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Abstract. At the cutting edge of today’s security research and develop­
ment, the SHA-3 competition evaluates a new secure hashing standard in 
succession to SHA-2. The five remaining candidates of the SHA-3 com­
petition are BLAKE, Grøstl, JH, Keccak, and Skein. While the main 
research focus has been on the algorithmic security of the candidates, a 
side channel analysis has only been performed for BLAKE and Grøstl [4]. 
In this contribution we identify side channel vulnerabilities for JH-MAC, 
Keccak-MAC, and Skein-MAC and demonstrate attacks on their respec­
tive reference implementation. Additionally, we revisit the side channel 
analysis of Grøstl and introduce a side channel attack, which is able to 
recover the input to the hash function using only the measured power 
consumption and thus emphasizes the importance of side channel resis­
tant implementations of hash functions. 

1 Introduction 

Hash functions are one of the elementary and most well established primitives in 
cryptography. Hash functions not only ensure the integrity of a transferred doc­
ument, they are also applicable for functionalities including digital signatures, 
password verification, zero knowledge proofs, and Message Authentication Codes 
(MACs). Thus, hash functions are part of the foundation that secures informa­
tion technology. To provide hash functions that guarantee the required security 
features the National Institute of Standards and Technology (NIST) specified 
the secure hashing algorithm 1 and 2 (SHA-1 and SHA-2). When doubts about 
the security of SHA-1 and SHA-2 were raised, NIST announced the SHA-3 com­
petition, which evaluates a successing hashing standard. In the current final 
round, the remaining candidates of the SHA-3 competition are BLAKE, Grøstl, 
JH, Keccak, and Skein. The algorithmic security of these candidates has already 
been researched down to the core and very few weaknesses have been found [24]. 
However, because the new SHA-3 standard will be implemented in various hard­
ware architectures, its resistance against implementation attacks is also of great 
concern [16]. Such implementation attacks are for instance side channel attacks, 
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which utilize all kinds of physical leaking information, e.g. the execution time of 
the algorithm, the power consumption of the device, or even the electromagnetic 
emission, in order to recover secret information. Until now only the side chan­
nel resistance of BLAKE and Grøstl has been analyzed [4]. The side channel 
resistance of the other three candidates still remains uncertain and thus poses a 
potential risk for hardware implementations. 

In this paper, we continue the work of Benôıt et al. [4] by performing a side 
channel analysis for the three SHA-3 candidates JH, Keccak, and Skein. Subse­
quently, we present attacks that exploit the identified vulnerabilities and apply 
them to the respective reference implementation of the candidates, executing 
their dedicated MAC function. Furthermore, we demonstrate how a profiling 
based side channel attack can be used in order to recover the input to a Grøstl 
hashing operation. Note that the attacks, presented in this contribution, target 
the respective reference implementation of the candidates. An attack on a real 
world implementation of the candidates would (probably) be more challenging. 
However, the aim of this contribution is to identify and highlight side chan­
nel vulnerabilities of the candidates such that efficient countermeasures can be 
developed. 

2 Background 

The following section will briefly cover the background theory required for un­
derstanding this work. First we give an overview of hash functions, followed by 
a brief introduction to side channel analysis. 

2.1 Hash functions 

Hash functions H : {0, 1}∗  → {0, 1}n map a variable sized data value from an in­
put domain to a fixed sized representation from their output range, the so called 
hash. When used in cryptography, hash functions have to guarantee certain prop­
erties, e.g. collision resistance, second preimage resistance, and one-wayness. In 
order to simplify the development of hash functions so called constructions were 
proposed. Most prominent is the Merkle-Damg̊ard construction, which allows 
building collision resistant hash functions from collision resistant compression 
functions. A hash function, built by the Merkle-Damg̊ard construction, splits 
the message M into smaller blocks M = (m0,m1, ..., mp−1) and iteratively pro­
cesses them by calling the underlying compression function G and connecting the 
compression function calls by passing a state value Hi (c.f. Figure 1). The size 
of the state value is referred to as the state size of the hash function. A collision 
resistant compression function, which is required by the Merkle-Damg̊ard con­
struction, can again be built by applying the Matyas-Meyer-Oseas construction 
to a symmetric block cipher. Preneel et al. [21] performed a thorough analysis of 
64 basic schemes for constructing compression functions from block ciphers, so 
called PGV schemes. Out of the 64 PGV schemes, Preneel et al. deemed twelve 
schemes secure. The first of these twelve secure schemes is the same as the 
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Fig. 1: Merkle-Damg̊ard Construction 

Matyas-Meyer-Oseas construction and similar to unique block iteration (UBI), a 
construction that the SHA-3 candidate Skein is built on. 

Another proposal for building hash functions is the sponge construction [5], 
which hashes a value by iteratively calling a permutation. The sponge construc­
tion divides the state value into the bitrate and capacity and digests a message 
by XORing it with the bitrate and then inserting the resulting state value into 
the permutation. 

An application of hash functions is to compute MACs, which are used to 
authenticate data in cryptography. A MAC is computed by hashing a message 
together with a secret, which is only known to the sender and the receiver. 
The most prominent MAC function is Hash-based MAC (HMAC) [18]. HMAC 
computes a MAC as: 

HMAC(K, M) = H((K ⊕ OP AD) || H ((K ⊕ IP AD) || M)), (1) 

where M is the message, K the key, H the underlying hash function, and IP AD 
and OP AD are two constants defined as the hexadecimal sequence (3636...36)16 

and (5C5C...5C)16 with the same length as the state size of H. Another MAC 
function is the envelope MAC ENVMAC [12], which is defined as: 

ENVMAC (K, M) = H(K||M ||K) (2) 

where K is the key, K is the key padded to the state size of H, and M is the 
message padded to a multiple of the state size. 

2.2 Side Channel Attacks 

Side channel attacks target cryptographic implementations and exploit all kinds 
of unintentionally emitted information, which can be attained during the com­
putation of an algorithm. Such emitted information are for instance power con­
sumption, electromagnetic emanations, or timings and micro-architectural char­
acteristics. Side channel attacks can be divided into different classes, depending 
on the information they utilize in order to recover the key. Power attacks, for 
example, are based on the fact that a dependency between the power consump­
tion of a device and the processed data exists [19]. An attacker can utilize and 
exploit this dependency in order to recover secret information, such as keys of 
cryptographic algorithms. 

One of the most common power attacks is the Differential Power Analy­
sis (DPA). The DPA computes hypothetical power consumptions for each input 



and key and compares them to the recorded power consumption (so called power 
trace) of the device. The hypothetical power consumption is computed by using 
a leakage model, i.e. the Hamming weight (HW), that models the power con­
sumption of the device and a hypothesis function that predicts a processed in­
termediate value. Finding a suited intermediate value, which reveals information 
about the key, is specified as leakage analysis. In order to compare the calcu­
lated hypotheses to the measured power consumption methods like the Pearson 
correlation or the difference in means can be used [19]. 

Profiling based attacks are another kind of power attacks that require a more 
powerful attacker model but are more effective concerning the number of attack 
traces. Profiling based power attacks are divided in two phases. First, a profiling 
phase builds a power consumption model from the recorded power intake of a 
training device. Secondly, an attacking phase recovers the processed data by 
measuring the power consumption of the actual target device and comparing it 
to the power consumption models, built in the profiling phase. 

Another method for performing a profiling based attack is the machine learn­
ing algorithm Support Vector Machines (SVM). SVM assigns a class to an input 
sample by using training data to construct a hyperplane in a higher dimensional 
space, which separates two classes of data [9]. Hospodar et al. [15] examined the 
applicability of SVM when analyzing power traces by evaluating its accuracy 
on several use cases and comparing it to the accuracy of a template attack. For 
the defined use cases, profiling with SVM performed similar to profiling with a 
template attack, and thus Hospodar et al. deemed revealing cryptographic keys 
from power traces, using SVM, feasible. 

The classical template attack builds a power consumption template for every 
intermediate value. Thus, the complexity of the profiling phase is very high. 
In order to counter this problem, the intermediate values can be divided into 
classes that are characteristic for the leakage model (i.e. the Hamming weight) 
and a template can then be built for each class. However, since now a set of 
values is predicted, additional methods are needed to reveal the actual processed 
value. Therefore, profiling based power attacks were combined with algebraic 
side channel attacks [22], which build a system of equations that describe the 
algorithm and reveal the actual value when solved. 

3	 Side Channel Attacks on Hash Functions used as 
HMAC 

3.1 Side Channel Attacks Against HMACs Based on PGV Schemes 

Okeya [20] performed a side channel analysis of the twelve PGV schemes when 
computing a HMAC. The side channel analysis indicated that the DPA could 
reveal the information, required to forge a HMAC, for the eleven of the twelve 
PGV schemes, even if the underlying block cipher was resistant to side channel 
attacks. The information, required for forging a HMAC, are the inner keyed state 
and the outer keyed state, i.e. the state value resulting from the digestion of the 



key XORed with the inner pad and outer pad. Only the first PGV scheme, which 
is the same as the Matyas-Meyer-Oseas construction and UBI, was deemed side 
channel resistant. In response to the SHA-3 competition, Okeya et al. [13] also 
presented a side channel analysis of several MAC functions. 

3.2 Side Channel Analysis of Six SHA-3 Candidates 

Benôıt et al. [4] presented a side channel analysis of six round two SHA-3 candi­
dates, computing a HMAC, and outlined vulnerabilities to which the DPA could 
be applied. Among the six analyzed candidates were the two finalists BLAKE 
and Grøstl [3] [12]. For BLAKE-HMAC it was shown that the DPA could recover 
the inner keyed state and the outer keyed state by exploiting the leakage of the 
modular addition and the XOR. For Grøstl-HMAC the XOR and the S-box were 
identified as exploitable operations when recovering the keyed state. However, 
the authors recommended the exploitation of the S-box since their evaluation 
function yielded better results for the S-box than for the XOR. 

4 Analysis of the SHA-3 Candidates 

We conducted a leakage analysis of the SHA-3 candidates and were able to iden­
tify side channel vulnerabilities. Following, we give an overview of our analysis 
on four out of five finalists of the SHA-3 competition and sketch the respective 
attacks. The remaining candidate, BLAKE, has already been analyzed by Benôıt 
et al. [4] and will therefore be left out of scope. The attacks on the candidates 
were conducted on an ATMega-256-1 microcontroller with a register size of 8 
bit, which was measured using a PicoScope 6000 at a frequency of 8 MHz. 

In order to explain the attacks, we will state the hypothesis functions, used 
in the conducted DPAs. Note, that this hypothesis functions are tailored to the 
ATMega-256-1 microcontroller and are not universally applicable. However, the 
generalized attack principle can be adopted in order to fit other target devices. 
The hypotheses and the measured power traces were compared using the Pear-
son correlation. To identify the point in time, at which the power consumption 
of the operation occurs, we varied the area for which we computed the Pearson 
correlation until for the correlation converged for a hypothesis. In total we re­
quired 200 power traces to successfully recover the processed key for the attack 
against JH-MAC, Keccak-MAC, and Skein-MAC. For the profiling based attack 
against Grøstl we measured 4500 power traces in the profiling phase and one 
power trace in the attack phase. 

In order to illustrate our practical results, we added example correlations of 
each attack as well as a picture of a SVM classifier in Appendix B. 

4.1 Skein 

Description: Schneier et al. [11] proposed the hash function Skein, which is 
built by applying UBI, to the block cipher Threefish. Threefish is a block ci­
pher with three different internal state sizes, i.e. 256 bit, 512 bit, and 1024 bit. 



Threefish processes the input message M and key K by dividing them into N 
64 bit blocks (with N ∈ {4, 8, 16}) M0,M1, ..., MN−1 and K0,K1, ..., KN−1 and 
performing a modular addition: 

Hi = (Mi + Ki) mod 264 , for 0 ≤ i < N. (3) 

Subsequently, Hi is processed using the operations MIX, Permute, and Ad­
dRoundKey. 

Skein provides its own MAC functionality by padding the key to a multiple of 
the state size and digesting it before the message (c.f. Figure 2). Therefore, the 
keyed state, i.e. the state value resulting from the digestion of the key, is constant 
for a fixed key. Thus, in order to forge a legitimate Skein-MAC we either need 
the key or the keyed state value. 

Fig. 2: Skein-MAC 

Side channel analysis: Since the power consumption during the digestion of 
the key is always constant for a fixed key and therefore not attackable using the 
DPA, we targeted the keyed state. Also, because Skein uses UBI, which is side 
channel secure (see Okeya [20]), we attacked Threefish by performing the DPA 
on the result of the modular addition between the keyed state and the input 
message [17]. 

The problem with the DPA on Skein-MAC is that the modular addition 
processes two 64 bit values. This renders the usual approach of performing the 
DPA, by computing hypotheses for all 264 key candidates, computationally in­
feasible. Thus, in order to make a DPA on Skein feasible, the attacked 64 bits of 
the keyed state value were split into eight blocks of eight bit each and attacked 
independently1. The hypothesis function h for the DPA is: 

h(mj )c = HW (mj + c), for 0 ≤ j < 8, (4) 

where m0m1...m7 is the 64 bit block input message and c ∈ {0, 1, ..., 255} denotes 
the key hypothesis. This attack has to be performed for each of the N ∈ {4, 8, 16}
64 bit blocks of the keyed state value. But since the N 64 bit blocks are processed 
independently, the complexity for attacking multiple blocks rises only linearly 
when attacking Skein versions with a larger state size. 

The size and number of the sub-blocks was chosen as a trade-off between the com­
plexity of computing the hypotheses and the noise level due to omitted bits for the 
attacked 8-bit architecture. 

1 



4.2 JH 

Description: Hongjun Wu proposed the hash function JH [25], designed by 
using a novel construction method for building a collision resistant compression 
function from a block cipher and he also introduced a novel underlying block 
cipher E, built by generalizing the AES design methology. The JH construction 
processes the 512 bit message Mi and the 1024 bit state value Hi as follows: 

Hi+1 = E(Hi ⊕ (Mi || {0}512)) ⊕ ({0}512 || Mi). (5) 

Upon being called, E changes the order of the bits of the input H. This 
transformation is called grouping and is illustrated in Figure 3. The result of the 
grouping is a state with 256 four bit blocks. Subsequently, the four bit blocks are 
substituted by applying two 4 bit S-boxes S0 and S1. Which S-box is used for 
which four bit block is determined by predefined round constants. The suggested 
MAC function for JH is HMAC. 

Side channel analysis: The following attack is applicable for the recovery of 
the inner and outer keyed state of JH-HMAC, thus we will describe it in a general 
manner. In order to recover the 1024 bit sized state value HK , resulting from 
the digestion of the key K, the leakage of two operations has to be exploited. 
The first exploited operation is the XOR of JH’s construction, which processes 
the message M and HK,0, i.e. the first 512 bits of HK = HK,0 || HK,1. Because 
HK,0 is directly XORed with the input message M and the XOR is an operation, 
which is known to be exploitable by the DPA, the hypothesis function h0 was 
chosen as: 

h0(M)c = HW (M ⊕ c), for c ∈ {0, 1}512 . (6) 

Similar to the attack against Skein, the hypothesis computations are divided 
in blocks of eight bit size in order to reduce the complexity of the hypothesis 
computation. 

After applying the attack on the XOR of the construction, we have recovered 
the first 512 bit (HK,0) of the state value HK , but still require the last 512 bits 
(HK,1) in order to forge legitimate JH-HMACs. Thus, we have to perform a 
second attack, which targets the S-box operation during the execution of the 
block cipher. 

After the grouping of the block cipher, the state A = (a0, a1, ..., a255) con­
sists of 256 four bit blocks, which are substituted using the two 4 bit S-boxes. 
Since the grouping mixes the bits from HK,0 and HK,1, we know for each 
ai = (ai,0, ai,1, ai,2, ai,3) the two leading bits ai,0 and ai,1 and our target is 
to recover the two trailing bits ai,2 and ai,3. 

The hypothesis function h1 for the second DPA is: 

h1(ai,0, ai,1)c = HW (SC0(i)(ai,0 || ai,1 || c)), (7) 

where ai,j ∈ {0, 1}, C0(i) is the round constant for the first round at position 
i, and c ∈ {0, 1, 2, 3} represents the two trailing bits. The attack is visualized 
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Fig. 3: Side Channel Attack against JH where the green values represent the 
known information. 

in Figure 3, where the grey values represent the known and the black values 
the unknown information. Note, that in this specific case, we can only vary over 
four possible outputs instead of 16 for each ai, since the two trailing bits are 
constant. This makes the DPA more complex, since different key candidates 
result in similar hypotheses for each output. 

4.3 Keccak 

Description: Daemen et. al [6] proposed a family of permutation functions 
called Keccak, which are used by the sponge construction in order to build the 
corresponding hash function family. The Keccak permutation family members 
are denoted by f [b], for b = 25 · 2λ and 0 ≤ λ < 7, where b is the state size of 
the member λ. Before executing the permutation, Keccak transforms the input 
H = H0H1...Hb−1, with Hi ∈ {0, 1}, into a three dimensional state matrix At,u,v 

by computing: 

At,u,v = H2λ·(5u+t)+v, for 0 ≤ t, u < 5, and 0 ≤ v < 2λ , (8) 



(c.f. Figure 4a). Keccak then performs 12+2·λ rounds of an internal permutation 
R, which again consists of the five permutations: θ, ρ, φ, χ, and ι. In this paper we 
only focus on θ, because in terms of power attacks it reveals the most information. 
The permutation θ is defined as: 

4 44 4 
θ : A'

t,u,v = At,u,v ⊕ At−1,i,v ⊕ At+1,i,v−1. (9) 
i=0 i=0 

Figure 4b visualizes the permutation θ. Roughly speaking, θ first XORes all 
elements of the same column and then XORes two of these values again with 
each matrix element. Keccak-MAC is computed by hashing (K||M). 
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Fig. 4: Keccak Operations 

Side channel analysis: Performing a DPA on Keccak-MAC is challenging, 
since the key is not padded. In theory, we have to distinguish between many 
possible cases, depending on the length of the key and the internal state size of 
Keccak. However, as a full analysis of all cases could fill a whole paper by itself, 
we will only introduce the main attack principle and mention further extensions 
of the attack. The presented attack is divided into two steps. The first step aims 
at recovering the bitrate of the sponge function by exploiting the XOR with the 
input. The second step then uses the knowledge of the first step to target the 
XOR, performed during the θ permutation. 

Since the key is not padded when computing Keccak-MAC, the key as well 
as its size are unknown. Therefore, we do not know the number of message bits, 
which are digested in the same permutation iteration as the keyed state. How­
ever, the recovery and numbering can be done by performing the DPA starting 
with the first message bit over a varying area and repeatingly attacking the next 
message bit until no correlation in the examined area can be found (see Algo­
rithm 1 in Appendix A). The reason for this procedure is that if two consecutive 
message bits are processed in the same permutation iteration, they will be pro­
cessed successively by the XOR of the sponge construction, which can be verified 



by analyzing the correlation, resulting from the DPA. If, on the other hand, they 
are processed in different permutation iterations, the permutation will separate 
the two operations and the point in time, where the highest correlation occurs, 
will differ strongly. As hypothesis function h0 for the DPA we compute: 

h0(Mi)c = HW (Mi ⊕ c), (10) 

where Mi ∈ {0, 1} is the i-th message bit, processed in the first iteration, and 
c ∈ {0, 1}. By performing this attack, we can recover the part of the bitrate, 
which is XORed with the first message bits. 

The second step aims at recovering the remaining state value, i.e. the capac­
ity and the part of the bitrate, which is processed with the key. When the state 
value is fed into the Keccak permutation, it is transformed into the state matrix 
representation and the permutation θ is performed. During θ, the reference im­
plementation of Keccak precomputes the XOR of all rows by XORing all column 
elements (see Algorithm 2 in Appendix A). Roughly speaking, the precomputa­
tion XORes all five columns, starting with the two columns at the bottom rows, 
then the column in the 3rd row and so on it reaches the topmost column. Thus, 
due to the processing order of the precomputation, we can recover all elements 
of the state matrix, which are above a known column. The hypothesis function 
h1 is: 

h1(Ai,j )c = HW (Ai,j ⊕ c), (11) 

where Ai,j ∈ {0, 1}λ, 0 ≤ i, j < 5, and c ∈ {0, 1}λ. When the overlying elements 
are recovered, the attack is repeated until the complete state matrix, i.e. the 
keyed state value, is known. 

This attack becomes challenging when the number of recovered bits of the 
bbitrate is smaller than 5 , i.e. if we do not know all bits of at least one row. In 

this case, not every value can be recovered during the computation of θ and the 
attack has to be extended to the permutation χ and/or has to be conducted over 

bmultiple Keccak rounds. If, on the other hand, the key length is smaller than 5 

and if we know at least b bits of the bitrate, the actual key can be recovered, since 5 
all key bits are directly processed with message bits during the precomputation 
of θ. Thus, while the missing padding of the key makes the attack more difficult, 
it also allows the recovery of the actual key if the key is chosen too small. 

4.4 Grøstl 

Description: Grøstl, proposed by Knudsen et al., is a Merkle-Damg̊ard hash 
function, based on a variant of the block cipher standard AES [2][12]. Grøstl 
digests a message M = M0,M1, ..., MN−1 by compressing Mi and the 512 (1024) 
bit state value Hi using a compression function f , defined as: 

f(Hi,Mi) = Hi+1 = P (Hi ⊕ Mi) ⊕ Q(Mi) ⊕ Hi, (12) 

where P and Q are two permutations, similar to AES. P and Q both perform 
the operations AddRoundConstant, SubBytes, ShiftBytes, and MixBytes for 10 



(14 if the state size is 1024 bit) rounds. The effect of these operations is the same 
as for AES, except that P and Q operate on a 8×8 (8×16) internal state matrix 
A, consisting of eight bit entries. Thus, the operations were modified in order 
to cope with the increased state size. The difference between P and Q are the 
round constants in the AddRoundConstant operation and the number of shifts 
in the ShiftBytes operation. 

The SubBytes operation of P and Q is the same as for AES, i.e. it substi­
tutes each element of A with the element in the corresponding Rjindael S-box. 
MixBytes, however, uses a different matrix B for multiplication due to the in­
creased state size: 

Bi = circi(02, 02, 03, 04, 05, 03, 05, 07), for 0 ≤ i < 8, (13) 

where Bi denotes the i-th row of B and circi denotes the cyclic right shift 
by i positions. MixBytes performs the matrix multiplication as A = B × A in 

8 4 3Rjindael’s Galois field GF (28) with the irreducible polynomial x +x +x +x+1. 

Side channel analysis: Benôıt et al. [4] proposed a DPA against Grøstl-
HMAC, which targeted the inner - and outer keyed state. Also, a successful 
DPA on Grøstl-MAC, i.e. Grøstl computing the envelope MAC, with the attack 
strategy that Benôıt et al. proposed, results in a key recovery. When attacking 
Grøstl-MAC, the recovery of the first padded key is identical to the recovery of 
the inner keyed state of Grøstl-HMAC. However, instead of subsequently pro­
cessing the outer keyed state, Grøstl-MAC directly processes the actual key, 
allowing a key recovery if the DPA is successful. 

Still, due to the vulnerability of AES to algebraic side channel attacks, we saw 
the necessity for a more thorough leakage analysis. Thus, we varied the attacker 
model and assumed an attacker with arbitrary access to a profiling device and 
access to the target device that is restricted to measuring the power consumption 
of one execution. Note that the assumed attacker does not possess knowledge of 
the input or output of the hash function. The goal of this attacker is therefore 
to recover the input to the hash function call by analyzing the power trace using 
power consumption models built during a profiling phase. Since we are limited 
to one power trace in the attack phase, we set up a system of equations for 
P and Q, which set intermediate values, i.e. inputs and outputs of successive 
operations, in relation. In our explicit case, the attack consists of three steps: 
first we build profiles for all HW of each intermediate values, secondly we try 
to recover the HW of the intermediate value, and lastly we insert the recovered 
HW into our system of equations that yields the processed message when solved. 

For the task of determining the HW of the intermediate values, we chose 
SVM [9] [10] because of its good results in [15]. Since there has not been an 
approach of classifying the HW using SVM, we varied possible input parameters 
until we found the set, which produced the highest accuracy. As input features 
we chose the three biggest points of a power trace of an operation as well as 
their sum. This setup yielded an accuracy of 95.1% on test data. 



In order to exploit the recovered HW information, we set up a system of 
equations for P and Q. The equations in this system consist of the HW of 
the input as well as the HW of first two rounds of the SubBytes and MixBytes 
results for every state value. The SubBytes and MixBytes operations were chosen 
because they set the most constraints on the processed values and thus are the 
most efficient when determining the processed data. We were able to solve the 
system of equations and thus recover the processed data using 200 Hamming 
weights. 

The attack was performed using the reference implementation of Grøstl-256 
with a 8 × 8 state matrix. In total needed to profile nine HW for five different 
operations. We did this by using 100 traces for each HW, which resulted in 
5 ∗ 9 ∗ 100 = 4500 measurements for the profiling phase. During the attacking 
phase, one traces was recorded and input into the constructed SVMs in order 
to classify the Hamming weights of the profiled operations. These Hamming 
weights were inserted into the algebraic system, which was solved by verifying 
the conditions, imposed by the equations. 

5 Conclusion 

We presented a side channel analysis of four out of five finalists of the SHA-3 
competition. Potential vulnerabilities of JH, Keccak, and Skein were revealed and 
attacks on their dedicated MAC function were mounted. In order to demonstrate 
the real world applicability of the attacks, they were conducted on an ATMega­
256-1 platform and the complexity and gain of the attacks was evaluated. 

Furthermore, we presented a profiling attack against Grøstl, using SVM to 
recover Hamming weights of intermediate values and an algebraic system to 
recover the processed data by inserting the Hamming weights. The significance 
of the attack lies in the recovery of the data, Grøstl hashes. Recovering the 
processed data is a great issue when a secret is hashed. Therefore, while side 
channel attacks are not as threatening to hash functions as they are to encryption 
functions, they should not be left out scope when evaluating a hash function. 

Note that side channel attacks against the reference implementations of the 
SHA-3 candidates do not determine how hard it is in practice to successfully 
attack SHA-3 candidate implementations, since reference implementations are 
designed for understandability. Therefore, this paper does not conclude that cer­
tain candidates are harder to attack in practice than others. The intention of this 
paper is to identify the operations, which an attack would exploit and to outline 
the necessity of side channel resistant hash functions in order to further encour­
age the development of countermeasures against side channel attacks on SHA-3 
candidates. Some research on countermeasures has already been conducted by 
Hoerder et al. [14], who performed an evaluation of hash functions, including 
Skein, BLAKE, and Keccak, on a power analysis resilient processor architecture. 
Also, for Keccak there have been some notes on side channel countermeasures 
[23] as well as proposals for masked Keccak implementations [7][1]. 



The winner of the SHA-3 competition and therefore the new SHA-3 stan­
dard will be announced in spring 2012. Whichever of the finalists may win will 
be adopted in many implementations and devices, ranging from small embed­
ded systems to high performance computers. Thus, fast, flexible, and secure 
implementations of the winner will have to be provided in order to cover all ap­
plication scenarios. The insight, gained from our evaluation, is that none of the 
analyzed candidates should be blindly deployed as MAC function (or in the case 
of Grøstl as hash function) in a security sensitive context, without implementing 
countermeasures or at least evaluating the side channel resistance of the imple­
mentation. Thus, NIST should contribute to the side channel security of the new 
SHA-3 standard by specifying multiple, flexibly applicable countermeasures, in 
order to secure implementations of SHA-3. 
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A Algorithms 

Algorithm 1 Recovering the number i of processed message bits and the bitrate 
Require: message m = m0m1...mN−1 with mi ∈ {0, 1}, powertrace trace 
1: i = 0, n = 1; 
2: repeat 
3: for j from 0 to 1 do 
4: hypothesis[j] = HW (mi ⊕ j); 
5: end for 
6: corr = Pearson-Correlation (hypothesis, trace); i = i+1; 
7: until corr does not converge anymore 

B Correlations
 

http://ehash.iaik.tugraz.at/wiki/The
http://keccak.noekeon.org/NoteSideChannelAttacks.pdf
http://www.lorentzcenter.nl/lc/web/2008/309/presentations/Kelsey.pdf


Algorithm 2 Precomputing the XOR over all columns in the permutation θ 
Require: state matrix A[t][u][v] with t, u = 5 and v = 64 
1: i ,j ,C[5]; 
2: for i from 0 to 5 do 
3: C[i] = 0; 
4: for j from 0 to 5 do 
5: C[i] = C[i] ⊕ A[i][j]; 
6: end for 
7: end for 
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Fig. 5: Results of the attack 


