Changes in the SHAvite-3 Submission Package

Eli Biham!* and Orr Dunkelman? **

! Computer Science Department, Technion
Haifa 32000, Israel
biham@cs.technion.ac.il
2 Ecole Normale Supérieure
Département d’Informatique,
CNRS, INRIA
45 rue d’Ulm, 75230 Paris, France
orr.dunkelman@ens.fr

Abstract. This document lists the different modifications done in the SHAvite-3 sub-
mission package, including the tweak suggested for SHAVite-3.

The changes summarized in this report were divided according to their cause, to facilitate an
easy evaluation of the changes. All the locations are given with respect to the version submitted
to NIST on January 15th, 2009.

1 Tweak Related Changes

As mentioned in the submission, we have suggested a small tweak for SHAvite-3, to increase
the security of the compression function.

* The first author was supported in part by the Israel MOD Research and Technology Unit.
** The second author was supported by the France Telecom Chaire.

SHAvite-3

Modifications

1.1 The Tweak

|L0cation || Original Text | New Text
Sect. 4: Specifications of SHAvite-3

Pp. 10, first|| Eight of the produced words are XORed | Eight of the produced words are

para. with the counter (four with ¢nt[0] | XORed with the counter (four with

and four with ent[l]), thus prevent- | cnt[0] and four with cnt[1]), where in

ing any slide properties of the cipher: | four of these positions, the counter

rk[16],rk[54],7k[91], and rk[124] are | is complemented,! thus preventing

XORed with ent[0] during their update, | any slide properties of the cipher:

and rk[17],rk[53],rk[90], and rk[127] | rk[16],rk[58]*, rk[87]*, and rk[124] are

are XORed with cnt[1]. XORed with ent[0] during their up-
date, and rk[17]*,7k[53],7k[90], and
rk[127]*, are XORed with cnt[1]. All
the locations marked by * are actually
XORed with the complemented value of
the respective counter.

-7 - Also added footnote 1: We note that this is the only difference
between the original submitted version
of SHAvite-3956 and the tweaked ver-
sion.

Pp. 10, bul-|| If ¢ = 16 then rk[16]® = cnt[0] and | If ¢ = 16 then rk[16]® = cnt[0] and

let 1(c) rk[17)® = ent[1]. rk[17]® = ent[1].

Pp. 10, bul-|| If i = 84 then rk[86]® = cnt[l] and | If ¢ = 84 then rk[86]® = cnt[l] and

let 1(d) rk[87]® = ent[0]. rk[87]® = ent[0].

Pp. 10, bul-|| If i = 56 then rk[57]® = cnt[l] and | If ¢ = 56 then rk[57]® = cnt[l] and

let 1(h) rk[58]® = ent|0]. rk[58]® = ent[0].

Pp. 10, bul-|| If ¢ = 124 then rk[124]® = cnt[0] and | If i = 124 then rk[124]® = cnt[0] and

let 1(i) rk[127)® = ent[1]. rk[127)® = ent[1]

Pp. 13,|| Sixteen of the produced words are | Sixteen of the produced words are

Sect. 4.2.2/|| XORed with the counter (four with | XORed with the counter (four

second para. || each entli]). with each c¢nt[i]), where four
times the XORed counter word is
complemented.?

-7 - Also added footnote 2: We note that this is the only difference
between the original submitted version
of SHAvite-3512 and the tweaked ver-
sion.

Pp. 14, bul-| If ¢ = 32 then 7k[32]®& = cnt[0], | If ¢ = 32 then rk[32]® = cnt[0],

let 1(c) rk[33]® = ent[1], rk[34]® = cnt[2], and | rk[33]® = cnt[1], rk[34]® = cnt[2], and

rk[35]@® = cnt[3]. rk[35]® = ent[3].

Pp. 14, bul-| If ¢ = 164 then rk[164]® = cnt[3], | If i = 164 then rk[164]® = cnt[3],

let 1(g) rk[165]® = cnt[2], rk[166]® = cnt[l], | rk[165]® = cnt[2], rk[166]® = cnt[l],

and rk[167]@ = cnt[0]. and rk[167]@ = cnt[0].

[\

SHAvite-3 Modifications

|Location || Original Text | New Text

53]
53]

Pp. 15, bul-|| If ¢ = 440 then rk[440]® = ent[l], | If ¢ = 440 then rk[440]
let 1(k) rk[441]® = ent[0], rk[442]® = cnt[3], | rk[441)® = cnt[0], rk[442]
and rk[443]@ = cnt[2]. and rk[443]® = cnt[2].

= cnt[1],
= cnt(3],

5]
5]

53]

Pp. 15, bul-|| If ¢4 = 316 then rk[316]® = cnt[2], | If ¢ = 316 then rk[316]
let 1(o) rk[317]® = ent[3], rk[318]® = cnt[0], | rk[317]® = cnt[3], rk[318]
and rk[319]@® = ent[1]. and rk[319]® = cnt[1].

53]

= cnt[2],
= cnt[0],

5]
5]

1.2 Related Changes

|L0cation || Original Text | New Text |

Sect. 4: Specifications of SHAvite-3
Pp. 12, The value of M V556 has changed.
Sect. 4.1.4
Pp. 13, Table All the values of IV}, presented in the
2 table have changed.
Pp. 16, Table All the values of IV, presented in the
3 table have changed.
Pp. 16, The value of M V515 has changed.
Sect. 4.2.4
Sect. 4.3 Became Sect. 4.4, and the following text | Changes from the Original Sub-
was added as Sect. 4.3: mission
As noted earlier, the only difference be-
tween the new Chsg and its previous
version is the fact that in four out of
the eight positions where counter words
are XORed, the counter word is com-
plemented (specifically, twice cnt[0] and
twice cnt[1]). This insures that at least
four of the eight counter words which
enter the computation are non-zero.
The only difference between the new
Cs12 and its previous version is the fact
that four out of sixteen positions where
the counter words are XORed, the
counter word is complemented (each of
the four words is complemented once).
This insures that at least four of the
sixteen counter words which enter the
computation are non-zero.

Sect. 5: Design Criteria and Rationale

Pp. 19,|| and the locations of where the counter | and the locations of where the counter
Sect. 5.4,|| and salt are mixed. and salt are mixed, as well as when the
first para. counter is complemented.

SHAvite-3

Modifications

Original Text

New Text

Added a new paragraph after:

Following the concerns raised in [57, 61]
(which had no impact on the security
of SHAvite-3 as a hash function), we
tweaked the compression functions of
SHAvite-3. The tweak was chosen to be
the complementation of counter words
in four locations (out of the eight or 16
locations where the counter is XORed
into the expanded message). The com-
plementation locations were chosen to
ensure that no slide properties would
exist even for specially chosen message
and salt values. For ease of implemen-
tation, each time the counter is XORed
into the state, the last word of the
counter is complemented. This allows
software implementations to precom-
pute the complementation, thus reduc-
ing the effect this may have on the run-
ning time.

Sect. 6: The Security of

SHAvite-3

|Location

Pp. 19,
Sect. 5.4,
fifth para.
Pp. 22,
Sect. 6.1.1,
the “slide
attacks”
bullet

The only problematic case is when
#bits = 0, which happens only during
initializations (where the adversary has
almost no control over the inputs), and
during the processing of a full padding
block (again, where the adversary has
no control over the inputs).

As observed in [57, 61], without the
complementation of the counter, the
case #bits = 0 (which happens only
during initializations and the process-
ing of a full padding block, i.e., where
the adversary has almost no control
over the inputs) the block ciphers
posses some slid properties and fix
points (for message block m = 0 and
salt salt = 5252...52;). In [22] several
other special relationships for #bits =
0, m = 0, and salt = 5252...52, are dis-
cussed. Again, this issue is solved by the
tweak.

Appendix A: Test Vectors

| The test vectors were updated.

2

Improved Technical Work

2.1 New Security Analysis

Following new results on hash function cryptanalysis (namely paper [2]), we re-evaluated the
security of HAIFA as a mode of iteration.

SHAvite-3

Modifications

|Location

Original Text

| New Text

Sect. 3: HAsh Iterative FrAmework

Pp. 4, first
paragraph

and chosen target preimage attacks
[36].

chosen target preimage attacks [47],
and Trojan message attacks [2].

Pp. 4, second
paragraph

and the chosen-target preimage attacks
of [1, 25, 36, 37].

the chosen-target preimage attacks, and
the Trojan message attacks of [1, 2, 32,
47, 48].

Pp. 6,
Sect. 3.4.3

Added at the end of the paragraph:

Hence, a HAIFA hash function can be
distinguished after ¢ queries to the com-
pression function with probability at
most O(q?/2™¢) (or if m. = m — with
probability at most O(q?/2™)).

Pp. 8,
Sect. 3.4.4

Added at the end of the considered at-
tacks:

Trojan Message Attacks In this at-
tack the adversary introduces a mali-
cious suffix which allows efficiently find-
ing second preimages to a restricted set
of messages [2]. The two variants of
the attack are using collisions in the
compression function. Once the actual
compression function is unknown in ad-
vance due to the salt, this attack is
rendered impossible. By fixing the salt
length to more than m/2, the attack be-
comes slower than second preimage at-
tacks, even if the adversary is allowed to
supply a different suffix for every possi-
ble salt.

Sect. 5: Design Criteria and Rationale

18,
Sect. 5.2

Added a bullet concerning why En-
veloped Merkle-Damgéard was not se-
lected as the mode of iteration of
SHAvite-3:

Enveloped Merkle-Damgard — While
the enveloped Merkle-Damgard mode
offers the preservation of the pseudo
random properties of the compression
function, it does not offer full second
preimage resistance for long messages
and is not secure against the herding
attack. Hence, we decided to avoid the
use of this mode.

Pp. 18,
Sect. 5.2,
Tree hashes

hash is presented in [1].

hash is presented in [2].3

SHAvite-3

Modifications

Location

Original Text

New Text

”

Added footnote 3:

The attack of [2] is applicable whenever
all compression functions used in the
tree are the same. This is not true when
the there is an additional input to the
compression function which changes in
different calls, independent of the mes-
sage.

Pp. 18,
Sect. 5.3,
second para.

in order to protect against herding at-
tacks

in order to protect against herding at-
tacks and Trojan message attacks

Sect. 6: The Security of

SHAvite-3

Pp. 22|| Added at the end of bullet: We also note that this seems to render
Sect. 6.1.1, cube attacks [33] on the full cipher un-
the 7 Al- successful.
gebraic
Approaches”
bullet

Sect. 8: Performance
Pp. 27,|| Added a new paragraph: Finally, we note that the tweak is not
Sect. 8, expected to invalidate most of the pre-

second para.

vious work done on measuring and im-
plementing SHAvite-3. This follows the
fact that the tweak is composed of
negating four words, which can be done
in software in four 32-bit operations or

in very few hardware gates.

2.2 New Performance Analysis

The performance figures for SHAvite were extended and improved. This follows the following
reasons:

Ll

The use of a better compiler with more optimization flags.

The report on the efforts of the e BASH project.

The results of [10] concerning the new AES instruction (AES-NI extension).

The improved small footprint implementation of AES ([39] with comparison to the earlier

[27]).

SHAvite-3

Modifications

|Location

Original Text

| New Text

Sect. 1: Introduction

Pp. 2, second
para.

achieves for 256-bit digests a speed of
35.3 cycles per byte on a 32-bit machine
and of 26.7 cycles per byte on a 64-bit
machine. For 512-bit digests, SHAvite-
3 achieves speeds of 58.4 cycles per byte
on a 32-bit machine, and 38.2 cycles per
byte on a 64-bit machine.

achieves for 256-bit digests a speed of
32.83 cycles per byte on a 32-bit ma-
chine and of 25.13 cycles per byte on
a 64-bit machine. For 512-bit digests,
SHAvite-3 achieves speeds of 55.90 cy-
cles per byte on a 32-bit machine, and
35.86 cycles per byte on a 64-bit ma-
chine. As shown in [10], on future In-
tel CPUs which support the AES-NT in-
struction set, speeds of 5.6 and 5.5 cy-
cles per byte, respectively, are attain-
able. These speeds suggest that on fu-
ture platforms, SHAvite-3 is the fastest
remaining candidate.

Sect. 7: HAIFA-MAC and SHAvite-3-MAC

Pp. 26,
Sect. 7, one

Added at the end of the paragraph:

In Table 4 we compare the number of
compression function calls when using

second para.

cles per byte for 384-/512-bit digests on
32-bit Intel machines. On a 64-bit ma-
chine, the corresponding running times
are 26.7 and 38.2 cycles per byte, re-
spectively.

before last SHA-256, HMAC-SHA-256, SHAvite-
para. 3, and Shavite-3-MAC (when they are
used to produce a 256-bit digest/tag).
same Added table 4
Sect. 8: Performance
Pp. 26,|| Added at the end of the paragraph: Moreover, it seems that on Intel CPUs
Sect. 8, first with the new AES-NI instruction,
para. SHAvite-3 is going to be the fastest can-
didate [10].
Pp. 26,|| ANSI-C code is 35.3 cycles per byte | ANSI-C code is 32.83 cycles per byte
Sect. 8,|| for 224-/256-bit digests, and 58.4 cy- | for 224-/256-bit digests, and 55.90 cy-

cles per byte for 384-/512-bit digests on
32-bit Intel machines. On a 64-bit ma-
chine, the corresponding running times
are 25.13 and 35.86 cycles per byte, re-
spectively.

Pp. 27,
Sect. 8,
second para.

Added at the end of the paragraph:

As shown in [10], the actual gains for
SHAvite-3956 is expected to be about
77%, and for SHAvite-3512 is expected
to be about 84%.

Pp. 28,
Sect. 8.1.2,
first para.

would improve our current speed of 35.3
cycles per byte

would improve our current speed of
32.83 cycles per byte

7

compiled with gcc 4.0.3).

compiled with gecc 4.4.1).

SHAvite-3

Modifications

Original Text

New Text

SHAvite-3512 has a running time of 55.0
cycles per byte

SHAvite-3512 has a running time of
55.90 cycles per byte

For comparison, on the same machine,
which we obtained 35.3 cycles per byte
for (not-well-optimized) SHAvite-3256,
the fastest SHA-1 implementation has
a running time of 9.8 cycles per byte,
SHA-256 had a running time of 28.8
cycles per byte, and SHA-512 had a
running time of 77.8 cycles per byte.
All measurements were done using the
NESSIE test suite [44].

For comparison, on the same machine,
which we obtained 32.83 cycles per byte
for (not-well-optimized) SHAvite-3256,
the fastest SHA-1 implementation (ob-
tained from the OpenSSL library) has
a running time of 9.38 cycles per byte,
SHA-256 had a running time of 27.29
cycles per byte, and SHA-512 had a
running time of 78.38 cycles per byte.
All measurements were done using the
NESSIE test suite [58] using code from
OpenSSL and internal NESSIE code.

Added a new paragraph:

In the eBASH project [35], the tim-
ings of various SHA-3 candidates (as
well as other hash functions) on vari-
ous platforms were measured. The mea-
surements for SHAvite-3 were done on
one variant of the code which we pro-
vided, and that was optimized to a spe-
cific type of a 32-bit machine with-
out salt support (i.e., the fixed salt
was used). The running times on x86
platforms (Intel and AMD) varies be-
tween 28.73 and 84.42 cycles/byte for
SHAvite-3256 (the lower speeds are usu-
ally obtained on older machines or older
compilers or both), validating our pre-
vious speed claims. For PowerPCs with
32-bit CPUs the speeds of SHAvite-3256
varied between 20.62 and 43.99 cycles
per byte. For SHAvite-3512 the mea-
sured speeds on x86 platforms vary be-
tween 55.30 and 242.09 cycles per byte.
For PowerPCs with 32-bit CPUs, the
running times are between 32.00 and
184.78 cycles per byte.

|Location

Pp. 28,
Sect. 8.1.2,
second para.
Pp. 28,
Sect. 8.1.2,
third para-
graph

Pp. 28,
Sect. 8.1.2,
third para.
Pp. 28,
Sect. 8.1.3,
third para.

has a running time of 26.7 cycles per
byte

has a running time of 25.13 cycles per
byte

SHAvite-3

Modifications

Original Text

New Text

compiled with gec 4.2.4).

compiled with gec 4.4.1).

The code of SHAvite-3512 has a running
time of 38.2 cycles per byte. For com-
parison, on this machine, SHA-1 takes
9.5 cycles per byte, SHA-256 takes 25.3
cycles per byte, and SHA-512 takes 16.9
cycles per byte.

The code of SHAvite-3512 has a run-
ning time of 35.86 cycles per byte. For
comparison, on this machine, SHA-1
takes 7.34 cycles per byte, SHA-256
takes 19.08 cycles per byte, and SHA-
512 takes 14.71 cycles per byte.

Added after the paragraph a new one:

The measurements of eBASH for 64-
bit Intel and AMD platforms were be-
tween 22.79 and 61.24 cycles per byte
for SHAvite-3256 and between 24.71
and 39.64 cycles per byte for PowerPC
platforms. For SHAvite-3512 the mea-
surements on Intel and AMD platforms
were 40.28 and 255.10 cycles per byte.
For PowerPCs, the corresponding range
is 38.41 to 64.39 cycles per byte.

The table was updated to include the
updated results as well as the indepen-
dent results obtained by eBASH and
[10].

This would lead to a running time of

less than 8 cycles per byte on such
CPUs.

In [10] the untweaked version of
SHAvite-3 was timed, and the outcome
was 5.6 cycles/byte with the new AES-
NI extension. We note that of all the
second round candidates considered in
[10], SHAvite-3 was the fastest. As the
tweak is expected to have little effect
on the time measures, we can safely es-
timate the running time of the tweaked
version as having the same value, i.e.,
5.6 cycles/byte.

Location

Pp. 29, Table
4

Pp. 29,
Sect. 8.2,
first para.
Pp. 29,
Sect. 8.2,

second para.

AES round instructions themselves can
be interleaved.

AES round instructions themselves can
be interleaved as was shown in [10]. For
the untweaked SHAvite-3510 the run-
ning time was measured to be 5.5 cy-
cles/byte with the new AES-NI exten-
sion. As before, the tweak is not ex-
pected to affect the performance, and
thus, we expect a similar speed for the
tweaked version.

Modifications

Original Text

New Text

The smallest AES implementation in
ASIC is reported in [27]. The suggested
implementation uses about 3400 gates,
and has a throughput of 9.9 Mbps in a
80 MHz maximal frequency (the imple-
mentation used a 0.35u technology). Of
the 3400 gates, about 60% (about 2040)
are reported to store 256 bits of the in-
ternal state (a rate of about 8 gates per
memory bit).

The smallest AES implementation in
ASIC is reported in [39]. The suggested
implementation uses about 3100 gates,
and has a throughput of 121 Mbps in
a 152 MHz maximal frequency (the im-
plementation uses a 0.13u technology).
Of the 3100 gates, about 60% (i.e., 1860
gates) are reported to store 256 bits of
the internal state (a rate of about 7.2
gates per memory bit).

SHAvite-3
|Location ||
Pp. 29,
Sect. 8.3.1,
first para.
Pp. 30,
Sect. 8.3.2,

second para.

and another 1360 gates for the AES
core

and another 1240 gates for the AES
core

7

a full implementation of SHAvite-3254
in about 10300 gates.

a full implementation of SHAvite-3256
in about 10100 gates.

The speed of this implementation is
about 100 cycles for an AES round
(at 80 MHz), which implies a speed
of about 5200 cycles for an invocation
of Css6, or a throughput of about 7.6
Mbps.

The speed of this implementation is
about 16 cycles for an AES round (at
152 MHz), which implies a speed of
about 840 cycles for an invocation of
Cos6, or a throughput of about 93.5
Mbps at 153 MHz clock rate.

Hence, the implementation is expected
to use about 18500 gates, and achieve a
speed of about 4.7 Mbps.

Hence, the implementation is expected
to use about 18400 gates, and to achieve
a speed of about 57.9 Mbps.

Pp. 30,
Sect. 8.3.2,
third para.
Pp. 31,
Sect. 8.3.3,
first para.
Pp. 31,
Sect. 8.3.3,

second para.

four AES round cores need to be used.
This increases the circuit size to about
100,500 gates.

three AES round cores need to be used
with some additional memory.” This in-
creases the circuit size to about 81,000
gates.

7

Added footnote 7:

The three cores are used as follows: one
in each F4(-), and one for the message
expansion. There is a requirement for
some additional memory in the message
expansion in this approach.

10

SHAvite-3

Modifications

3 Editorial Changes

[Location || Original Text | New Text
Abstract which iterates a round function based | which iterates a round function based

on the AES round. on the AES round function.

Sect. 2: AES and Some Mathematical Background

Pp. 2, last| In order to explicitly the AES designers | The AES designers picked the following
para. picked the following irreducible polyno- | irreducible polynomial

mial
Pp. 2, last|| following the Federal Information Pro- | following Federal Information Process-
para. cessing Standard 197 ing Standard 197

Sect. 3: HAsh Iterative FrAmework

Pp. 4, second|| Under reasonable assumptions, it is | Under reasonable assumptions, it is
para. claimed that HAIFA does preserve claimed that HAIFA preserves
Pp. 5, first|| However, a careful application would | However, a careful application would
para. ensure that the salt contains enough | ensure that the salt contains enough

randomness to be unpredicted. randomness to be unpredictable.
Pp. 6,|| then the last blocks are necessarily dif- | then the last compression function calls
Sect. 3.4.1,|| ferent. are necessarily different.
third para.
Pp. 6,/ The reason for that is that the last | The reason for this is that the last block
Sect. 3.4.2,|| block
second para.
Pp. 6,/ Among other things, this fact proves | Among other things, this proves that
Sect. 3.4.3,|| that HATFA HAIFA
first para.
Pp. 7, the cost of connecting it to the challenge | the cost of connecting it to the challenge
Sect. 3.4.4,|| message is like the cost message is equivalent to the cost
Kelsey and
Schneier’s
attack
-7 - (and is 2™). (and is still 2™).
Pp. 7,/ is larger than a preimage attack and | is larger than a preimage attack and
Sect. 3.4.4,|| whose memory storage makes standard | whose memory storage makes standard
the herding|| time-memory attacks more favorable. time-memory tradeoff attacks more fa-
attack vorable.
Pp. 8, which is slightly slower than other tech- | which is slightly slower than the one of
Sect. 3.4.4,|| niques, [48],
the second
preimage
attack based
on herding

11

SHAvite-3

Modifications

|Location | Original Text | New Text
Sect. 4: Specifications of SHAvite-3
Pp. 9,|| After that we repeat a process that gen- | After that, we repeat a process that
Sect. 4.1.2,|| erates generates
third para.
Pp. 10, Fig-|| All the 0 values were changed into 0128,
ure 2
Pp. 11, Fig-{| We note that the counters are XORed | We note that the counters are added in
ure 3 in different positions different positions
Pp. 13,| as well as 512-bit subkey RK; ; = as well as a 512-bit subkey RK; ; =
Sect. 4.1.4,
first para.
Pp. 17,]| (possibly in exchange for loss in secu- | (possibly in exchange for a loss in secu-
Sect. 4.3,|| rity) rity)
first para.
-7 - is expected to be slightly faster than for | is expected to be slightly faster than for
the general case). the general case.
Sect. 5: Design Criteria and Rationale
Pp. 17,]| as the adversary can control the key | as the adversary can control the key
Sect. 5.1,|| (message). (through the message).
third para.
-7 - We therefore ensure that the best | We therefore ensure that the best
related-key differential would has as low | related-key differential would have as
low
-7 - (it may be at most 2=™/2 for m-bit di- | (it may be at most 2="/2 for an m-bit
gest digest
Pp. 17,|| with the “encryption” part of the block | with the “encryption” part of the block
Sect. 5.1,|| cipher, cipher (as happened in the recent at-
fourth para. tacks on AES [19-21]),
Pp. 19, set of “common constants” (i.e., | set of “common constants” (i.e.,
Sect. 5.4, vV2,0,...). V2,6,...).
second para.
Pp. 19,|| The locations were chosen to be in the | For SHAvite-325¢ the locations were
Sect. 5.4, chosen to be in the
fifth para.
Pp. 19,| (as the issue of possibly weak values is | (as the issue of potentially weak values
Sect. 5.4,|| solved by is solved by
last para.
Sect. 6: The Security of SHAvite-3
Pp. 22/|| suggest that boomerang attacks suggests that boomerang attacks
Sect. 6.1.1,
second para.
Pp. 22| is secure against impossible differential | is secure against impossible differential
Sect. 6.1.1,|| as well. cryptanalysis as well.
impossible
differential
cryptanaly-
sis bullet

12

SHAvite-3 Modifications
|Location || Original Text New Text
Pp. 22.|| is still open. is still open (see [18,42]).
Sect. 6.1.1,
the 7 Al-
gebraic
Approaches”
bullet
Pp. 23,|| at random assures that the attacker | at random assures that the adversary
Sect. 6.1.2,|| cannot select cannot select
third para.
Pp. 25,|| we suggest new signature schemes to al- | we suggest that new signature schemes
Sect. 6.3.1,|| low for a mechanism allow
second para.
Sect. 7: HAIFA-MAC and SHAvite-3-MAC
Pp. 26,|| Moreover, the different IV,, for differ- | Moreover, the different IV,,’s for differ-
Sect. 7,/ ent digest sizes ent digest sizes
second para.
Pp. 26,|| (and preferably related-key pseudoran- | (and preferably a related-key pseudo-
Sect. 7, third|| dom function). random function).
para.
Pp. 26,|| Added at the end of the paragraph: Of course, in this case the key used as
Sect. 7, fifth salt is to be kept secret and never used
para. publicly.
Sect. 8: Performance

Pp. 28,|| There are several approaches to imple- | There are several approaches for imple-
Sect. 8.1.3,|| ment AES menting AES
first para.
- — larger number of registers and com- | larger number of registers and instruc-

mands tions
-7 - which were applied in [40, 41] to imple- | which were applied in [45, 53, 54] to im-

ment AES efficiently. plement AES efficiently.
Pp. 28,|| it seems that the speed of AES on 64- | it seems that the speed of AES on 64-
Sect. 8.1.3,|| bit machine bit machines
second para.
Pp. 28,|| to allow multiple calls for the command | to allow multiple calls for the instruc-
Sect. 8.2, tion
first para.
Pp. 29,|| With such a command, With such an instruction,
Sect. 8.2,
first para.
Pp. 29,|| where we expect even better use of the | where we expect even better use of the
Sect. 8.2,]| command, instruction,
second para.
Pp. 29,|| using many pipelined application of | using many pipelined applications of
Sect. 8.3.1,|| AES. AES.
second para.

13

SHAvite-3 Modifications
|Location || Original Text | New Text |
Pp. 30,|| an implementation based on [27] would | an implementation based on [39] would
Sect. 8.3.2,]| need another 128-bit of internal state need another 128 bits of internal state
second para.

Pp. 30,|| (each takes 22,850 gates) (22,850 gates each)
Sect. 8.3.2,
fourth para.

4 Code Changes

|L0cation || Original Text | New Text
SHAvite-3.c local_bitcount+=BlockSizeB; local_bitcount+=8*BlockSizeB;
The change follows a bit counter
vs. byte counter issues
SHAvite-3.c Compress256(block,result, state-> if ((state->bitcount % state->
bitcount, state->salt); BlockSize)==0)
Compress256(block,result,
0x0ULL, state->salt);
else
Compress256(block,result,state->
bitcount, state->salt);
Dealing with messages whose length
is divisable by the block size
SHAvite-3.c Compress512(block,result, state-> if ((state->bitcount % state->

bitcount, state->salt);

Dealing with messages whose length
is divisable by the block size

BlockSize)==0)
Compress512(block,result,
0x0ULL, state->salt);
else
Compress512(block,result,state->
bitcount, state->salt);

SHAvite3-256.h || rk[17] " = counter[1]; rk[17] * = ~counter[1];
SHAvite3-256.h || rk[58] " = counter[0]; rk[58] N = ~counter[0];
SHAvite3-256.h || rk[87] * = counter|0]; rk[87] A = ~counter[0];
SHAvite3-256.h || rk[127] * = counter|[1]; rk[127] » = ~counter[1];
This is the tweak for SHAvite-3256
SHAvite3-512.h || rk[35] * = counter[3]; rk[35] A = ~counter[3];
SHAvite3-512.h || rk[167] * = counter[0]; rk[167] » = ~counter|0];
SHAvite3-512.h || rk[443] * = counter[2]; rk[443] » = ~counter[2];
SHAvite3-512.h || rk[319] * = counter|[1]; rk[319] » = ~counter[1];

This is the tweak for SHAvite-3512

SHAvite-3.c

Added comment (twice):

/* The following line is due to the re-
quired API of 64-bit message */

/* length, while the hash function deals
with 128-bit lengths */

14

SHAvite-3 Modifications

|Location || Original Text | New Text
SHAvite-3 Added code (with no effect) memset (block+BlockSizeB-10,0,8);
(improves readability)
SHAvite-3 Compress512(block,result,0x0UL, Compress512(block,result,0x0ULL,
state->salt); state->salt);

all files Added to header /* Tweaked version (21.Sep.2009) */
We note that also the optimized code has changed (and is no longer equal to the reference
code).
5 Improved Bibliography

Added the following papers to the bibliography:

2.

10.

19.

20.

21.

22.

24.

33.

35.

39.

45.

50.

Elena Andreeva, Charles Bouillaguet, Orr Dunkelman, John Kelsey, Herding, Second Preim-
age and Trojan Message Attacks Beyond Merkle-Damgard, presented at Selected Areas in
Cryptography 2009.

Ryad Benadjila, Olivier Billet, Shay Gueron, Matthew J.B. Robshaw, The Intel AES In-
structions Set and the SHA-3 Candidates, accepted to ASIACRYPT 2009, available online
at http://crypto.rd.francetelecom.com/sha3/AES/paper/.

Alex Biryukov, Orr Dunkelman, Nathan Keller, Dmitry Khovratovich, Adi Shamir, Key
Recovery Attacks of Practical Complexity on AES Variants With Up To 10 Rounds, TACR
ePrint report 2009/374.

Alex Biryukov, Dmitry Khovratovich, Ivica Nikolic, Distinguisher and Related-Key Attack
on the Full AES-256, Advances in Cryptology, proceedings of CRYPTO 2009, Lecture Notes
in Computer Science 5677, pp. 231-249, Springer-Verlag, 2009.

Alex Biryukov, Dmitry Khovratovich, Related-key Cryptanalysis of the Full AES-192 and
AES-256, accepted to ASIACRYPT 2009, available online at http://eprint.iacr.org/
2009/317 .pdf.

Charles Bouillaguet, Orr Dunkelman, Pierre-Alain Fouque, Gaétan Leurent, New Self-
Similarity Attack, preprint, September 2009.

Carlos Cid, Gaéten Leurent, An Analysis of the XSL Algorithm, Advances in Cryptology,
proceedings of ASTACRYPT 2005, Lecture Notes in Computer Science 3788, pp. 333-352,
Springer-Verlag, 2005.

Itai Dinur, Adi Shamir, Cube Attacks on Tweakable Black Box Polynomials, Advances in
Cryptology, proceedings of EUROCRYPT 2009, Lecture Notes in Computer Science 5479,
pp. 278-299, Springer-Verlag, 2009.

ECRYPT, ECRYPT Benchmarking of All Submitted Hashes, available online at http:
//bench.cr.yp.to/results-hash.html.

Panu Hamaélainen, Timo Alho, Marko Hannikdinen, Timo D. Hamaélainen, Design and Im-
plementation of Low-Area and Low-Power AES Encryption Hardware Core, Ninth Euromi-
cro Conference on Digital System Design: Architectures, Methods and Tools, IEEE Com-
puter Society, 2006.

Emilia Késper, Peter Schwabe, Faster and Timing-Attack Resistant AES-GCM, proceed-
ings of Cryptographic Hardware and Embedded Systems — CHES 2009, Lecture Notes in
Computer Science 5747, pp. 1-17, Springer-Verlag, 2009.

Lars R. Knudsen, Vincent Rijmen, Known-Key Distinguishers for Some Block Ciphers,
Advances in Cryptology, proceedings of ASTACRYPT 2007, Lecture Notes in Computer
Science 4833, pp. 315-324, Springer-Verlag, 2007.

15

SHAvite-3 Modifications

51. Chu-Wee Lim, Khoongming Khoo, An Analysis of XSL Applied to BES, proceedings of
Fast Software Encryption 2007, Lecture Notes in Computer Science 4593, pp. 242-253,
Springer-Verlag, 2007.

57. Mridul Nandi, Souradyuti Paul, OFFICIAL COMMENT: SHAvite-3, 2009, available online
at http://ehash.iaik.tugraz.at/uploads/5/5c/NandiP-SHAvite-3.txt.

61. Thomas Peyrin, Chosen-salt, chosen-counter, pseudo-collision on SHAwvite-8 compression
function, 2009, available online at http://ehash.iaik.tugraz.at/uploads/e/ea/Peyrin-SHAvite-3.
txt.

Also, the bibliographic data of [9] were updated (following its publication in the proceedings
of INDOCRYPT 2008).

6 Miscellaneous

[Location || Original Text | New Text |
Sect. 8: Performance
Pp. 27,|| will be added to the Intel CPUs (ex- | will be added to the Intel CPUs (ex-
Sect. 8,|| pected in the second quarter of 2009), pected in the last quarter of 2009 or the
second para. first quarter of 2010) and to the AMD
CPUs (expected in 2011),

Pp. 28,|| It is evident that adding the set of AES | It is evident that adding the set of AES
Sect. 8.2,|| commands to Intel CPUs is expected instructions to Intel and AMD CPUs is
first para. expected

-7 - The expected latency of this command | The expected latency of the new Intel

is 6, instruction is 6,
Sect. 9: Summary
|| | Added acknowledgments

16

