



0 and proceed backwards by inverting R transforms until round −6 where all words have a 
difference. Below we outline our analysis between the rounds 0 and −5 and the manner in which 
the internal state is affected up to round −6 has been illustrated in Table 4 of Appendix C. Our 
attack makes uses of a differential property of SMIX that the number of active SBoxes in an 
SMIX function can be decreased by increasing the number of non-zero difference words at the 
input of SMIX [6, §7]. 
Round 0: In this round, we maintain δm0 = 0 so that the state differences after the TIX0 

operation do not extend to more words except that the words get shifted to the left by 3 words. 
We also do not inject any differences into the words S0 and S0 to ensure that SMIX−1 remains 0 4 
inactive. 

Round −1: In this round, the input difference to SMIX−1 is zero leading to a zero output 
difference. However, CMIX−1 propagates the differences to some other words. The ROR3−1 

operation makes the differences to affect the input of SMIX−2. Hence, if δS0 � 0 then SMIX−2 = 6 
would be active. To decrease the number of active SBoxes at the output of SMIX−2, we should 
increase the number of non-zero difference words at the input of SMIX−2. In addition, when 
we inject differences into the state words, we have to ensure that the state difference δS0 from 
which we have started is maintained at round 0. Hence, we inject differences into the words S−1 

0 
and S−1 such that δS−1 ⊕ δS−1 = δS0. Therefore, SMIX−2 would be a C0,3 code. 4 0 4 7 
Round −2: We can inject differences through TIX−2 such that all input words to SMIX−3 

have non zero differences. We inject differences into the words S−2 and S−2 in the round TIX−20 4 
such that δS−2 ⊕δS−2 = δS0 . Since all input words to SMIX−3 have a difference, it is a C0,1,2,30 4 10

code.
 

Round −3: The input word S−3 to SMIX−4 is the same as the word S0 and hence, δS−3 = 0
3 12 3 
as δS0 = 0. The words S−3 and S−3 have a non-zero difference. Hence, we inject differences 12 1 2 
through TIX−3 such that we get a C0,1,2 code for SMIX−4. The injected differences into the 
words S−3 and S−3 must be the same (i.e, δS−3 = δS−3) and hence, we refer to only δS−3 in 0 4 0 4 0 
this analysis.
 

Round −4: The input word S−4 to SMIX−5 is the same as the word S0 and hence, δS−4 = 0
3 15 3 
as δS0 = 0. The words S−4 and S−4 have a non-zero difference. Hence, we inject differences 15 1 2 
through TIX−4 such that we get a C0,1,2 code for SMIX−5. The injected differences must satisfy 
the condition δS−4 = δS−4. We refer to only δS−4 in our analysis. 0 4 0 
Round −5: At the start of round −5, we have differences in all words of S−5 except the three 
words S−5 and S−5 

11 , S
−5 

16 .15 
Following the above analysis and the resultant state difference δS−5 as shown in Table 4, 

the following A, B and C conditions must be satisfied for a collision in wF-256. 

1. A: 

(a) δS−5 = 0,δS−5 = 0 and δS−5 = 011 15 16 
(b) δS−5 = δS−5 

1 12 
(c) δS−5 = δS−5 

2 13 

2. B: 

(a) δm−5 = δS−5 
8 

(b) δm−4 = δS−5 ⊕ δS0 
5 9 

(c) δm−3 = δS−5 ⊕ δS−5 
13 17 

(d) δm−2 = δS−5 
10 

(e) δm−1 = 0 
(f) δm0 = 0 

3. C: 
−5 N−1(a) δx̂ = .(δS−4, δS−3, δx−2 , 0) where δS−4 = δS−5, δS−3 = δS−5, δx−2 = δS−5 
0···3 0 0 3 0 1 0 9 3 10 



5 

−4(b) δˆ = N−1 .(δS−3, δS−2 
11, 0) where δS−3 = δS−5, δS−2 = δS−5, δS0 = δS−5 x , δS0 

0···3 0 4 0 9 4 6 11 7 
−3(c) δx̂ = N−1 .(δS−2, δS−1, δS0, δS0) where δS−2 =?, δS−1 = δS−5, δS0 =?, δS0 = δS−5⊕0···3 0 4 8 9 0 4 3 8 9 

δm−4 

−2(d) δx̂ = N−1 .(δS−1 , 0, 0, δS0 ) where δS−1 �= 0, δS0 = δS−5 .0···3 0 6 0 6 17 

Our adversary runs the following attack to find a collision in wF-256: 

1. The attacker freely chooses a state difference δS−5 at Round -5 such that the condition A 
is satisfied. 

2. The state S−5 and the inputs m−5 ∼ m−2 are chosen freely at random and the words m−1 

are m0 are used to represent the length encoding of the 4-word message m−5 ∼ m−2. Then, 
′−5 ∼S′−5 and input message words m m ′0 are chosen in such a way that S′−5 = δS−5 ⊕S−5 

and the condition B are satisfied. 
3. The attacker is successful if the resulting state at the start of Round 0 satisfies δS0 � 0 and = 

δS0
0 
∼5 = 0 and δS0 = 0. 12∼29 

This collision attack in which an adversary can freely decide δS−5 is called a free-start collision 
attack. In Theorem 1, we show the complexity of the free-start differential characteristic on 
wF-256 together with some other internal conditions required for the collision. 

Theorem 1. The success probability of the adversary to mount a free-start collision attack on 
wF-256 is not less than 2−70 provided other favorable internal conditions hold. 

Proof. Since the adversary can choose δS−5, it can select it in such a way that conditions A 
and B are satisfied with a probability of 1. Hence, the success probability of the adversary is 
bounded by its ability to satisfy condition C. We estimate this probability by referring to the 
designers’ analysis [6, Table 3,§7] of computation of the rank and minimum weight for all the 
linear codes used in their differential analysis of F-256 and wF-256. The success probability to 
satisfy conditions C is as follows: 

C.a: An adversary must hit a code word in C0,1,2. The code C0,1,2 has full rank for 1 byte. 
That means it is impossible to get one active byte in N transform. It will have at least 2 active 
bytes. Hence, the probability of receiving the desired difference after SBox for the word S3 is 
2−14 . 

C.b: An adversary must hit a code word in C0,1,2 with at least 2−14 probability. 
C.c: An adversary must hit a code word in C0,1,2,3. We consider only one byte difference at 

the code word. Hence we have one active SBox and the probability would be 2−7 . 
C.d: To satisfy this condition, an adversary must hit a code word in C0

∗ 

,3 where not only do 

words 1 and 2 have to be zero but the 3rd word S−2 in the SMIX2 transform (forward direction) 3 
must match S−2 = δS0. Hence, the adversarial success probability to satisfy the condition C.d 14 6 
is 2−35 provided this additional internal constraint is satisfied. 

Finally, the lower bound of the probability, PrC , to satisfy the condition C is PrC ≥ 2−14 × 
2−14 × 2−7 × 2−35 2−70 = which is also a lower bound probability for the free-start collision 
differential characteristic on wF-256. Hence, the success probability of the adversary to mount 
a free-start collision attack on wF-256 is not less than 2−70 provided other favorable internal 
conditions as noted in C.d hold. ⊓⊔ 

9 Concluding remarks 

In this paper, we analysed the security of F-256 and wF-256 hash functions and improved some 
of the previous analytical results. Although our new analytical results do not compromise the 
security claims of the designers for finding collisions and (second) preimages in these designs 



they show several interesting properties of these designs such as weak diffusion for the full F-256 
due to the pseudo differentiability attack, ability to control message and state words to improve 
the meet-in-the-middle attack on F-256 and free-start collision attack on wF-256 under some 
constraints on the internal conditions. 
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A Examples for the pseudo differentiator on unpadded F-256 

The two pairs of pseudo initial states for the unpadded F-256 hash function noted in Table 2 
would produce a digest difference of 
0x d6c75ee1 5773d022 2b886ddd 3485f8c2 12d821dd c5e69851 1363d2d2 8d0b3459 when the 
message word is 9f18d9d8 and f5821e47 respectively. The first pair of states differ in 79 bits 
and the second pair of states differ in 83 bits which is close to the average approximation of 80 
bits input state difference. 

http://www.csrc.nist.gov/pki/HashWorkshop/timeline.html
http://csrc.nist.gov/groups/ST/hash/sha-3/Round2/submissions_rnd2.html


Table 2. Two pairs of pseudo initial states that produce the same digest difference 

Word index i Si S ∗ i δSi Si S ∗ i δSi 

0 00000000 00000000 00000000 00000000 00000000 00000000 
1 f72586a6 f72586a6 00000000 80aec8c3 80aec8c3 00000000 
2 cdf80275 cdf80275 00000000 c53ef91c c53ef91c 00000000 
3 447f68b7 447f68be 00000009 8f962fa4 8f962fad 00000009 
4 71e74696 21a592b1 5042d427 3fdec35a 6f9c177d 5042d427 
5 f3d2fde1 f3d2fde1 00000000 6c677fc1 6c677fc1 00000000 
6 185ea4fa 185ea4fa 00000000 b82cdc7c b82cdc7c 00000000 
7 40ba2add 40ba2add 00000000 eca2a5a9 eca2a5a9 00000000 
8 44aeeae4 44aeeae4 00000000 3b7f33da 3b7f33da 00000000 
9 84dbc7c0 84dbc7c0 00000000 e8f8316f e8f8316f 00000000 
10 0a944675 0a944675 00000000 fdfb60fe fdfb60fe 00000000 
11 b082bccf b082bccf 00000000 614fbd89 614fbd89 00000000 
12 bd254e62 bd254e62 00000000 4d3e3233 4d3e3233 00000000 
13 c8442168 c8442168 00000000 aab0153f aab0153f 00000000 
14 504fcbff 504fcbf6 00000009 dab86888 dab86881 00000009 
15 e0842a26 e0842a26 00000000 ee576228 ee576228 00000000 
16 6c55cbb5 6c55cbb5 00000000 90826388 90826388 00000000 
17 8a4ee3a1 8a4ee3a1 00000000 151c8030 151c8030 00000000 
18 0afaa726 0afaa72f 00000009 3a5aae42 3a5aae4b 00000009 
19 42f9cf1e 12bb1b39 5042d427 89268f9a d9645bbd 5042d427 
20 78b1c37a 78b1c37a 00000000 8d7cdce1 8d7cdce1 00000000 
21 b4f6f7b7 244bdabc 90bd2d0b a297636e 9b8d8a8f 391ae9e1 
22 71b019fc 93aa923a e21a8bc6 be289273 895dad7b 37753f08 
23 8bcd6ca5 fd547b2e 7699178b a8a66154 d714dddf 7fb2bc8b 

24 f15f542c f15f542c 00000000 0190a25b 0190a25b 00000000 
25 4b9729b1 4b9729b1 00000000 895989cd 895989cd 00000000 
26 cd8f75fa cd8f75fa 00000000 b137416b b137416b 00000000 
27 f76c7a15 f76c7a15 00000000 314c1a96 314c1a96 00000000 
28 b3b63d8f b3b63d8f 00000000 4d6740dd 4d6740dd 00000000 
29 7229ffbd 7229ffb4 00000009 8a0d14ab 8a0d14a2 00000009 

B Improved pseudo differentiator for F-256 

We can combine the pseudo differentiability attack on the unpadded F-256 and techniques used 
in the improved meet-in-the-middle attack on F-256 to improve the pseudo differentiability 
attack on full F-256 of §5. Recall that 0,−1,−2, . . . are the rounds of R before the G transform 

0 −1and m ,m , . . . are their respective message blocks. Recall that State-i’ is the 29-word internal 
state (from word 1 to 29) in any round i of the R transform after the step Si = Si ⊕Si in the 10 0 10 
forward process. A pair of states at State-i’ of R are denoted by (S[i], S[i]′ ) where S[i] = S[i]1∼29 

and S[i]′ = S[i]′ . The attack is outlined below: 1∼29

1. Use the freedom available in the state words S8∼14 and S22∼29 of the pseudo differentiator 
for the unpadded F-256 to find a pair of states (S[0], S[0]′ ) such that their common message 

0block is m = 0x00000200, which is the last length encoded word of a 32-bit message. The 
cost of this step is 232 calls to the Backwards from G211 step of the pseudo differentiator 
for the unpadded F-256. Note that by now the words S[0]1∼29 and S[0]′ in these pair of 1∼29 
states are fixed. This implies the words S0 and S0 are also fixed and the words S0

0 and 1∼9 11∼29 
S0 are not fixed. 10 

2. Now we use the freedom in the word S0 to find a pair of states (S−1, S′−1) that have the 0 
same message block m−1 = 0x00000000 in the −1th R transform. We do this as follows: 

(a) The word S0 which has the difference δ2 will also be the 1st word input to the second 4 
SMIX transform (in the backward process). This SMIX transform also has the non-zero 



difference at input word 0 which is the same the output of word 3 of the first SMIX 
transform of −1 round R transform. Moreover, the actual values of the input words 2 and 
3 to the second SMIX transform are already fixed and they are zero difference words. 
Now we find the difference in the input word 0 (say Δ) for the second SMIX transform 
such that we obtain the 3rd output word of this second SMIX to be 0x00000000. This 
can be done by solving a system of equations. 

(b) Having determined the difference Δ for the input word 0 to the second SMIX transform 
of −1 round R transform, we can use the freedom in the word input S0 of the first SMIX 0 
transform of -1 round R transform to force its output 3rd word to Δ difference. Note 
that the word S0 has δ1 difference and the words S0 have zero difference with their 3	 1∼2 
actual values already determined. This can be done by solving a system of equations. 

−13. Having obtained a pair of 29-word states (S[−1], S[−1]′ ) with the common message m = 
0x00000000, we choose a pair (S1, S1 ′ ) and (S1 , S1 ′ ) such that S1 ⊕ S1 = S[−1]10 and 0 0 10 10 0 10 
S1 ′ ⊕ S1 ′	 S1 ′ S1 ′ = S[−1]′ Note that since δS1 = 0, S1 = and S1 = . Now we have 0 10 10.	 10 10 10 0 0 
determined a pair of 30-word states (S1, S1 ′ ). 

4. Invert the 30-word states (S1, S1 ′ ) for one more round of the R transform and obtain the 
message block m−2 and the states (S−2, S′−2). 

In summary, we have shown a method which can find a pair of states that differ on average 
in 332 bits for the initial state of F-256 and producing the fixed digest difference. We can find 
another pair of initial states by repeating the attack using the freedom available in the words in 
the Step 1 of this attack and this pair will also produce the same digest difference as the former. 
The cost of the attack is about 233 hashing operations. 

C	 Integrals for the 16.5 rounds of G transform of F-256 and differential 

characteristics for free-start collision attack on wF-256 

In Table 3, we have shown the integrals for the 16.5 rounds of the G transform of F-256 whose 
analysis was presented in §7. In Table 4, we have shown how the internal state of wF-256 gets 
affected between rounds 0 and −6 in the free-start collision attack on wF-256 whose analysis 
was shown in §8. 



Table 3. The Integral propagation over 16.5 rounds of F-256 G-function. In this table “.”, “,” and “!” denote C, A and S respectively and blank cells are those cells 
that we do not consider. 

S0 S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14 S15 S16 S17 S18 S19 S20 S21 S22 S23 S24 S25 S26 S27 S28 S29 

G1 
1 . . . . .,.. . . . . . . . . . . . . . . . . . . . . . . . . . 

G1.5 
1 . . . . . . . .,.. . . . . . . . . . . . . . . . . . . . . . . 

G2 
1 . . . . . . . . . . .,.. . . . . . . . . . . . . . . . . . . . 

G2.5 
1 . . . . . . . . . . . . . .,.. . . . . . . . . . . . . . . . . 

G3 
1 . . . . . . . . . . . . . . . . .,.. . . . . . . . . . . . . . 

G3.5 
1 . . . . . . . . . . . . . . . . . . . .,.. . . . . . . . . . . 

G4 
1 . . . . . . . . . . . . . . . . . . . . . . .,.. . . . . . . . 

G4.5 
1 . . . . . . . . . . . . . . . . . . . . . . . . . .,.. . . . . 

G5 
1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . .,.. . 

G5.5 
1 .,.. ,... ..., ..,. . . . . . . . . . . . . . . . . . . . . . . . . . . 

G1 
2 ,!,! ,!,! ,,,, ,!,! ,... ..., ..,. . . . . . . . . ,... ..., ..,. . . . . . . . . . . . . 

G1.5 
2 ??!? ,?,? ,??? .?!? . . . . . . . . . . . ,!,! ,!,! ,,,, ,!,! !!,! ..., ..,. . . . . . . . . 

G2 
2 ??!? 

G2.5 
2 ??!? 

G3 
2 ??!? 

G3.5 
2 ??!? 

G4 
2 ??!? 

G4.5 
2 ??!? 

G5 
2 ??!? 

G5.5 
2 ??!? 

G6 
2 ??!? 

G6.5 
2 ??!? 

G7 
2 ??!? 

G7.5 
2 ??!? 

G8 
2 ??!? 

G8.5 
2 ??!? 

G9 
2 ??!? 

G9.5 
2 ??!? 

G10 
2 ??!? 

G10.5 
2 ??!? 

G11 
2 ??!? 

G11.5 
2 ??!? 

G12 
2 ??!? 

G12.5 
2 ??!? 



Table 4. Differential characteristic demonstrating a free-start collision attack on the wF-256 hash function. 
Input of 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 

TIX
δm

0 
=0 

0 0 0 0 0 0 0 δS
0 
6 δS

0 
7 δS

0 
8 δS

0 
9 δS

0 
10 δS

0 
11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

SMIX−1 0 0 0 0 0 0 δS
0 

δS
0 

δS
0 

δS
0 

δS
0 

δS
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

6 7 8 9 10 11 
CMIX−1 0 0 δS

0 0 0 0 δS
0 

δS
0 

δS
0 

δS
0 

δS
0 

δS
0 0 0 0 0 0 δS

0 0 0 0 0 0 0 0 0 0 0 0 0
6 6 7 8 9 10 11 6 

ROR3−1 0 0 0 δS
0 

δS
0 

δS
0 

δS
0 

δS
0 

δS
0 0 0 0 0 0 δS

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 δS
0 

6 7 8 9 10 11 6 6 

TIX
δm

−1 
=0 

−1 δS
−1 
0 0 0 δS

0 
6 δS

−1 
4 δS

0 
8 δS

0 
9 δS

0 
10 δS

0 
11 0 0 0 0 0 δS

0 
6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 δS

0 
6 

−2 −2 −2 −2 −1
SMIX−2 δx δx δx δx δS δS

0 
δS

0 
δS

0 
δS

0 0 0 0 0 0 δS
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 δS

0 
8 9 10 11 6 60 1 2 3 4 

′−2 ′−2 ′−2 −2 −1 −1
CMIX−2 δx δx δx δx δS δS

0 
δS

0 
δS

0 
δS

0 0 0 0 0 0 δS
0 

δS δS
0 

δS
0 0 0 0 0 0 0 0 0 0 0 0 δS

0 
8 9 10 11 6 8 9 60 1 2 3 4 4 

−2 −1 −1 ′−2 ′−2 ′−2
ROR3−2 δx δS δS

0 
δS

0 
δS

0 
δS

0 0 0 0 0 0 δS
0 

δS δS
0 

δS
0 0 0 0 0 0 0 0 0 0 0 0 δS

0 
δx δx δx

δm
−2

=δx
−2 

−2 
−2 
0

−1 
4 8 9

−2 
4 11 

−2
TIX 3 δS δS δS

0 
δS

0 
δS δS

0 0 0 δx
3 0 0 δS

0 
6

δS
−1 
4 δS

0 
8

δS
0 
9 0 0 0 0 0 0 0 0 0 0 0 δS

0 
6

δx
′−2 
0

δx
′−2 
1

δx
′−2

2 

3 4 8 9 10 11 6 4 8 9 6 0 1 2 

−3 −3 −3 −3 −2 −2 −1 ′−2 ′−2 ′−2
SMIX−3 δx δx δx δx δS δS

0 0 0 δx 0 0 δS
0 

δS δS
0 

δS
0 0 0 0 0 0 0 0 0 0 0 0 δS

0 
δx δx δx

11 6 8 9 60 1 2 3 4 3 4 0 1 2 
′−3 ′−3 −3 −3 −2 −2 −1 −2 ′−2 ′−2 ′−2

CMIX−3 δx δx δx δx δS δS
0 0 0 δx 0 0 δS

0 
δS δS

0 
δS

0 
δS δS

0 0 0 0 0 0 0 0 0 0 δS
0 

δx δx δx
11 6 8 9 11 60 1 2 3 4 3 4 4 0 1 2 

−3 −2 −2 −1 −2 ′−2 ′−2 ′−2 ′−3 ′−3 −3
ROR3−3 δx δS δS

0 0 0 δx 0 0 δS
0 

δS δS
0 

δS
0 

δS δS
0 0 0 0 0 0 0 0 0 0 δS

0 
δx δx δx δx δx δx

δm
−3

=δx
−3 

−3 
−3 
0

−2 
4 11 

−3 
0

−2 
3 

−3 
8

TIX 3 δS δS δS
0 0 δS δx 0 0 δS δS

−1 
4 δS

0 
8

δS
0 
9

δS
−2 
4

δS
0 
11 0 0 0 0 0 0 0 0 0 δS

0 
6

δx
′−2 
0

δx
′−2 
1

δx
′−2 
2

δx
′−3 
0

δx
′−3 
1 δx

−3

2 

3 4 11 3 6 4 8 9 4 11 6 0 1 2 0 1 2 

−4 −4 −4 −4 −3 −2 −3 −1 −2 ′−2 ′−2 ′−2 ′−3 ′−3 −3
SMIX−4 δx δx δx δx δS δx 0 0 δS δS δS

0 
δS

0 
δS δS

0 0 0 0 0 0 0 0 0 0 δS
0 

δx δx δx δx δx δx
8 9 11 60 1 2 3 0 3 8 4 4 0 1 2 0 1 2 

′−4 ′−4 −4 −4 −3 −2 −3 −1 −2 −3 −2 ′−2 ′−2 ′−2 ′−3 ′−3 −3
CMIX−4 δx δx δx δx δS δx 0 0 δS δS δS

0 
δS

0 
δS δS

0 0 δS δx 0 0 0 0 0 0 δS
0 

δx δx δx δx δx δx
8 9 11 60 1 2 3 0 3 8 4 4 0 3 0 1 2 0 1 2 

−4 −3 −2 −3 −1 −2 −3 −2 ′−2 ′−2 ′−2 ′−3 ′−3 −3 ′−4 ′−4 −4
ROR3−4 δx δS δx 0 0 δS δS δS

0 
δS

0 
δS δS

0 0 δS δx 0 0 0 0 0 0 δS
0 

δx δx δx δx δx δx δx δx δx
8 9 11 63 0 3 8 4 4 0 3 0 1 2 0 1 2 0 1 2 

TIX 
δm

−4 
=δx

−4 
3 

−4 δS
−4 
0 δS

−3 
0 δx

−2 
3 0 δS

−4 
0 δS

−3 
8 δS

−1 
4 δS

0 
8 δS

−4 
8 δS

−2 
4 δS

0 
11 0 δS

−3 
0 δx

−2 
3 0 0 0 0 0 0 δS

0 
6 δx

′−2 
0 δx

′−2 
1 δx

′−2 
2 δx

′−3 
0 δx

′−3 
1 δx

−3 
2 δx

′−4 
0 δx

′−4 
1 δx

−4 
2 

−5 −5 −5 −5 −4 −3 −1 −4 −2 −3 −2 ′−2 ′−2 ′−2 ′−3 ′−3 −3 ′−4 ′−4 −4
SMIX−5 δx δx δx δx δS δS δS δS

8

0 
δS δS δS

0 0 δS δx 0 0 0 0 0 0 δS
6

0 
δx δx δx δx δx δx δx δx δx

11 0 1 2 3 0 8 4 8 4 0 3 0 1 2 0 1 2 0 1 2 
′−5 ′−5 ′−5 −5 −4 −3 −1 −4 −2 −3 −2 −4 −3 −1 ′−2 ′−2 ′−2 ′−3 ′−3 −3 ′−4 ′−4 −4

CMIX−5 δx δx δx δx δS δS δS δS
0 

δS δS δS
0 0 δS δx 0 δS δS δS 0 0 δS

0 
δx δx δx δx δx δx δx δx δx

8 11 60 1 2 3 0 8 4 8 4 0 3 0 8 4 0 1 2 0 1 2 0 1 2 
−5 −4 −3 −1 −4 −2 −3 −2 −4 −3 −1 ′−2 ′−2 ′−2 ′−3 ′−3 −3 ′−4 ′−4 −4 ′−5 ′−5 ′−5

ROR3−5 δx δS δS δS δS
0 

δS δS δS
0 0 δS δx 0 δS δS δS 0 0 δS

0 
δx δx δx δx δx δx δx δx δx δx δx δx

8 11 63 0 8 4 8 4 0 3 0 8 4 0 1 2 0 1 2 0 1 2 0 1 2 

TIX 
δm

−5 
=δx

−5 
3 

−5 δS
−5 
0 δS

−4 
0 δS

−3 
8 δS

−1 
4 δS

−5 
4 δS

−4 
8 δS

−2 
4 δS

0 
11 δx

−5 
3 δS

−3 
0 δx

−2 
3 0 δS

−4 
0 δS

−3 
8 δS

−1 
4 0 0 δS

0 
6 δx

′−2 
0 δx

′−2 
1 δx

′−2 
2 δx

′−3 
0 δx

′−3 
1 δx

−3 
2 δx

′−4 
0 δx

′−4 
1 δx

−4 
2 δx

′−5 
0 δx

′−5 
1 δx

′−5 
2 

Input of s0 s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12 s13 s14 s15 s16 s17 s18 s19 s20 s21 s22 s23 s24 s25 s26 s27 s28 s29 

−6 −6 −6 −6 −5 −4 −2 −5 −3 −2 −4 −3 −1 ′−2 ′−2 ′−2 ′−3 ′−3 −3 ′−4 ′−4 −4 ′−5 ′−5 ′−5
SMIX−6 δx δx δx δx δS δS δS δS

0 
δx δS δx 0 δS δS δS 0 0 δS

0 
δx δx δx δx δx δx δx δx δx δx δx δx

11 60 1 2 3 4 8 4 3 0 3 0 8 4 0 1 2 0 1 2 0 1 2 0 1 2 
′−6 ′−6 ′−6 −6 −5 −4 −2 −5 −3 −2 −4 −3 −1 −5 −4 −5 ′−2 ′−2 ′−2 ′−3 ′−3 −3 ′−4 ′−4 −4 ′−5 ′−5 ′−5

CMIX−6 δx δx δx δx δS δS δS δS
0 

δx δS δx 0 δS δS δS δS δS δx δx δx δx δx δx δx δx δx δx δx δx δx
11 0 1 2 3 4 8 4 3 0 3 0 8 4 4 8 17 0 1 2 0 1 2 0 1 2 0 1 2 

−6 −5 −4 −2 −5 −3 −2 −4 −3 −1 −5 −4 −5 ′−2 ′−2 ′−2 ′−3 ′−3 −3 ′−4 ′−4 −4 ′−5 ′−5 ′−5 ′−6 ′−6 ′−6
ROR3−6 δx δS δS δS δS

0 
δx δS δx 0 δS δS δS δS δS δx δx δx δx δx δx δx δx δx δx δx δx δx δx δx δx

δm
−6

=δx
−6

3 
−6 

−6 
0

−5 
4

−4 
8

−2 
4

−6 
4

−5 
3

−3 −2 −6
TIX δS δS δS δS δS δx δS

0
δx

3
δx

3
δS

−4 
0

δS
−3 
8

δS
−1 
4

δS
−5 
4

δS
−4 
8

δx
−5 
17 δx

′−2 
0

δx
′−2 
1

δx
′−2 
2

δx
′−3 
0

δx
′−3 
1 δx

−3 
2

δx
′−4 
0

δx
′−4 
1 δx

−4 
2

δx
′−5 
0

δx
′−5 
1

δx
′−5 
2

δx
′−6 
0

δx
′−6 
1

δx
′−6

2 

3 4 8 4 11 3 0 3 0 8 4 4 8 17 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 
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