
From: hash-forum@nist.gov on behalf of Anne Canteaut [Anne.Canteaut@inria.fr] 
Sent: Thursday, January 14, 2010 5:01 AM 
To: Multiple recipients of list 
Subject: OFFICIAL COMMENT: Keccak 

Dear all,
 

The note at
 
http://www-roc.inria.fr/secret/Anne.Canteaut/Publications/zero_sum.pdf
 

shows how the zero-sum property exhibited by J.P. Aumasson and W. Meier can be extended to

18 rounds of the Keccak-f permutation, i.e., to the permutation used in the original

version of Keccak.
 
This structural property does not seem to affect the security of the hash function, but it

points out that the inner permutation with 18 rounds does not have an ideal behavior,

contradicting the "hermetic sponge strategy".

Note that the new version of Keccak uses Keccak-f with 24 rounds.
 

Christina Boura and Anne Canteaut.
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From: hash-forum@nist.gov on behalf of Dmitry Khovratovich [khovratovich@gmail.com] 
Sent: Thursday, January 14, 2010 8:09 AM 
To: Multiple recipients of list 
Subject: Re: OFFICIAL COMMENT: Keccak 

Dear Anne and Christina, 

You say in p.10 "this algorithm leads to several partitions of the input space F^1600_2
into zero-sums of size 2^1370, which is clearly a structural distinguishing property". 

I am not sure that it is a structural distinguisher property. Even if we do not consider
the lower bound for finding a zero-sum for a random permutation, the upper bound is given
by the generalized birthday algorithm, which allows to find a zero-sum of size 2^55 in 2
^{55+3200/(1+55)} < 2^115 operations, which is smaller than 2^1370. 

On 1/14/10, Anne Canteaut <Anne.Canteaut@inria.fr> wrote:
> 
> Dear all,
> 
> The note at 
> http://www-roc.inria.fr/secret/Anne.Canteaut/Publications/zero_sum.pdf
> 
> shows how the zero-sum property exhibited by J.P. Aumasson and W.
> Meier can be extended to 18 rounds of the Keccak-f permutation, i.e.,
> to the permutation used in the original version of Keccak.
> This structural property does not seem to affect the security of the
> hash function, but it points out that the inner permutation with 18
> rounds does not have an ideal behavior, contradicting the "hermetic
> sponge strategy".
> Note that the new version of Keccak uses Keccak-f with 24 rounds. 
> 
> Christina Boura and Anne Canteaut. 
> 
> 

Best regards,

Dmitry Khovratovich
 

University of Luxembourg,

Laboratory of Algorithmics, Cryptography and Security,

+ 352 46 66 44 5478 
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From: hash-forum@nist.gov on behalf of Anne Canteaut [Anne.Canteaut@inria.fr] 
Sent: Thursday, January 14, 2010 10:43 AM 
To: Multiple recipients of list 
Subject: Re: OFFICIAL COMMENT: Keccak 

Dear Dmitry,
 

The algorithm you mention provides a single zero-sum, while our result (exactly as the

previous result due to Jean-Philippe Aumasson and Willi

Meier) provides several partitioning of the input space into zero-sums, i.e., for the

considered parameters, some collections of 2^230 disjoint zero-sums covering the entire

input space.

This is obviously a much stronger structural property.
 

Anne Canteaut.
 

Dmitry Khovratovich wrote:

> Dear Anne and Christina,

> 

> You say in p.10 "this algorithm leads to several partitions of the

> input space F^1600_2 into zero-sums of size 2^1370, which is clearly a

> structural distinguishing property".

> 

> I am not sure that it is a structural distinguisher property. Even if

> we do not consider the lower bound for finding a zero-sum for a random

> permutation, the upper bound is given by the generalized birthday

> algorithm, which allows to find a zero-sum of size 2^55 in

> 2^{55+3200/(1+55)} < 2^115 operations, which is smaller than 2^1370.

> 

> On 1/14/10, Anne Canteaut <Anne.Canteaut@inria.fr> wrote:

>> Dear all,

>>
 
>> The note at
 
>> http://www-roc.inria.fr/secret/Anne.Canteaut/Publications/zero_sum.pd

>> f
 
>>
 
>> shows how the zero-sum property exhibited by J.P. Aumasson and W.

>> Meier can be extended to 18 rounds of the Keccak-f permutation, i.e.,

>> to the permutation used in the original version of Keccak.

>> This structural property does not seem to affect the security of the

>> hash function, but it points out that the inner permutation with 18

>> rounds does not have an ideal behavior, contradicting the "hermetic

>> sponge strategy".

>> Note that the new version of Keccak uses Keccak-f with 24 rounds.
 
>>
 
>> Christina Boura and Anne Canteaut.
 
>>
 
>>
 
> 

> 
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From: hash-forum@nist.gov on behalf of Guido Marco BERTONI [guido.bertoni@st.com]
 
Sent: Friday, January 15, 2010 9:01 AM
 
To: Multiple recipients of list
 
Subject: OFFICIAL COMMENT: Keccak (Round 2)
 

Attachments: NoteZeroSum.pdf
 

NoteZeroSum.pdf 

(144 KB)
 

In September last year, Jean-Philippe Aumasson and Willi Meier introduced
zero-sum distinguishers, a method to generate zero-sum structures for reduced-round
versions of Keccak-f up to 16 rounds.
Recently, Christina Boura and Anne Canteaut extended this to 18 rounds.
Please find in attachment a note, in which we discuss these distinguishers and their
implications. 

The Keccak Team 
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Note on zero-sum distinguishers of Kђѐѐюј- f 

In [1], Jean-Philippe Aumasson and Willi Meier introduced zero-sum distinguish-
ers, a method to generate zero-sum structures for reduced-round Kђѐѐюј- f [1600], 
the permutation underlying our SHA-3 submission Kђѐѐюј. Their paper contained 
distinguishers for up to 16 rounds of Kђѐѐюј- f [1600]. Recently, Christina Boura and 
Anne Canteaut extended this to 18 rounds in [6]. In this note we argue that the distin-
guishers are valid and are qualitatively different from generic methods, as they can 
partition the set of inputs into sets of zero-sum structures of specific sizes. We also 
put this in perspective, as generic methods allow generating zero-sum structures of 
small sizes, and the distinguishers covering more rounds have extremely high com-
plexity (e.g., 21369 for 18 rounds). 

Nevertheless, after the publication of [1], we decided to increase the number of 
rounds of Kђѐѐюј- f . The logic underlying this decision is our adoption of the hermetic 
sponge strategy, in which we tolerate no structural distinguisher for the permutation 
used in the sponge construction. The strength or applicability of the distinguisher in 
the context of the sponge construction plays no role in this aspect. 

By increasing the number of rounds, we believe to have re-established the security 
margin of Kђѐѐюј- f with respect to structural distinguishers. 

1 The challenge 

A zero sum structure for a function f is defined in [1] as a set Z of inputs zi that sum 
to zero, and for which the corresponding outputs also sum to zero. The challenge is 
now to generate such a set in an efficient way. Hence the challenge is the following. 

Challenge: given a function f from n to m bits and an integer N, construct a set 
Z of N inputs zi (or the set of corresponding f -images) such that: 

� zi = 0 and � f (zi) = 0. 
0≤i<N 0≤i<N 

Given all inputs in Z except one and the f -outputs of all inputs of Z but one, 
the zero-sum structure allows the computation of the missing input and output by 
simply summing over the known elements and hence without calling f . If the size 
of Z is small, this may give an adversary an advantage in an aĴack. Clearly, the 
advantage diminishes as the size of Z grows. 

2 A generic method 

In this section we present a generic method for constructing a zero-sum structure in-
spired by Wagner’s algorithm for the generalized birthday problem in [7] and by the 
aĴack against XHASH in [2], brought to our aĴention by Jean-Philippe Aumasson. 
For a method to become a structural distinguisher for a particular function, it shall 
have a lower complexity than this generic method. 

THere is an outline of the method. We use the following notation: Xi = [xi| f (xi)] , 
i.e., a column vector with components the bits of xi followed by the bits of f (xi). 

T1. Take N random values xi, compute f (xi) and form Xi = [xi| f (xi)] . 

2. Compute the bitwise sum of the vectors Xi and call the sum A: 

� Xi = A . (1) 
0≤i<N 



Note on zero-sum distinguishers of Kђѐѐюј- f 

3. Take p = n + m + ϵ random values yi with 0 ≤ i < p and ϵ a small integer, 
Tcompute f (yi) and form Yi = [yi| f (yi)] . 

4. Solve the following linear system of n + m equations in the n + m + ϵ variables 
ai over GF(2), with the bits of (Xi ⊕ Yi) serving as (fixed) coefficients: 

� ai(Xi ⊕ Yi) = A. (2) 
0≤i<p 

5. For a solution (ai), form the set Z such that {
yi if i < p and ai = 1 

zi = 
xi otherwise. 

Clearly, the set Z is a zero-sum structure. Adding equations (1) and (2) gives: 

� Xi ⊕ � ai(Xi ⊕ Yi) = � (aiYi ⊕ āiXi) ⊕ � Xi = � Zi = 0. 
0≤i<N 0≤i<p 0≤i<p p≤i<N 0≤i<N 

This method requires that p = n + m + ϵ ≤ N for some ϵ ≥ 0. The value of ϵ 
determines the a priori probability that the system of equations (2) has a solution: 
by increasing ϵ the probability that it has no solution decreases exponentially. If 
N ≫ n + m, the probability of failure can be made arbitrarily small by increasing ϵ 
and the complexity can be approximated by N executions of f . 

The computational effort is the sum of: 

• N + n + m + ϵ evaluations of f , 

• solving a system of n + m linear equations in n + m + ϵ variables over GF(2), 
which can be done very efficiently, and 

• taking the bitwise sum of N (n + m)-bit vectors. 

3 The zero-sum distinguishers on Kђѐѐюј- f 

The method for constructing zero-sum structures described in [1, 6] exploits the fact 
that adding a round in Kђѐѐюј- f only doubles the degree of the algebraic expression 
of the output bits in terms of the input bits, and only triples the degree of the algebraic 
expression of the input bits in terms of the output bits. 

We discuss here the aspects that are relevant for the computational complexity 
of constructing the distinguishers and refer to [1, 6] for the details. We consider the 
complexity of the method constructing the set Z or the set of corresponding outputs. 

Compared to the generic method, the method in [1, 6] has the following features. 

• First, as opposed to the generic method, this method is deterministic. 

• Second, in this method the size of Z cannot be freely chosen (above some min-
imum) but is limited to powers of two (above some minimum). 

• Third, the non-maximal degree of the two parts of the (reduced-round) Kђѐѐюј- f 
permutation can be used to create partitions of inputs in many different zero-
sum structures. The size of such partitions, using this method, is a multiple 
of the size of the individual zero-sum structures. Producing a single zero-sum 
structure still leads to the fastest distinguisher in this context. 
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Rounds inv. + forw. N 
6 2 + 4 210 

7 3 + 4 215 

8 3 + 5 218 

9 4 + 5 230 

10 4 + 6 260 

11 5 + 6 260 

Rounds inv. + forw. N 
12 5 + 7 2129 

13 6 + 7 2244 

14 6 + 8 2257 

15 6 + 9 2513 

16 6 + 10 21025 

18 7 + 11 21370 

Table 1: Size of zero-sum structures for reduced-round Kђѐѐюј- f [1600] given in [1, 6] 

For constructing Z , one takes N states yi (that forms a vector space of limited 
dimension) in some intermediate round and computes a number of rounds back-
wards to obtain the inputs zi. Clearly, the complexity of this option (the backward 
option) is hence N times the computation of these inverse rounds. For constructing 
the outputs corresponding to Z (the forward option), one must compute a number of 
rounds forwards and the complexity is N times this forward computation. Table 1 
lists the values of N for reduced-round versions of Kђѐѐюј- f [1600] for given number 
of rounds. It also gives the number of inverse rounds and forward rounds. 

As seen in Table 1, for all cases the number of inverse rounds is smaller than 
the number of forward rounds. Hence at first sight the backward option seems to 
be the most efficient one. However, mainly due to the complexity of the inverse 
of θ [5], the computation of the inverse round of Kђѐѐюј- f [1600] has much higher 
complexity than the round itself. We think it is safe to assume that the inverse round 
takes twice as many computations as the forward round. In this light the forward 
option becomes the most efficient one. As the number of forward rounds is greater 
than half the number of rounds, the complexity of the method can be expressed as 
the computational equivalent of at least N/2 calls to the function under aĴack. 

4 Implications for Kђѐѐюј- f 

For the values of N given in Table 1 (and any larger power of two), the method for 
generating zero-sum structures of [1, 6] is more efficient than the generic method by 
a factor 2. Hence, the zero-sum distinguishers of [1, 6] are valid, albeit with a very 
small advantage. For instance, consider the case of Kђѐѐюј- f [1600] reduced to 18 
rounds. The method of [6] for the smallest value of N would have complexity 21369 

while for the generic method this is 21370. Note however that the generic method 
additionally allows generating zero-sum structures with any size N > 3200 at the 
cost of about N + 3200 calls to the function under aĴack. 

We think it is very unlikely that the zero-sum distinguishers can result in the 
speedup of actual aĴacks against Kђѐѐюј calling reduced-round versions of Kђѐѐюј- f . 
Still, the distinguishers described in [1, 6] show non-ideal properties of the (reduced-
round) Kђѐѐюј- f permutation and suggested us to increase the number of rounds in 
Kђѐѐюј- f [4]. 

The main reason behind this is our adoption of the hermetic sponge strategy [3]. 
This strategy imposes Kђѐѐюј- f to be free from structural distinguishers, without 
considering their strength or relevance for the Kђѐѐюј sponge function. 

The existence of the distinguisher in [1] over 16 (out of 18) rounds of Kђѐѐюј- f [1600] 
left only a security margin of 2 rounds. Moreover, we wanted to increase the security 
margin against other possible distinguishers that start from the middle and compute 
back- and forwards to get the corresponding in- and outputs. In this method adding 
two rounds to Kђѐѐюј- f only increases the algebraic degree to be considered in the 
aĴack by a factor 3. This is due to the fact that a Kђѐѐюј- f round has degree 2 and its 
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inverse only 3 [5]. We estimated that other types of distinguishers may be found that 
also exploit this fact or that the distinguishers may be further refined (e.g., as done 
in [6]). Therefore we decided to address this in round 2 of the SHA-3 competition by 
increasing the number of rounds (e.g., for Kђѐѐюј- f [1600] from 18 to 24 rounds). 

The Kђѐѐюј Team, January 2010 
Guido Bertoni, Joan Daemen, Michaël Peeters and Gilles Van Assche 
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From: Gilles VAN ASSCHE [gilles.vanassche@st.com] 
Sent: Tuesday, February 23, 2010 7:48 AM 
To: hash-function@nist.gov 
Cc: hash-forum@nist.gov 
Subject: OFFICIAL COMMENT: Keccak (Round 2) 

Attachments: NoteOnKeccakParametersAndUsage.pdf 

NoteOnKeccakPara 
metersAndUsage... 

The Keccak sponge function family is characterized by three parameters:
the bitrate r, the capacity c and the diversifier d. In the Keccak specifications we
propose four instances that can be taken as functions for the four (fixed) output lengths
NIST requires for SHA-3 and a variable-output-length instance, with default values for the
parameters. 

Whilst we are happy with our choice, there are other valid parameter choices that NIST or
others may prefer. In this note we discuss our choice of parameters and other possible
ways of using the Keccak family. 

Kind regards,
The Keccak team 
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Note on Kђѐѐюј parameters and usage 

The Kђѐѐюј sponge function family is characterized by three parameters: the bi-
trate r, the capacity c (where r + c is the width of the underlying permutation) and 
the diversifier d. We propose in [5] four instances that can be taken as functions for 
the four (fixed) output lengths NIST requires for SHA-3 and a variable-output-length 
instance, denoted by Kђѐѐюј[], with default values for the parameters. Section 1 be-
low recalls the Kђѐѐюј offering: its parameters, security claim and design strategy, 
and our proposal to NIST. 

Whilst we are happy with our choice, there are other valid parameter choices that 
NIST or others may prefer. In this note we discuss our choice of parameters and other 
possible ways of using the Kђѐѐюј family. 

With its arbitrary length, the output of Kђѐѐюј can be truncated at the length 
requested by the user. In Section 2 we discuss how using a single function has clear 
advantages and, if needed, simple ways to achieve diversification. The capacity c is 
the security parameter of Kђѐѐюј and the use of a single instance with fixed capacity 
puts a ceiling on the achievable security level. We explain in Section 2 why this limit 
for Kђѐѐюј[] is high enough not to be a problem. 

In Section 3 we examine the issues of leĴing the user choose the capacity c while 
keeping c + r = 1600, which allows trading off claimed security for speed by increas-
ing c and decreasing r, or vice versa. 

In Section 4 we explain the choice of Kђѐѐюј- f [1600] in our standard proposal and 
discuss where the Kђѐѐюј- f permutations with other widths may be adequate. 

A way to exploit parallelism is to apply tree hashing. This is especially relevant on 
modern CPUs with their multiple cores and SIMD architecture within a core. In Sec-
tion 5 we explain that a tree hashing mode calling Kђѐѐюј as a compression function 
can take advantage of both. 

Finally, we address the question of migration possibilities to a more secure ver-
sion, should Kђѐѐюј be chosen as a standard and a weakness be discovered later. We 
propose in Section 6 two techniques based on input pre-processing with very limited 
impact on implementations. 

1 The Kђѐѐюј offering 

As defined in [5], Kђѐѐюј is a family of sponge functions with members Kђѐѐюј[r, c, d] 
characterized by three parameters: 

• bitrate r, 

• capacity c and 

• diversifier d. 

The sum r + c determines the width of the Kђѐѐюј- f permutation used in the sponge 
construction and is restricted to values in {25, 50, 100, 200, 400, 800, 1600}. The diver-
sifier value satisfies 0 ≤ d < 256. 

The sponge construction uses r + c bits of state, of which r are updated with mes-
sage bits between each application of Kђѐѐюј- f during the absorbing phase and out-
put during the squeezing phase. The remaining c bits are not directly affected by 
message bits, nor are they taken as output. 

The purpose of the diversifier is to provide diversification, i.e., two instances of 
Kђѐѐюј with two different values of d behave as two independent hash functions 
(even with same values of r and c). See Section 2.2 for a discussion. 



Note on Kђѐѐюј parameters and usage 

1.1 The security claim and design strategy 

Kђѐѐюј allows one to choose its security parameter c independently from the output 
length. We express our security claim for Kђѐѐюј in [5] as a flat sponge claim [2]. This 
type of claim implies that the expected complexity of any aĴack should be the same 
as for a random oracle, up to 2cclaim/2. The value cclaim is called the claimed capacity and 
fully determines the claimed security level of the variable-output-length function. 

The design philosophy underlying Kђѐѐюј is the hermetic sponge strategy: adopt-
ing the sponge construction using a permutation that should not have structural 
distinguishers [6, Chapter 4]. In this approach, we can make a flat sponge claim 
with claimed capacity cclaim equal to the parameter c in the construction and trade in 
claimed security level for speed by increasing c and decreasing r accordingly. 

Additional information on the security claim and design strategy is given in [4]. 

1.2 Our proposal for SHA-3 

In [14], NIST requires the candidate algorithms to support at least four different out-
put lengths n ∈ {224, 256, 384, 512} with associated security levels. Hence, we have 
defined four fixed-output-length variants (where ⌊⌋n indicates truncation to the first 
n bits): 

• n = 224: ⌊Kђѐѐюј[r = 1156, c = 448, d = 28]⌋224 

• n = 256: ⌊Kђѐѐюј[r = 1088, c = 512, d = 32]⌋256 

• n = 384: ⌊Kђѐѐюј[r = 832, c = 768, d = 48]⌋384 

• n = 512: ⌊Kђѐѐюј[r = 576, c = 1024, d = 64]⌋512 

The capacity values were chosen to meet the requirement that (second) preimage 
resistance should be 2n (with n the output length). The different diversifier values 
d = n/8 address a requirement expressed by NIST on the hash forum mailing list 
[13, 23-Jun-2008], that a hash function with a given output length should not be the 
prefix of another one with larger output length. 

In addition, we proposed Kђѐѐюј[] (with default parameters), where the user may 
truncate the output at the desired output length. The default bitrate r = 1024 is a 
power of two to ease data alignment and the resulting capacity is c = 1600 − 1024 = 
576. The default value for the diversifier d is 0. 

2 LeĴing the user choose the output length 

In many use cases of hash functions the output length is determined by the applica-
tion. This is the case for key derivation functions and several important public key 
signature and key establishment schemes, for instance the widely used RSA padding 
schemes [11, 12]. In those cases, either the output must be truncated or an addi-
tional construction called mask generating function (MGF) must be applied to pro-
vide longer outputs [11, 12]. 

Consider a protocol to be designed with the requirement of a specific digest length 
ℓ. When using a hash function family that consists of a set of instances with different 
output lengths and ℓ is not among them, one must first choose an instance and either 
truncate or specify an MGF construction. When using a variable-output-length hash 
function, no such choice must be made and it suffices to truncate the output to the 
desired length. The advantage of a variable-output-length hash function becomes 
even more important if a protocol or application requires digests whose length is a 
parameter of the protocol. 
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Note on Kђѐѐюј parameters and usage 

2.1 What about the security level? 

Traditionally, hash function users expect a security level that matches its output length: 
2n/2 for collision-resistance and 2n for (second) preimage resistance. As stated in Sec-
tion 1.1, a variable-output-length hash function with a claimed capacity cclaim shall 
resist to any aĴack with complexity below 2cclaim/2, but nothing is claimed above this 
level. Hence, the value 2cclaim/2 acts as a ceiling for the security level. 

This ceiling poses no problem if high enough. For instance, the ceiling is at 2288 

in the case of Kђѐѐюј[], as it has capacity c = 576. Consider an application where 
we need a 512-bit output. Traditionally, a (second) preimage resistance level of 2512 

would be expected, while for Kђѐѐюј[] with output truncated to 512 bits a security 
level of only 2288 is claimed. However, the difference between these two security lev-
els is purely philosophical with no practical implications whatsoever. By translating 
these computation complexities into physical quantities such as time or energy, both 
are simply out of reach and will remain so in the foreseeable future [8]. 

2.2 What about diversification? 

A single function for all output lengths may pose problems when a scheme requires 
that different output lengths are generated with different hash function instances. Di-
versification is actually a requirement that may arise for other aspects than different 
output lengths. A scheme or protocol may require different hash function instances 
even if their output lengths are the same. In Kђѐѐюј[] the diversifier is fixed to 0 
and as such does not appear to address this requirement. However, diversification 
can be established at very small cost using a well-established technique called domain 
separation. Domain separation is an efficient means to construct different function in-
stances from a single underlying function. If the underlying function is secure, the 
derived functions can be considered as independent functions. 

One can implement domain separation by appending or prepending different 
constants to the input for each of the function instances: fi(M) = Kђѐѐюј(M∣∣Ci) 
or fi(M) = Kђѐѐюј(Ci∣∣M). As a concrete example, one can use a convention based 
on namespaces such as KђѐѐюјNS for diversification [6, Section 6.3]. The use of the 
diversifier d is actually a built-in way to achieve domain separation. 

3 LeĴing the user choose the capacity 

For standardization, one option is to impose a small set of (or just a single instance 
of) parameter values. Another option is to allow the user to freely choose them. We 
consider in particular the case where a user can freely¹ choose the capacity of Kђѐѐюј 
with r = 1600 − c so that the width of Kђѐѐюј- f is fixed. In this section, we describe 
the advantages and disadvantages of this option. 

As explained in [4], the hermetic sponge strategy allows the user to trade in speed 
for claimed security, or vice versa, by choosing the capacity. Relative performance 
estimates for various (r, c) pairs are listed in Table 1. 

If the user decides to lower the capacity to c = 256, providing a claimed security 
level equivalent to that of AES-128, the performance will be 31% greater than for the 
default value c = 576. If the user wants an output truncated to 512 bits to provide the 
traditionally expected (second) preimage resistance of 2512 by seĴing the capacity to 
c = 1024, she can do this at the cost of a performance decreased by 78%. 

A variable capacity can also result in important efficiency gain in applications 
dealing with (mostly) short messages. Consider for example an application with 
messages that are exactly 1024 bits long. The padding will extend these messages 

¹We limit the choice to multiples of 8 to avoid intra-byte bit shuffling. 
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r c Relative performance 
576 
832 

1024 
768 

÷1.778 
÷1.231 

1024 576 1 
1088 
1152 
1216 
1280 
1344 
1408 

512 
448 
384 
320 
256 
192 

×1.063 
×1.125 
×1.188 
×1.250 
×1.312 
×1.375 

Table 1: Relative performance of Kђѐѐюј[r, c] with respect to Kђѐѐюј[]. 

by 32 bits resulting in a two-block message and hence applying Kђѐѐюј[] results in 
two calls to Kђѐѐюј- f . If we decrease the capacity by 32 bits to 544 (still providing 
an astronomical security level), a padded message fits in a single block and only one 
call to Kђѐѐюј- f must be made. 

In [8] we provide a simple application to help determine the capacity value and 
output length given required security levels for collision-resistance and (second) pre-
image resistance. 

3.1 What about the indifferentiability? 

The sponge indifferentiability proof of [3] assumes the capacity is fixed and does 
not prove indifferentiability of a set of sponge functions calling the same underlying 
function with different capacity values. However, for the padding function used in 
Kђѐѐюј, we have proven an indifferentiability theorem in [6, Section 3.1.2] for the 
case of variable capacity and diversifier values. We refer to that section for a more 
in-depth explanation. 

3.2 What about the implementation cost? 

An argument against tunable parameters in a standard is that it makes implementa-
tions more expensive, as they usually have to support all parameter values to fully 
implement the standard. However, for Kђѐѐюј, the main implementation cost is for 
the Kђѐѐюј- f [1600] permutation that is the same for all capacity values. The addi-
tional cost of the variable capacity value consists of the required support for the con-
figurable bitrate r determining the length of the message blocks to be XORed into the 
state and of the coding of the bitrate in the padding. The cost of supporting a variable 
capacity value with a fixed state width is therefore quite limited. 

3.3 What about the burden of choice for the user? 

Another argument against tuneable parameters in a standard is that it puts the bur-
den of choice on the hash function user, typically a designer of a protocol or scheme. 
In particular, the choice of the capacity value determines a ceiling to the security 
level that the sponge function provides and one could argue that the user usually 
does not have the responsibility or the expertise to make that choice. In our opinion, 
the security claim of Kђѐѐюј is easy to understand and the user can be guided in the 
choice of the capacity by some simple recommendations. For example, one could fix 
a maximum capacity value cmax and recommend taking a capacity equal to twice the 
output length for output lengths below cmax/2 bits and a capacity equal to cmax bits 
for higher output lengths. 
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4 Parameters of the Kђѐѐюј- f permutation 

All Kђѐѐюј members we propose for standardization make use of the same permu-
tation: Kђѐѐюј- f [1600]. A single implementation of this permutation supports all 
the proposed variants, hence reducing cost, for instance, in hardware implementa-
tions. Furthermore, the choice of Kђѐѐюј- f [1600] favors 64-bit CPUs and yet remains 
efficient on 32-bit (and smaller) processors. 

SoĞware implementations of Kђѐѐюј- f use bitwise Boolean operations and (cyclic) 
shiĞs on CPU words. A typical implementation maps each lane to a CPU word, re-
sulting in the state of Kђѐѐюј represented in 25 words of 64 bits each. The choice 
of the lane size therefore favors CPUs with the corresponding word size. Specifi-
cally, the implementation of Kђѐѐюј- f [1600] on a 64-bit CPU can exploit 64-bit wide 
Boolean operations and 64-bit rotations. 

Because of the bit-oriented design of Kђѐѐюј- f , other approaches are possible. For 
instance, Kђѐѐюј- f [1600] can be efficiently implemented on a 32-bit CPU by using the 
bit interleaving technique [6, Section 7.2.2]. Here the odd and even bits of each lane are 
split, and the state of Kђѐѐюј- f [1600] is represented as 50 words of 32 bits. Rotations 
are then performed as cyclic shiĞs on 32-bit words, making them efficient on a 32-
bit processor. There is a cost associated to the conversion of the input message into 
this representation, but this cost remains small compared to the evaluation of the 
permutation itself (see [6, Section 7.2.2] for the performance penalty). Note that the 
use of, for example, modular addition would have prevented the bit interleaving 
technique. 

Some families of hash functions make use of two distinct compression functions, 
one oriented to 32-bit words and one to 64-bit words, in order to provide different 
output lengths and/or security levels. A full implementation on a given platform of 
such a family includes two separate compression functions, and hence at least one 
of the two will have a word length different from that of the CPU. In contrast, all 
Kђѐѐюј members we propose for standardization can be implemented with a single 
permutation Kђѐѐюј- f [1600] that thanks to bit interleaving can work with either 25 
words on a 64-bit CPU or 50 words on a 32-bit CPU. 

In terms of memory footprint, Kђѐѐюј- f [1600] requires 200 bytes of RAM for the 
state and some working memory [6, Section 7.2]. The sponge construction allows 
implementations to XOR the message block into the state directly, relieving the ap-
plication from dedicating a memory area for it. This optimization applies where the 
hashing API is composed of functions such as Init, Update and Final. In general 
a message queue must be allocated, which can be avoided for sponge functions or 
similar. 

The choice of width 1600 allows for a high bitrate even for high capacity values. 
For instance, Kђѐѐюј can process 800 more input bits per evaluation of Kђѐѐюј- f [1600] 
than of Kђѐѐюј- f [800] when c is fixed. However, the designer of an application on a 
memory-constrained device may opt for a smaller state size by using an alternate set 
of parameters. Kђѐѐюј[r = 288, c = 512] for instance uses 100 bytes of RAM. And if 
256 bits of capacity are enough for such an application, Kђѐѐюј[r = 144, c = 256] uses 
only 50 bytes. Similar ideas apply to hardware implementations, where Kђѐѐюј- f [800] 
and Kђѐѐюј- f [400] can be seen as compact alternatives. Using a smaller width has a 
price, though, as it requires to support another Kђѐѐюј- f permutation. This may be 
acceptable if such an application is exceptional or operates in a rather closed system, 
freeing the standard from supporting anything else other than Kђѐѐюј- f [1600]. 
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5 Tree hashing 

A way to exploit parallelism is to use tree hashing [7]. This technique can exploit 
SIMD architectures, multiple cores, or both. Like most hash functions, Kђѐѐюј can 
benefit from this technique. We do not propose tree hashing in the specifications be-
cause a sound and well-defined tree hashing construction can work above the mode 
of operation and so using an unmodified instance of Kђѐѐюј. The drawbacks of this 
technique, though, are the larger memory footprint and the extra fixed processing 
cost, which can be significant for smaller messages. 

In the light of two recent papers [10, 7], a sound tree hashing mode can be easily 
built as an application on top of existing hash functions and does not have to be 
embedded in the mode of operation. We define in [6, Section 6.4] an example of such 
a tree hashing application called KђѐѐюјTџђђ. 

Tree hashing can not only benefit from multiple cores, they can also exploit SIMD 
architectures on a single core. For instance, a specific instance of KђѐѐюјTџђђ can 
reach about 9 cycles/byte (single core) on NIST’s reference platform using SSE2 in-
structions [6, Section 7.3.3]. Further improvements may be obtained, in the future, 
with larger SIMD registers, and of course by moving to a multiple core implementa-
tion. 

This technique is not useful for short messages, however, as there is a fixed addi-
tional cost corresponding to the processing of a couple of extra blocks (the number 
depending on the chosen parameters). Also, the memory footprint increases with the 
number of Kђѐѐюј- f permutations that can be evaluated in parallel. 

On platforms with less parallelism, KђѐѐюјTџђђ can only partially exploit the par-
allelism available in the chosen tree structure or can even be implemented sequen-
tially (and is thus not significantly slower than Kђѐѐюј itself for long messages). Ex-
cept for the memory footprint and for short messages, it can be advantageous to use 
a tree enabling a high level of parallelism and let the target platform organize the 
computation to take advantage of this parallelism or less. 

Finally, it is worth noting that the arbitrarily-long output length of Kђѐѐюј comes 
in handy for tree hashing. Referring to [6, Section 6.4] and [7] for the technical ex-
planations, the intermediate hashing nodes need to produce at least c bits of output, 
while the four fixed-output-length variants output only n = c/2 bits. This is another 
reason for proposing an arbitrary output length. 

6 On the safety margin 

In this section, we explain how the safety margin in Kђѐѐюј can be increased or de-
creased simply by changing the number of rounds in Kђѐѐюј- f and explain why 
we think the nominal number of rounds provide a high safety margin. Finally, we 
describe two techniques to build a safe mode into Kђѐѐюј implementations at liĴle 
additional cost, which one could migrate to in the hypothetical case that a weakness 
in Kђѐѐюј is found. 

6.1 Changing the number of rounds 

The number of rounds of the Kђѐѐюј- f permutations is defined and fixed in [5] and 
reflects the trade-off between performance and safety margin made in the design. 
Nevertheless, the specifications make it easy to define Kђѐѐюј with an increased or 
decreased number of rounds. With the exception of the addition of a round con-
stant, the rounds are identical. As the round constants are defined for any number 
of rounds, it is sufficient to modify the total number of rounds in the specifications. 
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So, someone who would like to use Kђѐѐюј but does not feel comfortable with 
its safety margin can simply adopt a version with more rounds. Someone who feels 
that Kђѐѐюј has an excessive safety margin can adopt a version with fewer rounds. 

6.2 The safety margin with the nominal number of rounds 

As reflected in our estimates for the safety margin of Kђѐѐюј against different types 
of aĴack in [6, Section 5.4], we think Kђѐѐюј- f has about twice as many rounds as 
strictly required for Kђѐѐюј to stand up to its security claim, for any choice of the 
capacity. The high number of rounds in Kђѐѐюј- f [1600] is due to our adoption of 
the hermetic sponge strategy [4] and our wish to keep a safety margin against all 
distinguishers, irrespective of their strength and applicability to Kђѐѐюј itself, e.g., 
see [9]. 

In September 2009 we have increased the number of rounds from 18 to 24 in 
Kђѐѐюј- f [1600]. We took this decision aĞer the publication of a valid but non-threa-
tening 16-round structural distinguisher in [1]. We refer to [9] for a treatment of this. 

6.3 Migration path in the presence of a deployed standard 

We expect a hash standard to be ubiquitous both in soĞware and dedicated hardware 
implementations. If a weakness is discovered that has a real-world security impact, 
it is beneficial to have an affordable migration path towards a version without this 
weakness. On the NIST SHA-3 mailing list Ron Rivest [13, 2-Aug-2009] and other 
researchers proposed having a security parameter (e.g., the number of rounds) to 
be determined by the user. Disadvantages of this approach were discussed and the 
most important ones are the increased implementation cost due to the additional 
parameter, the burden of having to choose the security parameter value by the hash 
function user and the risk of denial-of-service aĴacks. Moreover, the support of a 
smooth choice for the security parameter may actually introduce new weaknesses, 
as observed by Stefan Lucks in his message to the NIST SHA-3 mailing list [13, 3-
Aug-2009]. 

In the most lightweight version of this approach the security parameter would 
have only two values: one nominal value and one high-security value (e.g., tripling 
the number of rounds). In case of emergency, it would then be possible to migrate to 
the high-security value. We describe here two methods for migrating to a more secure 
version that applies to Kђѐѐюј without impact on the hash function implementation 
itself. 

Both methods we propose consist of an input pre-processing step. In all use cases 
the input to a sponge function is a bitstring, typically made of message bits and pos-
sible key bits. AĞer padding, the input consists of a sequence of r-bit blocks. Before 
presenting it to the sponge construction, this input can then be expanded by insert-
ing bytes with fixed values in certain places. Depending on where these bytes are 
inserted, this has an effect similar to reducing the rate of the sponge function or mul-
tiplying the number of rounds of the underlying permutation. 

The first option is to reduce the effective bitrate from r bits to r − 6 bits by inserting 
aĞer every input block of r − 6 bits a block of 6 bits equal to zero. This reduces the 
number of bits an aĴacker can exploit from r to r − 6. Note that with this approach 
the hermetic sponge strategy is abandoned as the effective capacity is increased while 
the claimed capacity stays fixed. 

The second option is to multiply the effective number of rounds of the under-
lying permutation by a factor a by inserting aĞer every input block of r bits a − 1 
blocks of r bits with fixed and well-defined values. The a applications of the under-
lying permutation interleaved with the application of the fixed blocks, can then be 
seen as a single permutation with a as many rounds as the original one and with the 
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fixed-value blocks as round constants. As it is generally expected that increasing the 
number of rounds increases the safety margin with respect to almost all aĴacks, this 
provides a migration path to a security fix in case of a hypothetical security weakness. 
In this case the hermetic sponge strategy can be maintained as the single permutation 
with a as many rounds is assumed to have no structural distinguishers. 

Both methods have the advantage of leaving Kђѐѐюј- f untouched, which limits 
the cost of migrating should the need occur. 

The Kђѐѐюј Team, February 2010 
Guido Bertoni, Joan Daemen, Michaël Peeters and Gilles Van Assche 

References 

[1] J.-P. Aumasson and W. Meier, Zero-sum distinguishers for reduced Keccak-f and for 
the core functions of Luffa and Hamsi, Available online, 2009, http://131002.net/ 

data/papers/AM09.pdf. 

[2] G. Bertoni, J. Daemen, M. Peeters, and G. Van Assche, Sponge functions, Ecrypt 
Hash Workshop 2007, May 2007, also available as public comment to NIST from 
http://www.csrc.nist.gov/pki/HashWorkshop/Public_Comments/2007_May.html. 

[3]	 , On the indifferentiability of the sponge construction, Advances in Cryptol-
ogy – Eurocrypt 2008 (N. P. Smart, ed.), Lecture Notes in Computer Science, vol. 
4965, Springer, 2008, http://sponge.noekeon.org/, pp. 181–197. 

[4] , Cryptographic sponges, 2009, http://sponge.noekeon.org/. 

[5]	 , Kђѐѐюј specifications, version 2, NIST SHA-3 Submission, September 
2009, http://keccak.noekeon.org/. 

[6]	 , Kђѐѐюј sponge function family main document, NIST SHA-3 Submission 
(updated), September 2009, http://keccak.noekeon.org/. 

[7]	 , Sufficient conditions for sound tree and sequential hashing modes, Cryptology 
ePrint Archive, Report 2009/210, 2009, http://eprint.iacr.org/. 

[8]	 , Tune јђѐѐюј to your requirements, 2009, http://keccak.noekeon.org/ 

tune.html. 

[9]	 , Note on zero-sum distinguishers of јђѐѐюј- f , Comment on the NIST Hash 
Competition, January 2010, http://keccak.noekeon.org/NoteZeroSum.pdf. 

[10] Y. Dodis, L. Reyzin, R. Rivest, and E. Shen, Indifferentiability of permutation-based 
compression functions and tree-based modes of operation, with applications to MD6, 
Fast SoĞware Encryption (O. Dunkelman, ed.), Lecture Notes in Computer Sci-
ence, vol. 5665, Springer, 2009, pp. 104–121. 

[11] IEEE, P1363-2000, standard specifications for public key cryptography, 2000. 

[12] RSA Laboratories, PKCS # 1 v2.1 RSA Cryptography Standard, 2002. 

[13] NIST, Mailing list on NIST’s cryptographic hash workshops and hash algorithm com-
petition, http://csrc.nist.gov/groups/ST/hash/email_list.html. 

[14]	 , Announcing request for candidate algorithm nominations for a new crypto-
graphic hash algorithm (SHA-3) family, Federal Register Notices 72 (2007), no. 212, 
62212–62220, http://csrc.nist.gov/groups/ST/hash/index.html. 

8 

http://131002.net/data/papers/AM09.pdf
http://131002.net/data/papers/AM09.pdf
http://www.csrc.nist.gov/pki/HashWorkshop/Public_Comments/2007_May.html
http://sponge.noekeon.org/
http://sponge.noekeon.org/
http://keccak.noekeon.org/
http://keccak.noekeon.org/
http://eprint.iacr.org/
http://keccak.noekeon.org/tune.html
http://keccak.noekeon.org/tune.html
http://keccak.noekeon.org/NoteZeroSum.pdf
http://csrc.nist.gov/groups/ST/hash/email_list.html
http://csrc.nist.gov/groups/ST/hash/index.html


From: joan daemen [joan.daemen@st.com] 
Sent: Friday, June 25, 2010 5:16 AM 
To: hash-function@nist.gov 
Cc: hash-forum@nist.gov 
Subject: OFFICIAL COMMENT: Keccak (Round 2) 

Dear all, 

we released version 2.1 of the Keccak main document, that besides some restructuring and
editorial improvements also brings new content. All modifications are listed in a change
log in its appendix. At the same time, we released version 2.1 of KeccakTools, a set of
documented C++ classes that can help analyze Keccak-f, bringing some new classes. 

Both are available from the Keccak web page:
http://keccak.noekeon.org/Keccak-main-2.1.pdf
http://keccak.noekeon.org/KeccakTools-2.1.zip 

Note that the Keccak specification has not changed since the round-2 submission and is
still: 
http://keccak.noekeon.org/Keccak-specifications-2.pdf 

Kind regards, 

The Keccak team 
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From: hash-forum@nist.gov on behalf of Gilles VAN ASSCHE [gilles.vanassche@st.com]
 
Sent: Friday, November 05, 2010 12:28 PM
 
To: Multiple recipients of list
 
Subject: OFFICIAL COMMENT: Keccak (Round 2)
 

Dear all, 

Please note that we recently published a new set of implementations of Keccak, thanks to
contributions from our colleague Ronny Van Keer, STMicroelectronics. We focused on
implementations suitable for small platforms, such as 32-bit and 8-bit embedded
processors. More details can be found on our web page, and more specifically here:
http://keccak.noekeon.org/optimized_2.2.html
http://keccak.noekeon.org/optimized_2.3.html 

Among the new implementations, a few of them are meant to be reasonably compact in terms
of both code size and memory usage. In terms of RAM specifically, all the operations are
done in place, with a limited number of temporary variables. So, they need just a bit more
than the 200 bytes necessary to store the state. In addition, we provide an API for giving
partial input chunks (such as Init, Update, Final), where we exploit a unique feature of
sponge functions and similar: These partial input chunks are XORed directly into the state
of Keccak, thereby removing the need of a separate message queue. 

According to our internal tests, we expect these new implementations to perform much
better than what can be found in the sphlib 2.1 report or in the recent study of Mourad
Gouicem. A subset of these new variants and implementations has been submitted to eBASH
and to XBX. 

Kind regards, 

The Keccak team 
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