
Provable Security of BLAKE with

Non-Ideal Compression Function

Elena Andreeva, Atul Luykx and Bart Mennink

Dept. Electrical Engineering, ESAT/COSIC and IBBT

Katholieke Universiteit Leuven, Belgium

{elena.andreeva, bart.mennink}@esat.kuleuven.be

Abstract. We analyze the security of the SHA-3 finalist BLAKE. The BLAKE hash function follows
the HAIFA design methodology, and as such it achieves optimal preimage, second preimage and col
lision resistance, and is indifferentiable from a random oracle up to approximately 2n/2 assuming the
underlying compression function is ideal.
In our work we show, however, that the compression function employed by BLAKE exhibits a non
random behavior and is in fact differentiable in only 2n/4 queries. Our attack on the indifferentiability
of the BLAKE compression function undermines the provable security strength of BLAKE not only
with respect to its overall indifferentiability, but also its collision and (second) preimage security in the
ideal model.
Our next contribution is the restoration of the security results for BLAKE in the ideal model by refining
the level of modularity and assuming that BLAKE’s underlying block cipher is an ideal cipher. We prove
that BLAKE is optimally collision, second preimage, and preimage secure (up to a constant). We go on
to show that BLAKE is still indifferentiable from a random oracle up to the old bound of 2n/2 queries,
albeit under a weaker assumption: the ideality of its block cipher.

Keywords. SHA-3, BLAKE, collision resistance, (second) preimage resistance, indifferentiability.

1 Introduction

Hash functions are a main building block for numerous cryptographic applications. Due to a series of attacks
on the widely deployed SHA-1 hash function by Wang et al. [19, 20], the US National Institute for Standards
and Technology (NIST) recommended the replacement of SHA-1 by the SHA-2 hash function family and
announced a call for the design of a new SHA-3 hashing algorithm in 2007 [16]. Five candidates, BLAKE [3],
Grøstl [12], JH [21], Keccak [5] and Skein [11], made it to the third and final round of the competition.
Evaluating the security and performance of the remaining five candidates is crucial in the ongoing process
for the selection of the finalist hash function.

The focus of this work is the security of the BLAKE hash function candidate. To assess the security of
BLAKE, we follow the security criteria listed by NIST in their call for a new SHA-3 hash function: collision,
second preimage, preimage security and resistance to the length extension attacks. The BLAKE hash function
is designed by Aumasson et al. [3], and follows the HAIFA design methodology of Biham and Dunkelman [6].
Its underlying compression function f employs internally a block cipher E and exhibits some similarities with
the Davies-Meyer compression function [7]. As described in the SHA-3 provable security survey by Andreeva
et al. [1], BLAKE inherits preimage, second preimage, collision, and indifferentiability security guarantees
of the HAIFA design, assuming ideality of the underlying compression function. More precisely, due to the
specific HAIFA counter BLAKE is indifferentiable from a random oracle in the indifferentiability framework
of Maurer et al. [14]. The advantage of an adversary against the collision and (second) preimage security of
BLAKE is upper bounded by approximately q2/2n and q/2n, respectively. While all of these results are true
in the ideal compression function model, no concrete (in)differentiability results are known for the BLAKE
compression function, which is the main motivation for this work.

Our Contributions. Firstly, in Sect. 3 we present an attack on the BLAKE compression function f , which
shows that f is differentiable from a random oracle in 2n/4 queries. This is less than ideally expected, and
as a consequence the existing BLAKE indifferentiability bound, together with the collision and (second)

mailto:bart.mennink}@esat.kuleuven.be

preimage security bounds from [1], are reduced by a square root. These findings yield a provable security
level that is not compliant with the NIST security requirements. The indifferentiability attack is a serious
motivation for carrying out further security analysis of the BLAKE hash function in a way that restores
its security guarantees. One approach in this direction is to refine the level of modularity in the security
analysis and to investigate security properties of the BLAKE hash function under the assumption that the
underlying block cipher E, rather than the compression function, is ideal.

This brings us to our second contribution, which is presented in Sect. 4. In the ideal cipher model,
we conclude optimal (up to a constant) collision and (everywhere) preimage security of f . This result is
important to establish a strong confidence in the security of f in the sense that even if f exhibits some
non-ideal behavior, its collision and preimage security are not compromised when E behaves close to ideal.
Furthermore, due to the collision and everywhere preimage resistance preservation of the HAIFA design [2],
the BLAKE hash function inherits the optimal security of f with respect to both properties.

Next, in Sect. 5 we reconsider the second preimage resistance of BLAKE. As a HAIFA design, BLAKE
does not preserve second preimage resistance [2], and proving second preimage security of BLAKE’s com
pression function does not directly translate to the second preimage security of BLAKE. To assess the second
preimage security of BLAKE, we therefore analyze directly the BLAKE hash function in the ideal cipher
model and prove it optimally (everywhere) second preimage resistance, up to a constant. This result confirms
BLAKE’s resistance against the second preimage attacks of Dean [10] and Kelsey and Schneier [13], even
when the non-ideal compression function of BLAKE is employed.

Finally, in Sect. 6 we restore the indifferentiability result of BLAKE to the old bound of approximately
2n/2 queries by giving a proof with an ideal underlying block cipher E. We show that despite the differen
tiability of BLAKE’s compression function f , in the ideal cipher model the BLAKE hash function does not
suffer structural design flaws. We summarize our results on BLAKE in Table 1.

Our results amount to an important contribution to the security analysis of the SHA-3 finalist BLAKE
in a way that addresses all the security criteria of NIST listed in their call for a new SHA-3 hash function.
We provide a thorough investigation of these security properties for BLAKE in the ideal block cipher model.

Table 1: A summary of our results on the BLAKE hash function H and its compression function f . The
bounds denote the required number of queries to forge an attack. All results in this table are in the ideal
cipher model.

preimage second preimage collision indifferentiability

f Θ(2n)
Sect. 4

– Θ(2n/2)
Sect. 4

O(2n/4)
Sect. 3

H Θ(2n)
Sect. 4

Θ(2n)
Sect. 5

Θ(2n/2)
Sect. 4

Ω(2n/2)
Sect. 6

2 Preliminaries

For n ∈ N, let {0, 1}n denote the set of bit strings of length n and let {0, 1}∗ denote the set of bit strings
of arbitrary length. For two bit strings x, y, xly denotes their concatenation and x ⊕ y their bitwise XOR.

rBy [x]2 = xlx we denote the concatenation of two copies of x. If x is of even length, then xl and x denote
its left and right halves where |xl| = |xr|. For natural m, n, (m)n is the encoding of m as an n-bit string.
We denote by Bloc(2n) the set of all block ciphers E : {0, 1}2n × {0, 1}2n → {0, 1}2n, where the first input
corresponds to the key input. A random oracle [4] is a function which provides a random output for each new
query. A random 2n-bit block cipher is a block cipher randomly sampled from Bloc(2n). A random primitive
will also be called “ideal”.

2.1 BLAKE

In accordance with the SHA-3 hash function specification, BLAKE [3] supports outputs of size n = 224,
256, 384, and 512 bits. In this work we focus on the variants n = 256, 512, as the 224- and 384-variants are
simply chopped versions of these.

BLAKE takes as input a salt s of n/2 bits (chosen by the user), and a message M of arbitrary length. The
evaluation of H(s, M) is done as follows. Firstly, the message M is padded into message blocks m1, . . . ,mk of
2n bits, where the padding function pad is defined as pad(M) = Ml10−|M |−n/2−2 mod 2n1l(|M |)n/2. Along
with these message blocks, counter blocks t1, . . . , tk of length n/4 bits are generated. This counter keeps track
of the number of message bits hashed so far and equals 0 if the i-th message block contains no message bits1 .
Starting from an initial state value h0 ∈ {0, 1}n, the message blocks mi and counter blocks ti are compressed
iteratively into the state using a compression function f : {0, 1}n ×{0, 1}n/2 ×{0, 1}2n ×{0, 1}n/4 → {0, 1}n .
Here, the second input to f denotes the salt s. The output of the BLAKE hash function is defined as its
final state value H(s, M) = hk.

The compression function f internally uses a block cipher E : {0, 1}2n ×{0, 1}2n → {0, 1}2n . f is depicted
in Fig. 1 and is defined as follows. Here, C ∈ {0, 1}n is a constant.

procedure f(hi−1, s, mi, ti)
vi ← (hi−1lsl[tl]2l[tr]2) ⊕ (0nlC)i i
wi ← E(mi, vi)

l rhi ← w ⊕ w ⊕ hi−1 ⊕ [s]2i i
return hi

end procedure

hi−1

s

 /
n

 /
n/2

 /
n/8

 /
n/8

l /
2n

0nlC

\

2n vi /
2n E

mi

\

2n

wi /
2n

_ n n n
 / /

[s]2

\n

 / hi

lti

tr

i

Fig. 1: The BLAKE compression function f of Sect. 2.1.

2.2 Preimage, Second Preimage and Collision Security

$
An adversary A is a probabilistic algorithm with oracle access to a randomly sampled block cipher E ←
Bloc(2n). In this work, we consider information-theoretic adversaries only. This type of adversary has un
bounded computational power, and its complexity is measured by the number of queries made to his oracle.
The adversary can make queries to E and its inverse E−1 . These queries are stored in a query history Q
as elements of the form (mj , vj , wj), where j is the query index, mj is the key input to the block cipher
(note that for BLAKE the message input to f is the key input to E), and vj and wj denote the plaintext

l rand ciphertext, respectively. Associated to query (mj , vj , wj) we define the value xj = w ⊕ w ⊕ hj ⊕ [sj]2j j
(1) (2) (3) (4)

as the output of the compression function f , where we parse hj lsj lt lt lt lt ← vj ⊕ (0nlC). In the j j j j
remainder, we assume that Q always contains the queries required for the attack and that the adversary
never makes queries to which it knows the answer in advance.

1 In more detail, ti = (i2n)n/4 if i2n ≤ |M |, ti = (|M |)n/4 if (i−1)2n < |M | ≤ i2n, and ti = (0)n/4 if |M | ≤ (i−1)2n.

: {0, 1}p

cipher E
$

→ {0, 1}n for p ≥ n be a compressing function instantiated with a randomly chosen block
← Bloc(2n). In this work, F will either be the BLAKE hash function H or its compression function

Let F

f . For the preimage and second preimage security analysis in this work, we consider the notion of everywhere
preimage and second preimage resistance [18]. In the ideal model setting (where randomness is gained from
the ideal primitive rather than from the use of an explicit random key), these notions are the strongest
options because they guarantee preimage (resp. second preimage) security for every range (resp. domain)
point.

Definition 1. Let p, n ∈ N with p ≥ n and let F : {0, 1}p → {0, 1}n be a compressing function employing
block cipher E ∈ Bloc(2n). The advantage of an everywhere preimage finding adversary A is defined as

← Bloc(2n), z ← AE,E−

y∈{0,1}n F (z) = y

$ 1
()y :E

Advepre(A) = max PrF .

We define by Advepre(q) the maximum advantage of any adversary making q queries to its oracles. F

Definition 2. Let p, n ∈ N with p ≥ n and let F : {0, 1}p → {0, 1}n be a compressing function employing
block cipher E ∈ Bloc(2n). Let λ ≤ p. The advantage of an everywhere second preimage finding adversary A
is defined as

← Bloc(2n), z ← AE,E−1$

/∈{0,1}λ z
(z') :Eesec[λ]

Adv (A) = max PrF .
 ∧ F (z) = F (z')= z'z

esec[λ]
We define by Adv () the maximum advantage of any adversary making queries to its oracles. q q

$

F

In case F denotes the BLAKE compression function f of Sect. 2.1, its domain points are of the form
z = (h, s, m, t). If F is the BLAKE hash function H, its domain points are parsed as z = (s, M) ∈ {0, 1}n/2 ×
{0, 1}∗, where in the second preimage notion λ is required to be of length at least n/2 bits.

We define the collision security of a compressing function F as follows.

Definition 3. Let p, n ∈ N with p ≥ n and let F : {0, 1}p → {0, 1}n be a compressing function employing
block cipher E ∈ Bloc(2n). Fix a constant h0 ∈ {0, 1}n. The advantage of a collision finding adversary A is
defined as

← Bloc(2n), z, z

' ← AE,E−1
E :

Advcol(A) = PrF .
z ' ∧ F (z) ∈ {F (z= z '), h0}

We define by Advcol(q) the maximum advantage of any adversary making q queries to its oracles. F

As before, in case F denotes the compression function f the strings z and z' are of the form (h, s, m, t) and
' '(h', s ,m , t'), and if F is the BLAKE hash function, z and z' are parsed as (s, M) and (s',M ').

2.3 Indifferentiability

The indifferentiability framework introduced by Maurer et al. [14] is an extension of the classical notion of
indistinguishability. It proves that if a construction CG based on an ideal subcomponent G is indifferentiable
from an ideal primitive R, then CG can replace R in any system. Although recent results by Ristenpart et
al. [17] show that indifferentiability does not capture all properties of a random oracle, indifferentiability still
remains the best way to rule out structural attacks for a large class of hash function applications.

Definition 4. A Turing machine C with oracle access to an ideal primitive G is called (tD, tS , q, ε) indif
ferentiable from an ideal primitive R if there exists a simulator S, such that for any distinguisher D we
have Advpro(D) =C Pr DCG

DR,SR ,G = 1 − Pr = 1 < ε.

The simulator has oracle access to R and runs in time at most tS . The distinguisher runs in time at most
tD and makes at most q queries.

In the remainder, we refer to CG , G as the “real world”, and to R, SR as the “simulated world”; the distin
guisher D converses either with the real or the simulated world and its goal is to tell both worlds apart. D
can query both its “left oracle” L (either C or R) and its “right oracle” R (either G or S).

For the purpose of the presented indifferentiability results, G throughout denotes a random block cipher
E ← Bloc(2n). C is either the BLAKE hash function H or its compression function f , and R will be a
random oracle RO with the same domain and range as C.

3 Differentiability of f

We consider the indifferentiability of the BLAKE compression function f from a random oracle RO (with
the same domain and range as f), when the underlying block cipher E is sampled uniformly at random

$

E ← Bloc(2n). In more detail, we construct a distinguisher D, such that for any simulator S, D differentiates
(f, E) from (RO, S) in about 2n/4 queries, hence significantly faster than expected.

The differentiability attack considers fixed-points for f , by which we here mean values (h, m, s, t) such
that f(h, m, s, t) = h ⊕ [s]2. The presence of fixed-points of these form have already been pointed out in [3,
Sect. 5.2.4]. However, not every block cipher evaluation renders a valid compression function evaluation, due
to the duplication of t in the block cipher input. The simulator may be able to take advantage of this, which
makes the attack proof more complicated.

← Bloc(2n),
$

$

Theorem 1. Let E and let RO : {0, 1}n+n/2+2n+n/4 → {0, 1}n

function. For any simulator S that makes at most qS queries to RO, there exists a distinguisher D≤ 2n−3
be a random compression

that makes at most 2n/4 + 1 queries to its oracles, such that

qS
Advpro −1 −(D) ≥ 1 − e ≥ 0.5.f 2n

Proof. Let S be any simulator making at most qS queries to RO. We construct a distinguisher D that
differentiates (f, E) from (RO, S) with a significant probability. D has query access to (L, R, R−1) (either
(f, E, E−1) or (RO, S, S−1)) and operates as follows. Let α = 2n/4 .

(1) (2) (3) (4)
1. For j = 1, . . . , α, D sets mj ← (j)2n, queries vj ← R−1(mj , 0), and parses hj lsj lt lt lt lt ←j j j j

vj ⊕ (0nlC);2

(1) (3) (2) (4)
2. If for all j ∈ {1, . . . , α} we have t lt = t lt , D guesses (L, R) = (RO, S) and halts; j j j j

(1) (3) (2) (4)
3. Otherwise, let j ∈ {1, . . . , α} be such that t lt = t lt . The distinguisher queries j j j j

(1) (3)
h ← L(hj , sj ,mj , t lt),j j

and guesses (L, R) = (f, E) if and only if h = hj ⊕ [sj]2.

The distinguisher guesses his oracles correctly except if one of the following events occur:

(1) (3) (2) (4)
E1 : ∀ j ∈ {1, . . . , α} : t lt = t lt (L, R) = (f, E);j j j j

(1) (3) (2) (4)
E2 : ∃ j ∈ {1, . . . , α} : t lt = t lt and h = hj ⊕ [sj]2 (L, R) = (RO, S).j j j j

In particular, Advpro(D) ≥ 1 − Pr (E1) − Pr (E2). We start with Pr (E2), and we suppose (L, R) = f
(RO, S). E2 in fact covers the event that S finds a fixed-point for RO, namely inputs hj , sj ,mj , tj such
that RO(hj , sj ,mj , tj) = hj ⊕ [sj]2. As S makes at most qS queries, he can find such fixed-point with prob
ability at most qS /2

n. Next, we consider Pr (E1), and we suppose (L, R) = (f, E). As E is a random block
(1) (3) (2) (4)

cipher and the message blocks mj are all different, the probabilities Pr t lt = t lt are independent j j j j

for different indices j, and satisfy

(1) (3) (2) (4) (1) (3) (2) (4)
Pr t lt = t lt = 1 − Pr t lt = t lt = 1 − 1/2n/4 .j j j j j j j j α

1 − 1/2n/4Therefore, Pr (E1) = . For α = 2n/4, this bound is at most e−1. We thus obtain Advpro(D) ≥f

1 − e−1 − qS /2
n ≥ 0.5 for qS ≤ 2n−3 . D

2 The only requirement on the mj ’s is that they are distinct.

4 Collision and Preimage Resistance of f and H

In this section, we analyze the collision and (everywhere) preimage resistance of the BLAKE compression
function f . We achieve optimal security (up to a constant). As the HAIFA mode of operation preserves
collision and everywhere preimage resistance [2], these results directly carry over to the BLAKE hash function
H.

Theorem 2. Let n ∈ N. The advantage of any adversary A in finding a collision for f after q < 22n−1

queries can be upper bounded by

q(q + 1)
Advcol(q) ≤ .f 2n

Proof. Let j = 1, . . . , q. We consider the probability that the j-th query results in a collision. We distinguish
between forward and inverse queries.

Collision by a forward query. The adversary makes an encryption query of the form (mj , vj) to receive a
(1) (2) (3) (4) (1) (3) (2) (4)

ciphertext wj such that E(mj , vj) = wj . Parse hj lsj lt lt lt lt ← vj ⊕ (0nlC). If t lt = t ltj j j j j j j j
the block cipher query does not correspond to a compression function evaluation and a collision is obtained

(1) (3) (2) (4)
with probability 0. Hence, we assume t lt = t lt . In this case, the block cipher query corresponds j j j j

(1) (3) l rto the compression function evaluation f(hj , sj ,mj , t lt) = w ⊕ w ⊕ hj ⊕ [sj]2. The query renders a j j j j
collision for f only if

l r wj ⊕ wj ⊕ hj ⊕ [sj]2 ∈ {xi | i = 1, . . . , j − 1} ∪ {h0}, (1)

where the xi are defined as in Sect. 2.2. Let x denote any of the j elements from the set at the right hand
l rside of (1). The j-th query collides with x with probability Pr w ⊕ w = x ⊕ hj ⊕ [sj]2 , where hj and sjj j

are fixed by the adversarial input vj to E. As wj is generated from a set of size at least 22n − q, and at most
2n values wj satisfy the equation, this probability is upper bounded by 22

2
n

n

−q . Considering any choice of x,
j2n

then the j-th query results in a collision with probability at most .22n−q

Collision by an inverse query. The adversary makes a decryption query of the form (mj , wj) to receive a
(1) (2) (3) (4)

plaintext vj . We parse this plaintext as hj lsj lt lt lt lt ← vj ⊕ (0nlC). This query only renders a j j j j
(1) (3) (2) (4)

collision if vj is consistent with the definition of f , i.e. it satisfies t lt = t lt . Additionally, the query j j j j
constitutes a collision for f only if

l r wj ⊕ wj ⊕ hj ⊕ [sj]2 ∈ {xi | i = 1, . . . , j − 1} ∪ {h0}. (2)

Let x denote any of the j elements from the set at the right hand side of (2). The j-th query results in a
collision with this x with probability

l r (1) (3) (2) (4)
Pr hj ⊕ [sj]2 = x ⊕ wj ⊕ w ∧ t lt = t lt ,j j j j j

l r hj = x ⊕ wj ⊕ wj ⊕ [s]2 ∧ sj = s
= Pr (1) (2) (3) (4) ,

∧ t lt lt lt = [tl]2l[tr]2
s∈{0,1}n/2 t∈{0,1}n/4 j j j j

where the equality holds simply by conditioning on the values attained by sj and the tj ’s. As vj is generated
1from a set of size at least 22n −q, for any fixed s and t this probability is upper bounded by . Considering 22n−q

2n/4 j23n/4

any choice of x, s and t, then the j-th query results in a collision with probability at most j2
n/2

= .22n−q 22n−q

A collision for the compression function f is generated by either a forward or inverse query, and the j-tht d
j23n/4j2n j2n

query thus renders a collision with probability at most max , = . Summing over all q22n−q 22n−q 22n−q

queries, we obtain
q j2n q(q + 1)2n

Advcol(q) ≤ ≤ .f
j=1

22n − q 2(22n − q)

1 2For q < 22n−1, we have ≤ , which completes the proof. D22n−q 22n

Theorem 3. Let n ∈ N. The advantage of any adversary A in finding a preimage for f after q < 22n−1

queries can be upper bounded by

Advepre 2q
(q) ≤ .f 2n

Proof. Let y ∈ {0, 1}n be any point to be inverted, as specified in Def. 1. The proof follows the proof of
Thm. 2 with the only difference that the j-th query (for j = 1, . . . , q) needs to hit this particular value
y, rather than any value x from a set of size j (cf. (1-2)). More detailed, the j-th query needs to satisfy

2nl rwj ⊕ wj ⊕ hj ⊕ [sj]2 = y, and results in a preimage for y with probability at most 22n −q . When summing
over all queries, we obtain

q
2n q2n 2q

Advcol(q) ≤ ≤ ≤ ,f 22n − q 22n − q 2n
j=1

where the last inequality holds as q < 22n−1 . D

5 Second Preimage Resistance of H

Due to the lack of second preimage security preservation [2] of the BLAKE hash function H, we investigate
the second preimage security of H directly, rather than its compression function (as in the collision and
preimage cases). Our proof shows similarities with the second preimage proof for HAIFA by Bouillaguet
and Fouque [8]. Our proof, however, is realized in the ideal cipher (rather than ideal compression function)
model.

Theorem 4. Let n ∈ N, and λ ≥ n/2. The advantage of any adversary A in finding a second preimage for
H after q < 22n−1 queries can be upper bounded by

esec[λ] 4q
Adv (q) ≤ .H 2n

' ' Proof. Let (s ' ,M ') ∈ {0, 1}n/2 × {0, 1}λ−n/2 be the target preimage. Denote pad(M ') = m1l · · · lmk/ and
denote by t ' 1, . . . , t

'
k/ the corresponding counter values. Note that by construction, t ' i/ = (i ' 2n)n/4 for i ' ∈

' ' {1, . . . , k ' − 2}, t = (k ' 2n)n/4, and t may or may not be of the form ((k ' − 1)2n)n/4. The block cipher k/ k/ −1
executions corresponding to this hash function evaluation are given to the adversary for free. That is, A is
forced to make the k ' corresponding queries but will not be charged for this. Denote by h ' 0, . . . , h k

'
/ the state

values corresponding to the evaluation of H(s ' ,M ').
The goal of the adversary is to find a tuple (s, M) = (s ' ,M ') such that H(s, M) = H(s ' ,M ') and such

that the query history contains all block cipher evaluations required for the computation of H(s, M). We
pose the following claim.

Claim. Suppose A finds (s, M) = (s ' ,M ') such that H(s, M) = H(s ' ,M '). Denote by m1, . . . ,mk, t1, . . . , tk,
and h0, . . . , hk the message blocks, counter values and intermediate state values corresponding to the com
putation of H(s, M). There must be i ∈ {1, . . . , k} and i ' ∈ {1, . . . , k ' } such that f(hi−1, s, mi, ti) =

' ' ' ' f(h ' i/ −1, s ,m i/ , t i
'
/), where (hi−1, s, mi) = (h ' i/−1, s ,m i/) and ti, t i

'
/ satisfy

' ' ti = ti/ or ti = (i2n)n/4 and ti/ = (i ' 2n)n/4 . (3)

' Proof (Proof of claim). As H(s, M) = H(s ' ,M '), we have hk = hk
'
/ . If |M | = |M ' |, then mk = mk/ , tk =

(k2n)n/4 and t ' = (k ' 2n)n/4, and a collision of the prescribed form is found. Thus, suppose |M | = |M ' |. This k/

implies k = k ' and ti = t ' for i = 1, . . . , k. If s = s ' , a collision for hk is directly found. If s = s ' , we necessarily i
' have M = M and by the standard collision resistance preservation proof for the Merkle-Damg̊ard mode of

' ' operation (see e.g. [1, 2, 9, 15]), there must by an index i such that f(hi−1, s, mi, ti) = f(h ' i−1, s ,m i, t
') but i

' (hi−1,mi) = (h ' i−1,m). This completes the proof. Di

It consequently suffices to consider the probability of the adversary finding a collision with any of the k '

compression function evaluations of H(s ' ,M '), such that the corresponding counter values satisfy (3). We
call a collision of this form a “valid collision”. Thus,

q
esec[λ]

Adv (q) ≤ Pr (j-th query is valid collision) . (4)H
j=1

Let j = 1, . . . , q. We consider the probability that the j-th query results in a collision with any of the target
state values. We distinguish between forward and inverse queries.

Valid collision by a forward query. The adversary makes an encryption query of the form (mj , vj) to receive a
(1) (2) (3) (4) (1) (3) (2) (4)

ciphertext wj such that E(mj , vj) = wj . Parse hj lsj lt lt lt lt ← vj ⊕ (0nlC). If t lt = t ltj j j j j j j j
the block cipher query does not correspond to a compression function evaluation and a valid collision is

(1) (3) (2) (4)
obtained with probability 0. Hence, we assume t lt = t lt . In this case, the block cipher query j j j j

(1) (3) l rcorresponds to the compression function evaluation f(h, s, m, t lt) = wj ⊕ wj ⊕ hj ⊕ [sj]2.j j
(1) (3)

If tj ltj = (α2n)n/4 for some α ∈ {1, . . . , k ' − 1}, this means the query corresponds to a compression
(1) (3)

function at the α-th position, and (3) may be satisfied only for i ' = α. If tj ltj = α2n for any α ∈
{1, . . . , k ' − 2}, (3) can be satisfied only for i ' ∈ {k ' − 1, k ' }. In any other case, there is no i ' that makes (3)

l rsatisfied. In any case, there are at most 2 values that w ⊕ w ⊕ hj ⊕ [sj]2 may hit in order to render a valid j j

collision. As in the proof of Thm. 2, the j-th query results in a valid collision with probability at most 2·2n
.22n−q

Valid collision by a inverse query. The analysis follows the same lines. The j-th query results in a valid
collision with probability at most 2·2

3n/4
.22n−q

A valid collision for the compression function f is generated by either a forward or inverse query, and the t d
2·23n/42·2n 2·2n

j-th query thus renders a valid collision with probability at most max , = . Summing 22n−q 22n−q 22n−q

over all q queries, we obtain from (4):

q
esec[λ] 2 · 2n 2q2n 4q

Adv (q) ≤ ≤ ≤ ,H 22n − q 22n − q 2n
j=1

where the last inequality holds as q < 22n−1 . D

6 Indifferentiability of H

We show that the BLAKE hash function is indifferentiable from a random oracle in the ideal cipher model.
To this end, we construct a simulator such that any distinguisher requires at least approximately 2n/2 queries
to differentiate (H, E, E−1) from (RO, S, S−1).

$
Theorem 5. Let E ← Bloc(2n), let H be the BLAKE hash function, and let RO be a random oracle. Let D
be any distinguisher that makes at most qL left queries of maximal length 2n · £ bits (not including the salt),
qR queries to R and R−1, and runs in time t. Then

q(q + 1)
Advpro(D) ≤ 3 ,H 2n

where q = £qL + qR and S is the simulator of Fig. 2, which makes less than qR queries to RO and runs in
2time O(q).R

The remainder of this section is devoted to the proof of Thm. 5. In Sect. 6.1, we introduce some additional
definitions required for the proof. The simulator used in the proof is introduced and formalized in Sect. 6.2.
Then, Thm. 5 is proven in Sect. 6.3.

6.1 Definitions

To facilitate the analysis, we rewrite the BLAKE padding function pad ' , such that on input of a tuple
(s, M) ∈ {0, 1}n/2 × {0, 1}∗ it is defined as

pad ' (s, M) = (slm1lt1) l · · · l (slmkltk),

with m1l · · · lmk = pad(M) and the ti calculated appropriately based on the mi. The strings slmilti are
called augmented message blocks which we will denote by ai. We analyze the BLAKE hash function with pad '

padding and respectively its compression function f that accepts inputs of the form (h, a), with h ∈ {0, 1}n ,
and a ∈ {0, 1}n/2+2n+n/4 the augmented message.

Let V := {0, 1}2n be the plain- and ciphertext space of both S(m, ·) and E(m, ·). We define βh,s : V →
{0, 1}n as

βh,s(w) = w l ⊕ w r ⊕ h ⊕ [s]2.

For h ' ∈ {0, 1}n, we define β−1(h ') = {w ∈ {0, 1}2n | wl ⊕ wr ⊕ h ⊕ [s]2 = h ' }. We call these sets the fibersh,s

of βh,s. Note that each fiber is of size 2n .
For the construction of the simulator, we will maintain an initially empty table T , in which all query-

response tuples (m, v, w) of S and S−1 are stored. We write T +(v) = w and T −(w) = v. Associated to T wem m
define a graph G, which is initialized with the single node h0. The compression function evaluations corre
sponding to the entries of T are maintained in G. The domain and range of S and S−1 are not intermediate
state values and a query-response might not necessarily correspond to a path in G. In fact, a query-response
tuple (m, v, w) corresponds to a compression function evaluation and can be converted into a path in G
if and only if v can be parsed as hlsl[tl]2l[tr]2 ← v ⊕ (0nlC). In this case, the tuple corresponds to the
following path in G:

s m t
h −−−−→ βh,s(w).

a1 akNote that if G contains a path h0 −→ h1 · · · −→ hk, this implies T contains all queries required for the
evaluation of f(. . . f(f(h0, a1), a2) . . . , ak) = hk, when f is instantiated with S.

6.2 Simulator

Designing the simulator comes down to making sure that (RO, S, S−1) matches (H, E, E−1) as closely as
possible. Notice that for (H, E, E−1) an H query is a chain of E queries which can be converted to

a1 akh0 −→ h1 · · · −→ hk,

with a1l · · · lak = pad ' (s, M) for some s ∈ {0, 1}n/2 and M ∈ {0, 1}∗; it is this property that the simulator
should mimic. What this essentially means is that the simulator needs to carefully handle queries that may
extend the set of nodes reachable from h0. For any other query, it suffices for the simulator to respond
randomly.

For simplicity and to improve the readability of the simulator, we opt for a simulator that behaves like a
random function. That is, when generating a random answer it will be sampled from V , therewith allowing
collisions in T . Clearly, this will result in a higher success probability for the distinguisher, but because
the elements of V are of size 2n bits (while the hash function has range {0, 1}n), this security loss will be
negligible. This loss will be reflected in the bound obtained in Sect. 6.3.

Recall from Sect. 6.1 that a query-response tuple (m, v, w) adds an edge to the graph if and only if v can
be parsed as hlsl[tl]2l[tr]2 ← v ⊕ (0nlC) and for now we simply assume this to be true, adding the edge

s m t
h −−−−→ h ' = βh,s(w) to G. The main purpose of S is to maintain consistency for the paths leaving from h0.
Thus, we investigate how the simulator handles queries extending any of these paths.

In case of inverse queries, note that h depends on the output of the simulator, v. If the simulator generates
v uniformly at random, the edge extends a path from h0 only if h hits any node already reachable from h0.

This case occurs with small probability, and we can safely have the simulator respond randomly on an inverse
query. The resulting security loss is reflected in the obtained indifferentiability bound derived in Sect. 6.3.

In case of forward queries, h and a = slmlt are determined by the inputs by the distinguisher, and thus
a1 akhe may force the number of nodes reachable from h0 to increase. Suppose a path h0 −→ h1 · · · −→ hk = h is

in G. We distinguish among the following cases:

–	 a1l · · · lakla = pad ' (s, M) for some s ∈ {0, 1}n/2 and M ∈ {0, 1}∗. The simulator should assure consis
tency with RO, hence its answer w should comply with βh,s(w) = RO(s, M);

–	 a1l · · · lakla = pad ' (s, M) for any s ∈ {0, 1}n/2 and M ∈ {0, 1}∗. There is no consistency required, and
the simulator responds randomly.

Two peculiarities may occur in case of a forward query of this form. At first, it may be the case that a newly
added edge extends to two different paths. This would however mean a compression function collision has
occurred, an event that happens with small probability and results in a security loss in the final indifferen
tiability bound obtained in Sect. 6.3. Secondly, the value h ' = βh,s(w) may hit a node in the graph, in which
case the path will be increased with two edges. A similar reasoning as for inverse queries applies here: h '

hits another node in the graph with small probability only, and the simulator does not need to handle this
situation.

The formal description of the simulator is given in Fig. 2. It uses the following procedure.
procedure findPaths(h, a)

P ← ∅ c will contain paths and corresponding messages
a1 akfor all paths h0 −→ h1 · · · −→ hk in G do

if h = hk and ∃ M such that pad'(s, M) = a1l · · · lak la then
k	 (
a1 akP ← M, h0 −→ h1 · · · −→ hk

end if
end for
return P

end procedure

Lemma 1. If the simulator does not return a response retrieved from the table T , the response will be
uniformly distributed over V .

Proof. With a forward query there are two cases, one where the simulator queries RO and one where it does
not. If the simulator does not query RO, then by definition it responds uniformly over V . If the simulator
does query RO, then it receives an h ' = RO(s, M) uniformly distributed over {0, 1}n. As the fibers of βh,s

form a partition of V , uniformly selecting an element from an arbitrary fiber of βh,s is the same as uniformly
selecting an element from V .

Since the inverse queries of the simulator are by definition uniformly distributed over V , we attain our
result. D

6.3 Proof of Thm. 5

In this section, we will bound the advantage of any distinguisher in differentiating the simulated world (with
the simulator of Fig. 2) from the real world. The proof of indifferentiability consists of a sequence of six games
where we specify three algorithms (Li, Ri, R

−1) (for i = 1, . . . , 6) with which a distinguisher can interact. i
These games are given in Fig. 3. The first game corresponds to the simulated world and the sixth game
corresponds to the real world (HE , E, E−1). By Gi we denote the event DLi,Ri,R

−1
= 1. Clearly, i

5

Advpro
(D) = |Pr (G1) − Pr (G6)| ≤ |Pr (Gi) − Pr (Gi+1)| .	 (5)H
i=1

In the remainder of this section, the distances between the adjacent games will be bounded, and the claim
of Thm. 5 will be directly obtained from (5).

Simulator Inverse Query

1: procedure S−1(m, w)Simulator Forward Query
2: if T −(w) = ⊥ then

1: procedure S(m, v)	
m

$
v ← T −3: m (w) ← V

2: if T +(v) = ⊥ thenm	 (1)lt(2)lt(3)lt(4) ← v ⊕ (0nlC)(1)lt(2)lt(3)lt(4) ← v ⊕ (0nlC) 4: hlslt
3: hlslt (1)lt(3) (2)lt(4)

$	 5: if t = t then
4: w ← V	 (1)lt(3)slmlt

(1)lt(3) (2)lt(4)5:	 if t = t then 6: add h −−−−−−−−−→ βh,s(w) to G

(1)lt(3))
6: P ← findPaths(h, slmlt	 7: end if

8: end if7: if P = ∅ then
$ 9: return T −(w)8:	 (M, path) ← P m

$ 10: end procedure
← β−19: w h,s(RO(s, M))
10: end if

(1)lt(3)slmlt
11: add h −−−−−−−−−→ βh,s(w) to G Random Oracle
12: end if

1: procedure RO(s, M)
T +
m 2: if F [s, M] = ⊥ then c F is an array

13: (v) ← w
14: end if	

$

15: return T +(v)	 3: F [s, M] ← {0, 1}n

m
4: end if16: end procedure
5: return F [s, M]
6: end procedure

Fig. 2: The definition of the simulator S used in the proof of Thm. 5, and the random oracle RO.

Games 1 and 2

The first game is (RO, SRO , (SRO)−1). The biggest change in the second game is that HS is called in L2 in
line 2. Note that the result of HS is not used and L2 returns a value generated by RO, i.e. the responses of
L1 and L2 are identical. Yet, calling HS still has side effects on game 2 as the simulator’s table and graph
are updated based on the S queries made by HS . As a result the simulator in game 2 gains more knowledge
than the simulator in game 1. In particular, we will mark each query-response from all calls of S in HS

whenever a query has not been made before by D; these marked query-responses in T represent the extra
knowledge gained by the simulator in game 2. Queries made by D are made unmarkable in line 12 in R2 and
line 22 in R−1 , these queries provide the simulator with no extra information compared to the simulator of2
game 1.

Note that if we ignore the lines of code in R2 and R−1 dealing with marked query-responses we are left2

with lines 11, 13, 21, and 23, where we see that R2 and R−1 simply query S and S−1 and return the result.2
The rest of the code is there in order to undo the side effects of HS . A first step in removing the side effects
of HS is, when a marked query is made by D, to remove the knowledge S has of that query (implemented in
the if-statements) and then to re-query S again. This does not deal with all possible cases because we know
that sometimes S queries RO in order to ensure consistency. In particular, in game 1 the distinguisher could
know that a particular intermediate value should map to the result of some L1 response while the simulator
does not know this, resulting in a collision. Yet, this collision could be avoided if the simulator knows all of
the intermediate values used through a call to HS . To this end, R2 employs the following procedure so that
S “forgets” the intermediate values:

procedure deleteMarkedPaths(m, v)

(1)lt(2)lt(3)lt(4) ← v ⊕ (0nlC)
hlslt

(1)lt(3) (2)lt(4)
if t then= t
return

end if

(1)lt(3)P ← findPaths(h, slmlt)

a1 akfor all (M, h0 −→ · · · −→ hk) ∈ P do

for i ← 0, . . . , k − 1 do

ai+1
if (m, v, w) associated with hi −−−→ hi+1 is marked then

Game 1
1: procedure L1(s, M)
2: return RO(s, M)
3: end procedure

4: procedure R1(m, v)
5: return S(m, v)
6: end procedure

7: procedure R−
1
1(m, w)

8: return S−1(m, w)
9: end procedure

Game 4
1: procedure L4(s, M)
2: HR4 (s, M)
3: return RO(s, M)
4: end procedure

+if Tm

5: procedure R4(m, v)
6: w ← S(m, v)

Game 2

6: end procedure

7: (v) = ⊥ then
+←bad isCollision(m, v, T m

2: mark all (m, v, w) used in HS (s, M) 9: end if
3: return RO(s, M) 10: return w
4: end procedure 11: end procedure

5: procedure R2(m, v) 12: procedure R−1(m, w)
if (m, v, T +

4
m

1: procedure L2(s, M) 8: (v))

6: (v)) is marked then 13: return S−1(m, w)
+delete (m, v, T m7: (v)) from T 14: end procedure

8: delete corresponding path from G
9: end if
10: deleteMarkedPaths(m, v)
11: w ← S(m, v)
12: make (m, v, w) unmarkable
13: return w
14: end procedure

15: procedure R−
2
1(m, w)

17: bad ← true

−if (m,T m16: (w), w) is marked then

Game 5
1: procedure L5(s, M)
2: return HR5 (s, M)
3: end procedure

4: procedure R5(m, v)
5: return R4(m, v)

−delete (m,T m
19: delete corresponding path from G
18: (w), w) from T

7: procedure R−
5
1(m, w)

8: return R−
4
1(m, v)

20: end if
9: end procedure

21: v ← S−1(m, w)
22: make (m, v, w) unmarkable
23: return v

Game 6
24: end procedure

1: procedure L6(s, M)
2: return HR6 (s, M)
3: end procedure Game 3

1: procedure L3(s, M)
2: return L2(s, M)
3: end procedure

4: procedure R3(m, v)
5: return R2(m, v)
6: end procedure

7: procedure R−
3
1(m, w)

4: procedure R6(m, v)
5: return E(m, v)
6: end procedure

7: procedure R−
6
1(m, w)

8: return E−1(m, w)
9: end procedure

−if (m,T m
9: bad ← true
10: end if
11: return S−1(m, w)
12: end procedure

Fig. 3: Games 1, . . . , 6 used in the proof of Thm. 5.

8: (w), w) is marked then

delete (m, v, w) from T
ai+1

delete hi −−−→ hi+1 from G
end if

end for

end for

end procedure

When invoked through a forward query, deleteMarkedPaths checks for all paths to which this par
ticular query extends using the findPaths procedure and deletes any marked query-responses used along
these paths, thereby eliminating all marked intermediate values used by a HS query.

Now we take a look at R−1 and see exactly how the HS query is dealt with. If the query-response 2
(m, T −(w), w) is not marked, then either (m, w) has never been queried before or the distinguisher has m
queried (m, w) before; in either case we get the exact same behavior as R−1. If (m, T −(w), w) is marked, 1 m
then this means that the distinguisher has not queried (m, w) and that HS has queried (m, w). Removing
(m, T −(w), w) from T and G and then querying S−1(m, w) will return some uniformly chosen response from m
V . This is the same as never having queried S−1(m, w) and then querying it, meaning we get the same
behavior out of S−1 in R−1 as in R−1. Note that the newly generated S−1(m, w) very likely differs from the 2 1
value previously generated (when it was queried by HS). However, as L2 never discloses the data from HS ,
this is not a problem.

Finally we just need to compare R1 with R2. Say that (m, v, T +(v)) is unmarked, i.e. HS has never m
queried (m, v). When calling deleteMarkedPaths, there are a few possibilities:

–	 findPaths returns the empty set. The subsequent call to S will return some arbitrary element of V , as
would exactly happen in R1;

–	 findPaths finds some valid path, but there are no marked query-responses along this path. This means
that the distinguisher has queried the full path itself and S will respond similarly in both R1 and R2;

–	 findPaths finds a valid path and there are marked query-responses along this path, but these are
removed. Thus, the simulator call from R2 has the same amount of information as the simulator call
from R1.

If (m, v, T +(v)) is marked, then knowledge of that particular query-response is removed. In effect we are m
then dealing with an unmarked query-response (m, v, ⊥) and are reduced to the case above.

We have shown that each R2 and R−1 query will execute the same code within S as each R1 and R−1
2	 1

query, respectively, and since they all return the response of the S query, we have

Pr (G1) = Pr (G2) .

Games 2 and 3

Note that L2 and L3, and R2 and R3 are exactly the same, so we need to compare the responses of R−1
2

and R−1 . It is clear that R−1 and R−1 are identical until bad. The bad event corresponds to HS first3	 2 3
a

querying S resulting in the query-response (m, v, w) with path h1 −→ h2, the distinguisher guessing this
particular w correctly from the set β−1 (h2), and finally D calling R−1(m, w) without explicitly calling h1,s i

Ri(m, v) (otherwise Ri(m, v) would unmark (m, v, w)). Since every fiber of β−1 has size 2n, an upper bound h1,s
for the probability of finding such a w is qR/2n, as qR bounds the number of right oracle inverse queries by
D. Therefore, as bad can be triggered in both games,

qR|Pr (G2) − Pr (G3)| ≤ 2 .
2n

Games 3 and 4

The following procedure is used in game 4 to detect collisions:
procedure isCollision(m, v, w)

(1)lt(2)lt(3)lt(4) ← v
hlslt

(1)lt(3) (2)lt(4)
if t = t then

return false

end if

h ' ← βh,s(w)

return h ' is a node of G c returns true/false
end procedure

Since R4 is identical to S, L3 and L4 are identical. The only difference between games 3 and 4 can be
found in R3 and R4, yet this is the same difference as between R1 and R2 and we may conclude that

Pr (G3) = Pr (G4) .

Games 4 and 5

The difference between games 4 and 5 lies in the response given by the left oracles: game 4 uses RO while
game 5 uses HR5 . We will show that as long as bad is not triggered, the responses of both left oracles are
the same.

Lemma 2. As long as bad is not set to true, L4(s, M) = L5(s, M).

Proof. We can write HRi (s, M), with i equal to 4 or 5, as

a1 akh0 −→ h1 · · · −→ hk,

with a1l · · · lak = pad ' (s, M). If none of the nodes hj for j > 0 are in G, then HRi will query Ri in sequence
starting from h0 and ending up at RO(s, M) since the simulator will learn the entire message M in sequence

akby the time hk−1 −→ hk is queried and can respond with RO(s, M).
On the other hand, if there is some node hj in G, then it must be the case that the particular path

aj	 aj−1
hj−1 −→ hj is in G, otherwise HRi (s, M) will trigger bad. Furthermore hj−2 −−−→ hj−1 must have been

aj
queried before the hj−1 −→ hj query:

aj−1
–	 if hj−2 −−−→ hj−1 is not in G then HRi (s, M) will place it in G resulting in a collision because hj−1 is

already in G, and
aj−1

–	 if hj−2 −−−→ hj−1 is in G then it must have occurred before the aj query since the result of the aj−1

query would otherwise have ended up as a node in G.

aj
This means that Ri receives each of the hj−1 −→ hj queries in order from j = 1 to k and can respond
consistently with RO(s, M). D

By the collision resistance of the BLAKE compression function (Sect. 4), the probability of a collision
occurring is upper bounded by q(q + 1)/2n. Hence, as bad can be triggered in both games,

q(q + 1)
Pr (G4) − Pr (G5) ≤ 2 .

2n

Games 5 and 6

The right oracles of game 6 form a permutation for each message, whereas the right oracles of game 5 do
not. By Lem. 1, the right oracles of game 5 are uniformally distributed over V (R5 and R−1 are essentially5
just the simulator), which means that the difference between game 5 and game 6 is the difference between
a permutation and a random function, which we know is bounded as follows:

qR(qR − 1)
Pr (G5) − Pr (G6) ≤ .

22n

Acknowledgments. This work has been funded in part by the IAP Program P6/26 BCRYPT of the
Belgian State (Belgian Science Policy), in part by the European Commission through the ICT program under
contract ICT-2007-216676 ECRYPT II, and in part by the Research Council K.U.Leuven: GOA TENSE.
The third author is supported by a Ph.D. Fellowship from the Institute for the Promotion of Innovation
through Science and Technology in Flanders (IWT-Vlaanderen).

References

[1]	 Andreeva, E., Mennink, B., Preneel, B.: Security reductions of the second round SHA-3 candidates. In: Informa
tion Security Conference - ISC 2010. Lecture Notes in Computer Science, vol. 6531, pp. 39–53. Springer-Verlag,
Berlin (2010)

[2]	 Andreeva, E., Neven, G., Preneel, B., Shrimpton, T.: Seven-property-preserving iterated hashing: ROX. In:
Advances in Cryptology - ASIACRYPT 2007. Lecture Notes in Computer Science, vol. 4833, pp. 130–146.
Springer-Verlag, Berlin (2007)

[3]	 Aumasson, J., Henzen, L., Meier, W., Phan, R.: SHA-3 proposal BLAKE (2010), submission to NIST’s SHA-3
competition

[4]	 Bellare, M., Rogaway, P.: Random oracles are practical: A paradigm for designing efficient protocols. In: ACM
Conference on Computer and Communications Security. pp. 62–73. ACM, New York (1993)

[5]	 Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: The KECCAK sponge function family (2011), submission
to NIST’s SHA-3 competition

[6]	 Biham, E., Dunkelman, O.: A framework for iterative hash functions – HAIFA. Cryptology ePrint Archive,
Report 2007/278 (2007), http://eprint.iacr.org/2007/278

[7]	 Black, J., Rogaway, P., Shrimpton, T.: Black-box analysis of the block-cipher-based hash-function constructions
from PGV. In: Advances in Cryptology - CRYPTO 2002. Lecture Notes in Computer Science, vol. 2442, pp.
320–335. Springer-Verlag, Berlin (2002)

[8]	 Bouillaguet, C., Fouque, P.: Practical hash functions constructions resistant to generic second preimage attacks
beyond the birthday bound (2010), submitted to Information Processing Letters

[9] Damg̊ard, I.: A design principle for hash functions. In: Advances in Cryptology - CRYPTO ’89. Lecture Notes
in Computer Science, vol. 435, pp. 416–427. Springer-Verlag, Berlin (1990)

[10] Dean, R.: Formal Aspects of Mobile Code Security. Ph.D. thesis, Princeton University, Princeton (1999)
[11]	 Ferguson, N., Lucks, S., Schneier, B., Whiting, D., Bellare, M., Kohno, T., Callas, J., Walker, J.: The Skein

Hash Function Family (2010), submission to NIST’s SHA-3 competition
[12]	 Gauravaram, P., Knudsen, L., Matusiewicz, K., Mendel, F., Rechberger, C., Schläffer, M., Thomsen, S.: Grøstl

– a SHA-3 candidate (2011), submission to NIST’s SHA-3 competition
[13] Kelsey, J., Schneier, B.: Second preimages on n-bit hash functions for much less than 2n work. In: Advances in

Cryptology - EUROCRYPT 2005. Lecture Notes in Computer Science, vol. 3494, pp. 474–490. Springer-Verlag,
Berlin (2005)

[14]	 Maurer, U., Renner, R., Holenstein, C.: Indifferentiability, impossibility results on reductions, and applications
to the random oracle methodology. In: Theory of Cryptography Conference 2004. Lecture Notes in Computer
Science, vol. 2951, pp. 21–39. Springer-Verlag, Berlin (2004)

[15]	 Merkle, R.: One way hash functions and DES. In: Advances in Cryptology - CRYPTO ’89. Lecture Notes in
Computer Science, vol. 435, pp. 428–446. Springer-Verlag, Berlin (1990)

[16]	 National Institute for Standards and Technology: Announcing request for candidate algorithm nominations for a
new cryptographic hash algorithm (SHA3) family (November 2007), http://csrc.nist.gov/groups/ST/hash/
documents/FR_Notice_Nov07.pdf

[17]	 Ristenpart, T., Shacham, H., Shrimpton, T.: Careful with composition: Limitations of the indifferentiability
framework. In: Advances in Cryptology - EUROCRYPT 2011. Lecture Notes in Computer Science, vol. 6632,
pp. 487–506. Springer-Verlag, Berlin (2011)

[18] Rogaway, P., Shrimpton, T.: Cryptographic hash-function basics: Definitions, implications, and separations for
preimage resistance, second-preimage resistance, and collision resistance. In: Fast Software Encryption 2004.
Lecture Notes in Computer Science, vol. 3017, pp. 371–388. Springer-Verlag, Berlin (2004)

[19]	 Wang, X., Yin, Y., Yu, H.: Finding collisions in the full SHA-1. In: Advances in Cryptology - CRYPTO 2005.
Lecture Notes in Computer Science, vol. 3621, pp. 17–36. Springer-Verlag, Berlin (2005)

[20]	 Wang, X., Yu, H.: How to break MD5 and other hash functions. In: Advances in Cryptology - EUROCRYPT
2005. Lecture Notes in Computer Science, vol. 3494, pp. 19–35. Springer-Verlag, Berlin (2005)

[21]	 Wu, H.: The Hash Function JH (2011), submission to NIST’s SHA-3 competition

http://eprint.iacr.org/2007/278
http://csrc.nist.gov/groups/ST/hash/documents/FR_Notice_Nov07.pdf
http://csrc.nist.gov/groups/ST/hash/documents/FR_Notice_Nov07.pdf

	Provable Security of BLAKE with Non-Ideal Compression Function
	Elena Andreeva, Atul Luykx and Bart Mennink

