Overview	The Algorithms	

Evaluation Of Compact FPGA Implementations For All SHA-3 Finalists

Bernhard Jungk

University of Applied Sciences Wiesbaden, Germany Easycore GmbH, Erlangen, Germany

3rd SHA-3 Conference

Bernhard Jungk

University of Applied Sciences Wiesbaden, GermanyEasycore GmbH, Erlangen, Germany

Overview	The Algorithms	Questions?

1 Overview

2 The Algorithms

3 Results

Bernhard Jungk

University of Applied Sciences Wiesbaden, GermanyEasycore GmbH, Erlangen, Germany

()verviev	~ /
Overview	IV I

Design Goals

Comparison of all SHA-3 finalists for FPGAs (Xilinx)

- Overall goal: Low area usage, yet high throughput-area ratio
- No usage of BlockRAM, DSP units, ...
- Inclusion of the padding function
- Identical hardware interface

Bernhard Jungk

University of Applied Sciences Wiesbaden, GermanyEasycore GmbH, Erlangen, Germany

()verviev	~ /
Overview	IV I

Design Goals

- Comparison of all SHA-3 finalists for FPGAs (Xilinx)
- Overall goal: Low area usage, yet high throughput-area ratio
- No usage of BlockRAM, DSP units, ...
- Inclusion of the padding function
- Identical hardware interface

Bernhard Jungk

University of Applied Sciences Wiesbaden, GermanyEasycore GmbH, Erlangen, Germany

()verviev	~ /
Overview	IV I

Design Goals

- Comparison of all SHA-3 finalists for FPGAs (Xilinx)
- Overall goal: Low area usage, yet high throughput-area ratio
- No usage of BlockRAM, DSP units, ...
- Inclusion of the padding function
- Identical hardware interface

Bernhard Jungk

University of Applied Sciences Wiesbaden, GermanyEasycore GmbH, Erlangen, Germany

0		
•••	Verview	
~		

Design Goals

- Comparison of all SHA-3 finalists for FPGAs (Xilinx)
- Overall goal: Low area usage, yet high throughput-area ratio
- No usage of BlockRAM, DSP units, ...
- Inclusion of the padding function
- Identical hardware interface

Bernhard Jungk

University of Applied Sciences Wiesbaden, GermanyEasycore GmbH, Erlangen, Germany

\sim		
()	Verview	
~		

Design Goals

- Comparison of all SHA-3 finalists for FPGAs (Xilinx)
- Overall goal: Low area usage, yet high throughput-area ratio
- No usage of BlockRAM, DSP units, ...
- Inclusion of the padding function
- Identical hardware interface

Bernhard Jungk

0		
•••	Verview	
~		

Design Strategy

Main idea #1: Folding of algorithmb

- Benefit #1: Usage of RAM instead of registers
- Benefit #2: Reusing redundant parts of the compression functions
- Drawbacks: Reduced throughput, additional multiplexers, larger control logic

Bernhard Jungk

University of Applied Sciences Wiesbaden, GermanyEasycore GmbH, Erlangen, Germany

0		
•••	Verview	
~		

Design Strategy

- Main idea #1: Folding of algorithmb
- Benefit #1: Usage of RAM instead of registers
- Benefit #2: Reusing redundant parts of the compression functions
- Drawbacks: Reduced throughput, additional multiplexers, larger control logic

Bernhard Jungk

University of Applied Sciences Wiesbaden, GermanyEasycore GmbH, Erlangen, Germany

0		
•••	Verview	
~		

Design Strategy

- Main idea #1: Folding of algorithmb
- Benefit #1: Usage of RAM instead of registers
- Benefit #2: Reusing redundant parts of the compression functions
- Drawbacks: Reduced throughput, additional multiplexers, larger control logic

Bernhard Jungk

University of Applied Sciences Wiesbaden, GermanyEasycore GmbH, Erlangen, Germany

0		
•••	Verview	
~		

Design Strategy

- Main idea #1: Folding of algorithmb
- Benefit #1: Usage of RAM instead of registers
- Benefit #2: Reusing redundant parts of the compression functions
- Drawbacks: Reduced throughput, additional multiplexers, larger control logic

Bernhard Jungk

0		
•••	Verview	
~		

Design Strategy

■ Main idea #2: Pipelining of folded architectures

- Benefit #1: Improved clock frequency
- Benefit #2: No (or few) additional clock cycles, if the pipeline is designed carefully.
- Drawback: Often more area is required
- But: For FPGAs a register can often be placed in the same slice as a LUT
- Control logic sometimes more difficult, sometimes easier to implement

Bernhard Jungk

University of Applied Sciences Wiesbaden, GermanyEasycore GmbH, Erlangen, Germany

0	
O	verview

- Main idea #2: Pipelining of folded architectures
- Benefit #1: Improved clock frequency
- Benefit #2: No (or few) additional clock cycles, if the pipeline is designed carefully.
- Drawback: Often more area is required
- But: For FPGAs a register can often be placed in the same slice as a LUT
- Control logic sometimes more difficult, sometimes easier to implement

Bernhard Jungk

University of Applied Sciences Wiesbaden, GermanyEasycore GmbH, Erlangen, Germany

Overview	The Algorithms 000000	Results 00000	Questions?

- Main idea #2: Pipelining of folded architectures
- Benefit #1: Improved clock frequency
- Benefit #2: No (or few) additional clock cycles, if the pipeline is designed carefully.
- Drawback: Often more area is required
- But: For FPGAs a register can often be placed in the same slice as a LUT
- Control logic sometimes more difficult, sometimes easier to implement

Overview	The Algorithms 000000	Results 00000

- Main idea #2: Pipelining of folded architectures
- Benefit #1: Improved clock frequency
- Benefit #2: No (or few) additional clock cycles, if the pipeline is designed carefully.
- Drawback: Often more area is required
- But: For FPGAs a register can often be placed in the same slice as a LUT
- Control logic sometimes more difficult, sometimes easier to implement

Overview	
----------	--

- Main idea #2: Pipelining of folded architectures
- Benefit #1: Improved clock frequency
- Benefit #2: No (or few) additional clock cycles, if the pipeline is designed carefully.
- Drawback: Often more area is required
- But: For FPGAs a register can often be placed in the same slice as a LUT
- Control logic sometimes more difficult, sometimes easier to implement

Overview	The Algorithms	Questions?
	•00000	

BLAKE Compact Design Overview

• Two implementations, 1 or 2 halves of a G_i function

Quasi-Pipeline:

• Depth 4 for 1 G_i half

• Depth 2 for 2 G_i halves

Bernhard Jungk

University of Applied Sciences Wiesbaden, GermanyEasycore GmbH, Erlangen, Germany

Overview	The Algorithms	Questions?
	•00000	

BLAKE Compact Design Overview

- Two implementations, 1 or 2 halves of a G_i function
 Quasi-Pipeline:
 - Depth 4 for 1 G_i half
 - Depth 2 for 2 G_i halves

Bernhard Jungk

University of Applied Sciences Wiesbaden, GermanyEasycore GmbH, Erlangen, Germany

Overview	The Algorithms 0●0000	Results 00000	Questions?
Compact Designs			

Grøstl Compact Design Overview

Hardware for P and Q shared

Composite field S-box implementation

Bernhard Jungk

University of Applied Sciences Wiesbaden, GermanyEasycore GmbH, Erlangen, Germany

Overview	The Algorithms ○●○○○○	Results 00000	Questions?
Compact Designs			

Grøstl Compact Design Overview

Hardware for P and Q shared

Composite field S-box implementation

Bernhard Jungk

University of Applied Sciences Wiesbaden, GermanyEasycore GmbH, Erlangen, Germany

Overview	The Algorithms	Results 00000	Questions?
Compact Designs			

JH 1st Compact Design Overview

Very compact implementation (8 bit datapath)

Shared core for constants computation and round function

Bernhard Jungk

University of Applied Sciences Wiesbaden, GermanyEasycore GmbH, Erlangen, Germany

Overview	The Algorithms	Results 00000	Questions?
Compact Designs			

JH 1st Compact Design Overview

- Very compact implementation (8 bit datapath)
- Shared core for constants computation and round function

Bernhard Jungk

University of Applied Sciences Wiesbaden, GermanyEasycore GmbH, Erlangen, Germany

Overview	The Algorithms	Questions?
	000000	
C D I		

JH 2nd Compact Design Overview

- Very broad datapath (320 bit), but still compact
- Makes output RAM unnecessary for degrouping
- Explicit LUT6_2 instances for S-boxes, linear transformation

Bernhard Jungk

University of Applied Sciences Wiesbaden, GermanyEasycore GmbH, Erlangen, Germany

Overview	The Algorithms	Questions?
	000000	
C ID I		

JH 2nd Compact Design Overview

- Very broad datapath (320 bit), but still compact
- Makes output RAM unnecessary for degrouping
- Explicit LUT6_2 instances for S-boxes, linear transformation

Bernhard Jungk

University of Applied Sciences Wiesbaden, GermanyEasycore GmbH, Erlangen, Germany

Overview	The Algorithms	Questions?
	000000	
C D I		

JH 2nd Compact Design Overview

- Very broad datapath (320 bit), but still compact
- Makes output RAM unnecessary for degrouping
- Explicit LUT6_2 instances for S-boxes, linear transformation

Bernhard Jungk

University of Applied Sciences Wiesbaden, GermanyEasycore GmbH, Erlangen, Germany

Overview	The Algorithms 0000●0	Results 00000	Questions?
Compact Designs			

Keccak Compact Design Overview

$\frac{1}{8}$ round function

- Folding with Keccak-'slices' instead of -'lanes'
- Rescheduled round function, permutation at the end

Bernhard Jungk

University of Applied Sciences Wiesbaden, GermanyEasycore GmbH, Erlangen, Germany

Overview	The Algorithms 0000●0	Results 00000	Questions?
Compact Designs			

Keccak Compact Design Overview

$\frac{1}{8}$ round function

Folding with Keccak-'slices' instead of -'lanes'

Rescheduled round function, permutation at the end

University of Applied Sciences Wiesbaden, GermanyEasycore GmbH, Erlangen, Germany

Overview	The Algorithms 0000●0	Results 00000	Questions?
Compact Designs			

Keccak Compact Design Overview

- **a** $\frac{1}{8}$ round function
- Folding with Keccak-'slices' instead of -'lanes'
- Rescheduled round function, permutation at the end

Overview	The Algorithms 00000●	Results 00000	Questions?
Compact Designs			

Skein Compact Design Overview

One pipelined MIX function, includes the key injection

Bernhard Jungk

University of Applied Sciences Wiesbaden, GermanyEasycore GmbH, Erlangen, Germany

Results	Overview	The Algorithms 000000	Results ●0000	Questions?
	Results			

Analysis Clock Cycles

Algorithm	Per round	Overhead	Complete
			compression function
BLAKE-1	16	4	228
BLAKE-2	8	5	115
Grøstl	16	0	160
JH-1	160	0	6720
JH-2	4	0	168
Keccak	8	8	200
Skein	8	8	584

Table: Clock Cycles for compression function

Bernhard Jungk

University of Applied Sciences Wiesbaden, GermanyEasycore GmbH, Erlangen, Germany

Overview	The Algorithms 000000	Results 0●000	Questions?
Results			

Results Virtex-5

Algorithm	Slices	MHz	MBit/s	MBit/s Slice
BLAKE-1	251	211	477	1.90 (5)
BLAKE-2	374	163	725	1.94 (4)
Grøstl	368	305	975	2.64 (1)
JH-1	193	283	22	0.11 (7)
JH-2	377	278	847	2.24 (2)
Keccak	393	159	864	2.19 (3)
Skein	519	299	262	0.50 (6)

Bernhard Jungk

University of Applied Sciences Wiesbaden, GermanyEasycore GmbH, Erlangen, Germany

Overview	The Algorithms 000000	Results 00●00	Questions?
Results			

Results Virtex-6

Algorithm	Slices	MHz	MBit/s	MBit/s Slice
BLAKE-1	260	263	590	2.26 (4)
BLAKE-2	419	204	908	2.18 (5)
Grøstl	328	365	1168	3.56 (1)
JH-1	221	442	33	0.14 (7)
JH-2	352	344	1048	2.97 (2)
Keccak	397	197	1071	2.69 (3)
Skein	406	316	277	0.68 (6)

Bernhard Jungk

University of Applied Sciences Wiesbaden, GermanyEasycore GmbH, Erlangen, Germany

Overview	The Algorithms 000000	Results 000●0	Questions?
Results			

Results Spartan-3

Algorithm	Slices	MHz	MBit/s	MBit/s Slice
BLAKE-1	948	88.6	198	0.20 (3)
BLAKE-2	1716	71.6	318	0.18 (4)
Grøstl	1220	148	473	0.38 (1)
JH-1	807	124	9.4	0.011 (7)
JH-2	2060	113	344	0.16 (5)
Keccak	1665	71.2	387	0.23 (2)
Skein	1347	128	112	0.083 (6)

Bernhard Jungk

University of Applied Sciences Wiesbaden, GermanyEasycore GmbH, Erlangen, Germany

Overview	The Algorithms 000000	Results 0000●	Questions?
Results			

Results Spartan-6

Algorithm	Slices	MHz	MBit/s	MBit/s Slice
BLAKE-1	257	155	477	1.85 (4)
BLAKE-2	413	113	725	1.75 (5)
Grøstl	344	236	975	2.83 (1)
JH-1	171	241	22	0.12 (7)
JH-2	372	185	847	2.27 (2)
Keccak	420	122	864	2.05 (3)
Skein	418	210	262	0.62 (6)

Bernhard Jungk

University of Applied Sciences Wiesbaden, GermanyEasycore GmbH, Erlangen, Germany

Thank you for your attention.

Bernhard Jungk

University of Applied Sciences Wiesbaden, GermanyEasycore GmbH, Erlangen, Germany