
Performance of the SHA-3 Candidates in Java

Christian Hanser, chanser@iaik.tugraz.at

Institute for Applied Information Processing and Communications
Graz, University of Technology

Inffeldgasse 16a, A-8010 Graz, Austria
http://www.iaik.tugraz.at

March 19, 2012

Abstract

In this paper we analyze how the five finalists of the NIST SHA-3 competition perform in Java.
Our Java implementations are derived from the official, optimized implementations for both 32-bit and
64-bit platforms. However, the derived implementations did not turn out to be optimal. Hence, we have
determined different optimization strategies and applied combinations of them to each algorithm. We are
going to discuss these strategies and present the combinations that we consider to be best for each SHA-3
candidate. Furthermore, we present benchmark results for both 32-bit and 64-bit environments and give
an estimation of the implementation complexity based on our experience. We can greatly improve the
results of a related performance study and come to the conclusion that the fastest algorithm is about
five times faster than the slowest.

Keywords: SHA-3, Java, implementation, benchmark, performance

1 Introduction

In 2007, NIST has started its SHA-3 competition with the aim of finding a successor to the outdated
SHA-1 hash algorithm, analogously to its AES competition (1997-2001). From an initial number of 64
submissions, 51 submissions made it into round 1, 14 of these into round 2 and finally five into round 3.
In 2012, one of these five finalists is going to become the new SHA-3 hash algorithm. The five candidates
are called BLAKE, Grøstl, JH, Keccak, and Skein. Until now, the implementers have mainly focused
on optimizing C and assembler code and less on optimizing implementations in high-level languages,
such as Java. In 2010, Thomas Pornin, the author of the second round candidate Shabal, published a
comparative performance study that includes Java benchmarks for all second round candidates [11]. He
included these algorithms into version 2.1 of his Java library named sphlib [12]. In July 2011, Pornin
published a new version of this library, which includes updated versions of the SHA-3 finalists. To
make his results comparable to our results, we re-evaluated Pornin’s latest implementations with our
benchmark framework. In this paper we revise the benchmark results of Pornin and present new, greatly
improved benchmark values of the SHA-3 candidates in Java.

Section 2 gives an overview of our implementation. Section 3 details our benchmark approach and
our evaluation parameters, and Section 4 lists our optimization techniques. Section 5 explains how we
were able to optimize each candidate, and Section 6 illustrates and lists our findings. Section 7 draws a
comparison with the results of the aforementioned study, and finally Section 8 summarizes and concludes
this paper.

1.1 Why Java?

Currently, Java constitutes one of the most widespread programming languages, next to C and C++.
Its popularity arises from its platform independence (of both source code and byte code), its extensive
development kit and its high-level features. Java has a big developer community, which is still growing

1

mailto:chanser@iaik.tugraz.at
http://www.iaik.tugraz.at


steadily, not only since Java is the programming language of choice for Google’s rapidly evolving An-
droid platform. Furthermore, Java features a powerful crypto-framework and hence is widely used for
cryptographic applications. Taking all this into account, we consider it worthwile to thoroughly analyze
the Java performance of the SHA-3 finalists.

1.2 Why Would One Want to Optimize Java Code?

The widespread opinion regarding Java programming is that one should not put much effort into optimiz-
ing code, since it is a high-level language and its execution strongly depends on the runtime environment
and the target device. To get to the heart of it: code optimized for one setting, can be slow in another
setting and besides leads to obfuscated, badly readable code. Donald Knuth summarizes these problems
as follows: “Premature optimization is the root of all evil.” [8].

But this idyll of a high level language is deceptive: there are many ways one can ruin the performance
and many possibilities to put incentives for the generation of fast JIT code. These incentives should be
chosen in such a way that there are no extra costs in the worst case. Most, but not all of our optimization
strategies follow this principle. Hence, we expect many of our optimizations to be advantageous for other
settings too.

2 Implementation Notes

The code was developed at the IAIK by Christian Hanser and was released in form of a library at our
website, see [6]. It is licensed under the GNU Public License (GPL). The library follows the design
principles of Java Cryptography Architecture (JCA), i.e. for each calculation of a message digest, a
Java object of type java.security.MessageDigest is used. This object holds the hash context, which is
being repeatedly updated with message blocks using the update() method. At last, the hash value can
be obtained by a call to the final() method.

As mentioned before, all implementations are derived from the optimized reference implementations
and have been subject to extensive optimization efforts.

3 Evaluation Parameters and Measures

The hash algorithms were implemented in Java and evaluated with regard to throughput and implemen-
tation complexity. This section details what we were measuring, how we were measuring and describes
the environments we were using for our measurements.

3.1 Execution Speed

In general, a hash algorithm has three different execution stages: initialization, compression and final-
ization. Initialization involves the generation of lookup tables, parameter initialization and the like.
We did not measure the initialization phase, since it requires only little time and often depends on the
trade-off code-size vs. execution speed. The compression phase consists of iterative applications of the
compression function to each block of input. In every iteration the internal hash state is transformed
using the current state and one message block. The amount of time spent in this phase depends directly
on the message length and accounts for the largest part of the overall execution time. Thus, in this study
we concentrate on benchmarking the compression phase. The finalization phase usually involves the
compilation of the padding block(s), the compression thereof and a final transformation on the resulting
value. The time spent in this phase is negligible and was not measured.

The benchmark runs were executed consecutively, where each run starts with a warm-up phase lasting
one second, which is followed by the actual benchmark phase lasting five seconds. Both phases are exactly
the same, except for the execution time. The warm-up phase allows the HotSpot VM to identify and just-
in-time compile the execution hot spots and the processor to build jump prediction tables and perform
other optimizations.

A single benchmark phase looks as follows: as input for the compression function a byte array of
the size of one message block was generated using Java’s default PRNG java.util.Random, initialized
with seed value 0. This byte array was repeatedly fed into the digest’s update method for n ∈ {1, 5}
seconds. A second thread was used to control the timings. At the beginning as well as at the end of one

2



benchmark round, the current user time of the main thread was taken. Let t be the difference of these
two values. Then, the benchmark result is given by:

t · f
c · blencycles/byte,

where f , blen, and c denote the CPU-frequency, block length, and the iteration count, respectively.

3.2 Implementation Complexity

Next to performance characteristics we also evaluated the implementation complexity of each algorithm.
Our rating comprises the time required to sufficiently understand and implement a hash function, espe-
cially the number of implementations necessary.

3.3 Setting

The results published in this paper were achieved on an Intel Core i5-2540M (2.60 GHz, 2 cores, 3 MB L3
cache, turbo mode disabled) with 8 GB DDR3 RAM running Ubuntu 11.10/amd64, which constitutes the
reference platform for this paper. In order to test our 32-bit and 64-bit implementations we were using
Sun JDK 1.6.0.25/i386 and OpenJDK 1.6.0.23/amd64, respectively. On the same computer we were also
running the benchmark using 64-bit Windows 7 SP1 in combination with Sun JDK 1.6.0.26/amd64. In
all cases the Java VMs were running in server mode, the fastest setting of the HotSpot VM.

4 Optimizing Cryptographic Algorithms for Java

Optimizing (cryptographic) algorithms for Java is by far not as straight-forward as for classic languages
such as C. Due to different, not always obvious, execution strategies chosen by the runtime environment
this is a rather heuristical task. In addition, not every combination of optimization strategies turned out
to be successful. So, we had to determine a set of suitable optimization strategies for each implementation.
Table 1 gives an overview of our optimization measures.

4.1 Generic Optimization Measures

There are classic optimizations such as (partial) loop unrolling and the caching of intermediate results,
which save computations and conditional jumps. The former measure, however, must be used with
caution. Only a small number of iterations should be unrolled. Otherwise, it can happen that the
method code no longer fits into the CPU’s instruction cache, leading to a significant loss of speed.

Other apparent modifications are the manual inlining of methods the compiler does not inline on its
own, and the outsourcing of array allocations inside the compression function to per-object buffers in
order to reduce the time spent in the compression function.

Optimization Strategy Goal

(partial) loop unrolling save computations and conditional jumps
caching intermediate results
simplifying (index) arithmetics

replacing arithmetical operations by equivalent faster operations speeding up arithmetical computations

flattening of multi-dimensional arrays reduce number of boundary checks
replacement of arrays by member variables
caching repeated accesses to array elements

introducing per-object buffers reduce array allocations in hot spots

manual method inlining (where the compiler can not inline) save method invocations

rewrite methods: allow the compiler to inline methods
supplementing private/static/final modifiers
splitting methods into smaller pieces
removing local variables

Table 1: Optimization Strategies for Java Implementations

3



4.2 Java-specific Optimization Measures

Then, there are modifications that are specific to the Java language. The performance can be greatly
improved by allowing the compiler to inline methods. The premises to enable this are: the according
method must be short, must not define local variables and must be marked either as private, static, or
final. Another optimization measure is to reduce the number of boundary checks. On each array access,
Java checks whether the array index is inside the valid bounds. This can be overcome by either replacing
small arrays with an appropriate number of variables or assigning repeatedly accessed array elements
(e.g. of state array) to local variables. Apparently, the performance penalty of array accesses increases
if multi-dimensional arrays are involved, since the JVM must perform boundary checks for every array
dimension. We reduced these costs by flattening multi-dimensional arrays.

Finally, we made a peculiar observation: replacing XOR by OR in a circular shift, which is equivalent in
this context, led to a speed-up of 3 and 4 cycles per byte for Skein and Keccak, respectively. There seems
to be a problem with Java’s JIT, as each of these instructions maps to a single byte code instruction
and the generated class files only differ in one byte, as expected. The first holds 0x83, the byte code
for the instruction lxor, where the second holds 0x81, the byte code for the instruction lor. It would
seem natural that JIT maps each one of these to its corresponding CPU instruction, yielding the same
execution speed. Hence, for us there is no good explanation for this performance regression.

5 Implementation Results

Most SHA-3 candidate algorithms come along with separate implementations for 32 and 64-bit platforms.
In order to get the best performance, we are following the same approach using ints and longs to
represent the internal state. The optimized implementations are then chosen at runtime depending on
the VM’s data mode. The corresponding optimized C implementations served as starting point for
each Java implementation. In the next step we applied several optimization strategies, as explained in
Section 4. This way, we lowered the time spent executing the main hot spot, namely the compression
function. The combination of optimization strategies turned out to be strongly dependent on the specific
hash algorithm and on the VM’s data mode. Thus, we were following a trial and error approach to
maximize the throughput. In no case all strategies could be applied successfully. So, we had to find out
the fastest combinations of such strategies for each implementation.

5.1 BLAKE

BLAKE was developed by Jean-Philippe Aumasson, Luca Henzen, Willi Meier, and Raphael C. W.
Phan [1]. It is based on similar design principles as the SHA algorithm family, namely on add-rotate-xor
(ARX) transformations. In the same manner as the SHA-2 family the BLAKE-family consists of a short
variant for hash lengths of 224 and 256 bits and a long variant for hash lengths of 384 and 512 bits. The
former uses 32-bit words, whereas the latter uses 64-bit words.

5.1.1 Optimization Strategies and Performance

Compared to some other SHA-3 candidates, BLAKE does not offer that many possibilities for perfor-
mance gains. We improved its Java performance by:

1. converting the two-dimensional permutation array SIGMA to a one-dimensional array,

2. introducing buffers to reduce the amount of memory allocated in every iteration of the compression
function,

3. simplifying index calculations, and

4. manual method inlining.

Applying the optimizations listed above to our plain C port, we were able to drop the performance
from about 38 cycles/byte to 25.3 cycles/byte and over 88 cycles/byte to around 48.7 cycles per byte in
the long and in the short version of BLAKE, respectively.

5.1.2 Implementation Complexity

BLAKE turned out to be relatively simple and fast to implement. With two different variants to imple-
ment, the time and the resources needed are kept within a reasonable limit.

4



5.2 Grøstl

Grøstl was proposed by Praveen Gauravaram, Lars Knudsen, Krystian Matusiewicz, Florian Mendel,
Christian Rechberger, Martin Schläffer, and Sren S. Thomsen [5]. It is a hash function based on design
principles of the AES cipher. In its default implementation, there are two variants of Grøstl, one for
short and one for long hash lengths, each having two implementations, one for 32-bit platforms and one
for 64-bit platforms.

5.2.1 Optimization Strategies and Performance

The subsequent optimization techniques were successful:

1. converting the two-dimensional lookup-table to a one-dimensional array,

2. splitting RNDQ, RNDP into smaller methods to enable inlining,

3. arithmetical simplifications,

4. manual method inlining,

5. partial loop unrolling,

6. introducing buffers to reduce the amount of memory allocated in every iteration of the compression
function, and

7. supplementing private/static/final modifiers.

Using the aforementioned code optimizations, we were able to drop the number of cycles/byte of our
64-bit implementation from roughly 98 to about 44.4 cycles/byte for both Grøstl-224 and Grøstl-256.
Grøstl-384 and Grøstl-512 take approximately 57.7 cycles/byte in contrast to 160 cycles/byte of the plain
C port.

5.2.2 Using AES-NI via JNI

Grøstl can be sped up tremendously by using the AES-NI instructions shipped with some models of
Intel’s Core i5/i7 series. Unfortunately, this is not a real option with Java and, thus, this section shall
be seen as a non-competitive side note. One can make use of the AES-NI instruction set extensions by
invoking native code through the Java Native Interface (JNI) at the expense of platform independence.
The whole compression step moved into the native part with only the padding and the buffering left in
the Java part. To our astonishment, the performance penalty of the frequent context switches between
the native library and the JVM was only about 3.1 cycles/byte. The fastest native implementation of
Grøstl takes 11.5 cycles per byte (see [5]) and invoked via JNI it needs around 14 to 15 cycles per byte.

5.2.3 Implementation Complexity

The amount of time necessary for optimizations and to understand Grøstl sufficiently enough to be able
to implement it, is relatively low.

5.3 JH

JH is a one-man-project by Hongjun Wu [13]. Like most other SHA-3 candidates, JH is based on logical
instructions. In sum, there are two implementations, one for 32-bit and one for 64-bit platforms, where
only the initialization vectors (IV) vary for different hash lengths.

5.3.1 Optimization Strategies and Performance

The following optimization techniques were successful:

1. replacement of arrays by member variables,

2. partial loop unrolling of code in function E8,

3. manual method inlining,

4. introducing buffers to reduce the amount of memory allocated in every iteration of the compression
function, and

5. supplementing private/static/final modifiers.

In this case, these optimizations turned out to be very effective. We were able to drop the num-
ber of cycles/byte from a total of 240 cycles/byte to 85.0 cycles/byte. Despite of these tremendous
improvements, JH remains to be the slowest of all candidates.

5



5.3.2 Implementation Complexity

JH is comprised of a 32-bit and a 64-bit optimized version. Obtaining a valid implementation of JH
was easy and straight-forward. Nonetheless, it took a long time and plenty of patience to find suitable
optimizations.

5.4 Keccak

Keccak has been published by Guido Bertoni, Joan Daemen, Michaël Peeters and Gilles Van Assche [2]. It
is based on the so-called sponge construction, which is a “simple iterated construction building a variable-
length input variable-length output function based on a fixed length permutation (or transformation)” [3].
It consists of an absorbing phase that updates the internal state using message blocks and a squeezing
phase that produces the output. Both phases involve the permutation function, which is composed of
logical instructions. The design of the Keccak family offers much flexibility. Two parameters, namely
the rate r and the capacity c, define a member of the Keccak sponge family. The rate defines the block
size and the sum r + c, which must be equal to 1600, defines the size of the state as well as the size of
the permutation. The Keccak hash family is tailored to 64-bit systems. With a trick, however, called
bit-interleaving, 64-bits of the internal state can be distributed to two 32-bit words using table-lookups.
The number of table-lookups is kept within a reasonable limit. This is why, the 32-bit implementation
has good performance, even in Java. The parameters r and c for the versions proposed to the NIST are
chosen in such a way that c equals two times the hash length, which is necessary to achieve the required
security level. So, for instance, Keccak-256 has rate r = 1088 and capacity c = 512 and Keccak-512 has
parameters r = 576 and c = 1024. Since the block size is equal to the rate, this implies a difference of
speed between Keccak-256 and Keccak-512.

5.4.1 Optimization Strategies and Performance

The following optimization techniques were successful:

1. replacing XOR in rotational shift with OR,

2. assigning the state array to local variables in the absorb method,

3. two-fold partial loop unrolling in the absorb method, and

4. supplementing private/static/final modifiers.

The result of the C to Java port can be seen as almost optimal. Our Java implementations of Keccak-256
and Keccak-512 require approximately 21.7 and 40.0 cycles/byte, respectively.

5.4.2 Implementation Complexity

It takes some time to get a comprehensive picture of Keccak, as Keccak’s notions are (at least at first
glance) totally different from other hash functions. Another obstacle was the C implementation of Keccak,
which is confusingly complex due to the extensive use of preprocessor statements. After a time-consuming
introductory phase and code simplifications achieved with the gcc preprocessor, the 64-bit Keccak can
be implemented reasonably fast. The last obstacle the implementer is confronted with, is Keccak’s 32-bit
implementation, where interleaving and deinterleaving steps account for increased complexity.

5.5 Skein

Skein was developed by Niels Ferguson, Stefan Lucks, Bruce Schneier, Doug Whiting, Mihir Bellare,
Tadayoshi Kohno, Jon Callas and Jesse Walker [4]. It is based on Threefish, a tweakable block-cipher
composed of ARX instructions. Skein was created with 64-bit platforms in mind and is the only algorithm
that does not (yet) offer a separate implementation for 32-bit platforms. Furthermore, Skein is defined in
three different variants: Skein-256, Skein-512, and Skein-1024. They differ in their memory requirements
and their alleged security strength. Skein-512 is considered to be the default variant of Skein, so we were
sticking to it.

5.5.1 Optimization Strategies and Performance

The following optimization techniques were successful:

1. assigning the state array to local variables in the compress routine,

6



2. replacing the XOR in the rotational shift with OR,

3. introducing buffers to reduce the amount of memory allocated in every iteration of the compression
function,

4. bundling assignments from the buffer to the key schedule,

5. caching frequently used values locally, and

6. supplementing private/static/final modifiers.

With these measures the number of cycles/byte dropped from initially 25 to 17.2 cycles/byte. This is
essentially the same speed that the Java reference implementation of the Skein team (see [9]) offers.

5.5.2 Implementation Complexity

Skein was very easy to implement with the least amount of time and effort needed, which is also due to
the lack of a dedicated 32-bit implementation.

6 Benchmark Results at a Glance

This section gives the benchmark results we obtained on Linux and Windows.
Figures 1 and 2 show the benchmark results of the SHA-3 candidates on Linux. Two candidates have

constant outcomes in every benchmark: Skein leads the field and JH comes in last. On the 64-bit VM
the other algorithms perform as follows: for short hash lengths Keccak, Grøstl, and BLAKE are on the
second, third and fourth place, whereas for long hash lengths Skein is followed by BLAKE, Keccak, and
Grøstl in ascending order. On the 32-bit VM we get the following picture: for short hash lengths we
have Keccak, BLAKE, and Grøstl on the second, third and fourth place, whereas for long hash lengths
Skein is followed by BLAKE, Keccak, and Grøstl.

Figure 3 shows the benchmark results of the SHA-3 candidates on 64-bit Windows. These are similar
to the according results on the Linux machine. Note that we are not dealing with the 32-bit Java Windows
VM, as this specific type of VM seems to have severe legacy issues. In contrast to the other JVMs it
is troublesome to optimize code for this specific VM, since some of the aforementioned optimization
techniques, such as manual inlining and partial loop unrolling, often lead to performance regressions.

Finally, Table 2 summarizes the benchmark results obtained on our reference platform.

  0

  15

  30

  45

  60

  75

  90

  105

  120

  135

  150

  165

  180

  195

  210

BLAKE Groestl JH Keccak Skein SHA2

c
y
c
le

s
/b

y
te

256 bits
512 bits

Figure 1: Performance of SHA-3 finalists and SHA2 on Java/amd64
(Ubuntu 11.10/amd64, Core i5-2540M)

7



  0

  15

  30

  45

  60

  75

  90

  105

  120

  135

  150

  165

  180

  195

  210

BLAKE Groestl JH Keccak Skein SHA2

c
y
c
le

s
/b

y
te

256 bits
512 bits

Figure 2: Performance of SHA-3 finalists and SHA2 on Java/i386
(Ubuntu 11.10/amd64, Core i5-2540M)

  0

  15

  30

  45

  60

  75

  90

  105

  120

  135

  150

  165

  180

  195

  210

BLAKE Groestl JH Keccak Skein SHA2

c
y
c
le

s
/b

y
te

256 bits
512 bits

Figure 3: Performance of SHA-3 finalists and SHA2 on Java/amd64
(Windows 7/amd64, Core i5-2540M)

Function 256 bit output 512 bit output

cycles/byte cycles/byte cycles/byte cycles/byte
(64-bit JVM) (32-bit JVM) (64-bit JVM) (32-bit JVM)

SHA-2 29.6 32.0 19.0 60.1

BLAKE 48.7 56.3 25.3 79.1
Grøstl 44.4 85.6 57.7 124.3
JH 85.0 210.8 85.0 209.1
Keccak 21.7 55.6 40.0 103.1
Skein 17.2 53.8 17.2 54.0

Table 2: Overview of the Benchmark Results

8



7 Comparing our Benchmark Results to [11, 12]

This section provides a comparison of the results of this study with the results of Thomas Pornin [11, 12].
Our intention is to show how much leeway Java leaves to the implementer. In order to make the results
comparable we benchmarked Pornin’s latest implementations in the same manner as we did with our
implementations. In most cases we are able to strongly improve Pornin’s results.

Table 3 and Figure 4, as well as Table 4 and Figure 5 compare the results of this paper with [11, 12].
We re-evaluated the results of [11] using the latest version of sphlib (see [12]), which includes the
updated finalist algorithms. The Linux machine, as described in Section 3.3, served as environment for
the comparison. To allow a fair comparison, we also point out that version 3.0 of sphlib only includes
implementations of Grøstl, JH, and Keccak that have been optimized for 64-bit environments. Therefore,
the related 32-bit results are not directly comparable either. One can see that our results outperform
sphlib in almost every case, except for the short variants of BLAKE.

Function 256 bit output 512 bit output

cycles/byte cycles/byte ([12]) cycles/byte cycles/byte ([12])

SHA-2 29.6 29.6 19.0 57.7

BLAKE 48.7 41.9 25.3 55.9
Grøstl 44.4 54.9 57.7 156.9
JH 85.0 85.9 85.0 86.3
Keccak 21.7 45.0 40.0 43.8
Skein 17.2 21.7 17.2 22.4

Table 3: Performance Comparison of this Paper with [11, 12] (Java/amd64)

Function 256 bit output 512 bit output

cycles/byte cycles/byte ([12]) cycles/byte cycles/byte ([12])

SHA-2 32.0 34.1 60.11 146.51

BLAKE 56.3 53.8 79.11 128.91

Grøstl 85.6 107.01 124.3 321.71

JH 210.8 219.21 209.1 220.61

Keccak 55.5 120.91 103.1 118.51

Skein 53.81 54.81 54.01 54.61

1 Optimized for 64-bit environments

Table 4: Performance Comparison of this Paper with [11, 12] (Java/i386)

  0

  15

  30

  45

  60

  75

  90

  105

  120

  135

  150

BLAKE Groestl JH Keccak Skein SHA2

c
y
c
le

s
/b

y
te

256 bits
 512 bits
 256 bits (SPHLib)
 512 bits (SPHLib)

Figure 4: Performance Comparison of this Paper with [11, 12] (Java/amd64)

9



  0
  15
  30
  45
  60
  75
  90

  105
  120
  135
  150
  165
  180
  195
  210
  225
  240
  255
  270
  285
  300
  315

BLAKE Groestl JH Keccak Skein SHA2

c
y
c
le

s
/b

y
te

256 bits
 512 bits
256 bits (SPHLib)
 512 bits (SPHLib)

Figure 5: Performance Comparison of this Paper with [11, 12] (Java/i386)

8 Conclusions

In this paper we were dealing with Java code optimization techniques and how they can be applied to
get more efficient implementations of the SHA-3 candidate algorithms. Using various combinations of
the discussed optimization strategies, we were able to greatly improve the execution speed of almost
all SHA-3 candidate algorithms compared to a preceding study [11, 12]. Our results show that two
SHA-3 finalists feature exceptional performance in Java, namely Skein and Keccak. On the third and
fourth place - depending on the digest length and the word size - come BLAKE and Grøstl. At last, JH
lags far behind. The 32-bit implementations are two to three times slower than the corresponding 64-bit
implementations and yet far better performing than their 64-bit analogs on 32-bit VMs. Despite extensive
optimization efforts, we must conclude that hash implementations in Java are up to 3 times slower
than the corresponding native implementations. When we take speed-ups achieved through specialized
instruction set extensions, such as SSE, AVX, or AES-NI, into account, Java implementations drop back
behind further. This can be overcome by calling native code at the expense of platform independence.

References

[1] J.-P. Aumasson, L. Henzen, W. Meier, and R. C.-W. Phan. SHA-3 proposal BLAKE. http:

//www.131002.net/blake/.

[2] G. Bertoni, J. Daemen, M. Peeters, and G. V. Assche. The Keccak sponge function family. http:

//keccak.noekeon.org/.

[3] G. Bertoni, J. Daemen, M. Peeters, and G. V. Assche. Cryptographic sponge functions. Submission
to NIST (Round 3), 2011.

[4] N. Ferguson, S. Lucks, B. Schneier, D. Whiting, M. Bellare, T. Kohno, J. Callas, and J. Walker.
The Skein hash function family. http://www.skein-hash.info/.

[5] P. Gauravaram, L. Knudsen, K. Matusiewicz, F. Mendel, C. Rechberger, M. Schläffer, and S. S.
Thomsen. Grøstl a SHA-3 candidate. http://www.groestl.info/.

[6] C. Hanser. IAIK SHA-3 Provider. http://jce.iaik.tugraz.at/sic/Products/

Core-Crypto-Toolkits, February 2012.

[7] IAIK. The SHA-3 Zoo. http://ehash.iaik.tugraz.at/wiki/The_SHA-3_Zoo.

[8] D. E. Knuth. Structured programming with go to statements. Computing Surveys, 6:261–301, 1974.

[9] T. Mueller. Skein 512-512 (Java). http://www.h2database.com/skein/.

[10] National Institute of Standards and Technology. http://www.nist.gov/index.html.

10

http://www.131002.net/blake/
http://www.131002.net/blake/
http://keccak.noekeon.org/
http://keccak.noekeon.org/
http://www.skein-hash.info/
http://www.groestl.info/
http://jce.iaik.tugraz.at/sic/Products/Core-Crypto-Toolkits
http://jce.iaik.tugraz.at/sic/Products/Core-Crypto-Toolkits
http://ehash.iaik.tugraz.at/wiki/The_SHA-3_Zoo
http://www.h2database.com/skein/
http://www.nist.gov/index.html


[11] T. Pornin. Comparative performance review of the sha-3 second-round candidates, June 2010.

[12] T. Pornin. sphlib 3.0, July 2011. http://www.saphir2.com/sphlib/.

[13] H. Wu. Hash function JH. http://www3.ntu.edu.sg/home/wuhj/research/jh/index.html.

11

http://www.saphir2.com/sphlib/
http://www3.ntu.edu.sg/home/wuhj/research/jh/index.html

	Introduction
	Why Java?
	Why Would One Want to Optimize Java Code?

	Implementation Notes
	Evaluation Parameters and Measures
	Execution Speed
	Implementation Complexity
	Setting

	Optimizing Cryptographic Algorithms for Java
	Generic Optimization Measures
	Java-specific Optimization Measures

	Implementation Results
	BLAKE
	Optimization Strategies and Performance
	Implementation Complexity

	Grøstl
	Optimization Strategies and Performance
	Using AES-NI via JNI
	Implementation Complexity

	JH
	Optimization Strategies and Performance
	Implementation Complexity

	Keccak
	Optimization Strategies and Performance
	Implementation Complexity

	Skein
	Optimization Strategies and Performance
	Implementation Complexity


	Benchmark Results at a Glance
	Comparing our Benchmark Results to PerformanceSHA3SecondRound, SPHLib
	Conclusions

